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relationships through pre-clustering of input
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Abstract

Background: In genomics, highly relevant gene interaction (co-expression) networks have been constructed by
finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to
elucidate biological function at the polygenic level. In some cases networks may be constructed from input
samples that measure gene expression under a variety of different conditions, such as for different genotypes,
environments, disease states and tissues. When large sets of samples are obtained from public repositories it is
often unmanageable to associate samples into condition-specific groups, and combining samples from various
conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the
size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate
condition-specific grouping of samples and individual network construction of each group as a means for dynamic
significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships
in the final co-expression network compendium.

Results: A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of
7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction
Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of
the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The
overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique
co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only
3,297 genes (15.9%) and 129,134 relationships. in the global network.

Conclusions: Here we show that pre-clustering of microarray samples helps approximate condition-specific
networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only
highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana
co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these
networks represent the largest compendium to date of significant gene co-expression relationships, and are a
means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The
networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression
profile collection for any organism and is best suited where a knowledge-independent network construction
method is desired.
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Background
Cellular processes underlying expression of complex traits
have a major impact on health, agriculture, and our un-
derstanding of general biology. The gene co-expression
network (GCN) models coordinated gene expression
across a series of input data sets such as microarrays [1,2].
In a GCN, nodes represent genes, and edges describe sig-
nificant gene co-expression relationships. The GCN also
exhibits properties common to most naturally occurring
networks such as scale-free, small world and hierarchical
topology [3,4]. Due to the availability of large quantities of
publically available expression data and the relative ease of
construction, GCNs have been constructed for a broad
array of organisms including human [2,5,6], yeast [7-9],
Arabidopsis [10-13], rice [14,15], maize [16], potato [17]
and many more. These networks have elucidated gene sets
involved in varied biological systems including cell wall
biosynthesis [13], mouse weight [18], and complex trait
expression [19-22].
A GCN is constructed by performing pair-wise correl-

ation analysis of every gene on the array. Typically,
Pearson’s Correlation Coefficient (PCC) is used, and a
large n x n matrix of PCC values is obtained where n is
the number of measurable genes. An analytical method is
then employed to identify the level at which correlation
values should be thresholded to yield biologically mean-
ingful co-expression relationships. Often, co-expression
networks are built for analysis of differentially connected
genes between two or more experimental conditions (en-
vironment, disease state, genotype, or tissue type) [23-25].
In these cases networks are constructed separately for
each condition and the context of the connectivity can
then be examined to identify modules (or gene sets) puta-
tively causal for phenotypic traits. Genes with known
causality can be used to guide selection of modules.
In some cases, global co-expression networks are cre-

ated using a large number of samples from publicly avail-
able repositories—the goal being to mine knowledge
across the compendium of samples not previously identi-
fied through individual experiments. For thousands or
tens-of-thousands of samples two challenges occur. First,
classification of samples into conditions becomes manu-
ally intractable and sample descriptions are often in-
sufficient to automate proper classification. Therefore,
conditional context is often ignored, samples are com-
bined and similarity measurements are calculated across
all samples. However, this treats all genes and samples
(with varying conditions) equally when calculating similar-
ity scores. As the number of samples with different condi-
tions increases in the input dataset, the number of
significant co-expression relationships decreases [26].
Therefore, networks built from a set of samples with a
large number of conditions tend to be small. Cheng and
Church recognized the illogic of weighting all genes and
samples the same for similarity calculation and proposed
biclustering of expression data [27] to generate biclusters
of genes with similar expression in similar contexts (con-
ditions). Many types of biclustering methods have been
developed [28]. However, for large disparate sample sets,
the difficulty in classifying samples into conditional groups
makes biclustering difficult.
A second challenge for network construction is identifi-

cation of a proper significance threshold. Many methods
have been employed for significance thresholding. These
include ad hoc methods [1,29-31], permutation testing [5],
linear regression [13], rank-based methods [32,33], Fisher’s
test of homogeneity [34], spectral graph theory [35], Ran-
dom Matrix Theory (RMT) [36,37], Partial Correlation
and Information Theory (PCIT) [26], methods that use
topological properties [38], and supervised machine learn-
ing [39,40]. In some cases a constant threshold is applied
to the entire network. While significant relationships can
be found using a constant threshold, a dynamic threshold
is better suited for context-dependent co-expression vari-
ability. Dynamic thresholding can increase sensitivity and
decrease false-positives. Rank-based methods, PCIT and
supervised machine learning methods all employ a form
of dynamic thresholding.
To address the challenges of large sample, large condi-

tional network construction, we use a method of se-
gregating input samples into groups before network
construction. Without knowledge of sample conditions,
we approximate expression conditions by pre-clustering
of input gene-expression profiles into groups, and apply
dynamic significance thresholding through independent
network construction for each sample group. We refer to
the network from each group as a Gene Interaction Layer
(GIL). The GIL compendium represents an attempt to
maximize the capture of all possible interactions across all
samples (Figure 1). The GIL compendium also allows for
gene and gene-gene interactions to exist in multiple GILs
and therefore provides a framework for the analysis of
intersecting biological pathways and potentially pleio-
tropic interactions. To demonstrate the effectiveness of
this approach, we generated a GIL collection for the model
plant Arabidopsis thaliana (Arabidopsis) by pre-cluste- ring
7,105 input samples. Our results indicate that the
Arabidopsis GIL compendium represents a dramatic im-
provement in capture of gene co-expression relationships.

Results
Arabidopsis GILs were constructed by partitioning 7,105
publicly available Affymetrix ATH1 microarray RNA ex-
pression samples using a network construction pipeline
[41] which implements Random Matrix Theory (RMT)
for biological signal thresholding [9]. Samples were
RMA [42] normalized prior to pre-clustering. Addition-
ally, a typical “global” network was constructed using all
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Figure 1 Deconstructing a global network into gene interaction
layers (GILs). Gene expression datasets can be used to construct a
co-expression network in total (global) or sorted by expression
pattern into groups prior to network construction (GILs).

Feltus et al. BMC Systems Biology 2013, 7:44 Page 3 of 12
http://www.biomedcentral.com/1752-0509/7/44
normalized input samples. The global network com-
prised 3,297 nodes and 129,134 edges (average degree,
<k> = 78) representing 15.9% of the known Arabidopsis
genes as measured by the ATH1 platform. As mentioned
previously, this small network size is expected given the
mixture of multiple sample conditions. To improve cap-
ture of measurable genes and co-expression relationships,
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Figure 2 Basic topological metrics of GILs constructed from varied pa
average node (solid line) counts for GILs constructed from K-means of clus
for GILs constructed from K-means of cluster size K.
we partitioned the input samples into K groups with simi-
lar expression patterns using the K-means clustering algo-
rithm [43]. Each cluster of samples were then RMA
normalized again within their respective groups and co-
expression networks were built for each cluster.

The effects of K size on the GIL collection
The choice of K size in k-means clustering should have
an impact on the topological properties of each GIL. To
quantify these differences we performed K-means clus-
tering nine times at K sizes of 30, 60, 70, 80, 90, 120,
150, 180, and 210, yielding 990 total groups. The average
array count for each K size ranged from 236.8 (K=30) to
33.8 (K=210) arrays. Changes in the various topological
properties including clustering co-efficient, closeness,
betweenness, page rank, etc., between different K sizes
can be found in Additional file 1: Figure S1. In summary,
relative to the global network, the average number of
nodes in each group was lower and ranged from 2,090
(K=30) to 1,819 (K=150) (Figure 2). The average number
of edges in each group was much lower relative to the
global network and declined with increasing K size ran-
ging from 12,265 (K=30) to 6,421 (K=210) (Figure 2).
To test if the degree of pre-clustering of samples had a

negative effect on network topology, we randomly re-
assigned 50% of the samples among the groups and
reconstructed the networks. This re-assignment occurred
at K sizes of 30, 50, 60, 70, 80, 90, and 120. Sample re-as-
signment had a noticeable effect on scale-free behavior as
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exhibited by a decrease fit to the Kronecker scale-free
graph model [44] and decrease in average scaling expo-
nent γ (Figure 3). The scaling exponent for the global net-
work was 1.36. Therefore, the randomization of samples
between pre-clustered groups seemed to generate net-
works with properties more similar to the “global” net-
work. However, despite differences in fit to the Kronecker
scale-free graph model and to the scaling exponent, all
networks exhibited scale-free behavior; therefore each K
size generated networks that appear realistic.

Identification of the best K size
To identify the best K size, we examined the network
from each K group for total gene capture, functional an-
notation enrichment, and module count. First, we exam-
ined total node capture among the GILs from each K
group. While the global network captured 15.9% of pos-
sible genes measured by the array platform, the total
gene space captured across all networks of a K group in-
creased with increasing K size (Figure 4). At K=180, for
example, 99.6% of all measurable genes were captured at
least once. Second, we modularized the networks using
MCL [45] and tested for function term enrichment
(Bonferroni p < 0.001) for each module relative to whole
genome background using Gene Ontology (GO) terms
[46], KEGG pathways [47], Interpro protein domains
[48], Plant Ontology (PO) terms [49], and AraCyc path-
ways [50]. In general, the number of total enriched terms
tended to increase along with K size (Additional file 1:
Figure S2). However, the number of unique enriched
terms tended to plateau at K=90. Third, we investigated
modular behavior by examining the average number of
Figure 3 GILs are scale free at varied partition sizes. Primary graph sho
cluster sizes K. Clusters were randomized at 0% (solid bars) and 50% (stripe
scaling exponent (<γ>) for GILs constructed from K-means of cluster size K
modules for each K. For this test we used a second mod-
ule detection algorithm called link-community detection
[51]. The link-community method allows for nodes to be
present in more than one module which is more re-
presentative of shared genes found in intersecting path-
ways. The average number of link-community modules
(LCMs) per GIL decreased as K size increased while the
number of MCL modules rose slightly (Additional file 1:
Figure S3). Therefore, to balance a maximum number of
nodes, edges, functional enrichment, and high module
count representing both coverage (MCL) and multi-
functionality (LCM), K=90 was chosen as the K-means
clustering size for the Arabidopsis GIL collection.

Summary of the K 90 GIL collection
In summary, the K90 GIL collection consisted of 86 GILs
and contained a total of 19,588 genes (94.7% measured
gene coverage) and 558,022 unique co-expression rela-
tionships. Counting the experiments contained in the K90
GIL collection revealed that each GIL was comprised of
multiple NCBI GEO experiments (μ = 78.9 arrays; σ=53.7;
Additional file 2: Table S1) derived from a blend of GEO
series (μ=12.3; σ=10.7), indicating that GILs were not sim-
ply the product of segregating datasets into the original
experiment groups. After module detection using the
Markov Clustering (MCL; [45]) and link-community [51]
methods, we circumscribed 38,234 MCL modules, en-
capsulating 94.7% of measurable genes and 26,570 link-
community modules capturing 71.0% of genes, each with
a median occurrence of six genes per module (min = 2
and max = 707) (Table 1). Four GILs (43, 46, 52, 70) in
the K90 collection did not construct due to high levels of
ws log-likelihood fit to a Kronecker scale-free graph model at k-means
d bars) prior to network construction. Inset graph shows average
at 0% (solid line) and 50% (dashed line) randomization.
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Figure 4 Co-expression interaction capture. Primary graph shows total unique node (solid line) and edge (dashed line) accumulation in all GIL
collections at various cluster sizes, K. Dotted line at 23,244 nodes is the maximum number of genes measured by ATH1 array. Inset graph shows
the success rate of possible GILs constructed from cluster size, K.
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correlation between genes. For MCL modules, we identi-
fied 867 enriched function terms (657 unique) within the
global network while the K90 GIL collection yielded
37,614 enriched function terms (4,789 unique) — a 7.2-
fold improvement in representation of unique functional
terms in the GILs.
To test the amount of unique function captured by k-

means presorting, we compared the K=90 GIL set to net-
works constructed by randomizing the input samples at
50% and 100%, leaving cluster number and sizes intact.
The total number of unique nodes (gene capture) de-
creased from 19,588 (at 0% randomization) to 13,568
(at 100% randomization), yet the number of unique edges
increased from 558,023 (at 0%) to 705,399 (at 100%).
Interestingly, this higher level of connectivity between
smaller numbers of genes resulted in more MCL modules
ranging from 39,931 (at 0%) to 47,623 (at 100%) as well as
more total enriched function terms ranging from 37,614
(at 0%) to 64,236 (at 100%) (Additional file 1: Figure S2).
However, many of these enriched functions were re-cap-
tured terms since the number of unique enriched terms
was reduced from 4,789 (at 0%) to 3,518 (at 100%). Thus,
K-means pre-sorting of datasets prior to network con-
struction appears to have a positive effect on capture of
unique biological function.

Exploring GIL function
Gene expression samples in the K90 GIL collection were
not segregated by specific experimental conditions, but
rather segregated using knowledge-independent pre-clus-
tering. Therefore, annotation of the experimental condi-
tions of samples may help describe the biological context
in each GIL. Experimental descriptions from the samples
in GEO confer limited information but common keywords
from these descriptions can provide valuable insight.
Therefore, we attempted to annotate each GIL for bio-
logical context by using highly represented keywords from
the GEO experiment descriptions. We expected two GILs
would be more similar in function if they shared genes be-
tween modules. Therefore, GILs were ordered using aver-
age linked hierarchical clustering with shared node count
between GIL LCMs as the similarity metric (Additional
file 1: Figure S4). This procedure resulted in groups of
GILs that showed non-random similarity in assigned key-
words (p < 0.05) for keywords “leaf”, “root”, ”seed”, “seed-
ling”, “iron”, and “mutant” (significant keywords are
indicated as red boxes in Additional file 1: Figure S4).
However, overlap in keywords is evident between GILs in-
dicating that GILs are not solely comprised of samples
from a single experimental condition.
To determine if the GIL keyword assignment was bio-

logically relevant, GILs were tested for an increase in rele-
vant, enriched functional terms (Columns in Additional
file 1: Figure S4). First, GILs were distributed into key-
word and non-keyword groups for five different keywords
(Figure 5). For example, 10 GILs with the “auxin” key-
word were placed in an auxin group while the remaining
76 GILs were placed in a non-auxin group. Analogous



Table 1 K90 GIL Collection Overview
GILA Arrays Datasets Nodes Edges <k> RMT γ ModulesB GOc Interpro KEGGC AraCycc POC

1 48 7 2,563 7,051 5.50 0.929 1.99 616/294 153/225 192/112 192/112 19/18 21/13

2 38 2 1,921 7,807 8.13 0.943 1.85 418/226 98/135 84/50 84/50 14/19 11/34

3 76 22 2,919 6,415 4.40 0.844 2.13 763/251 313/219 298/130 298/130 28/20 45/36

4 72 12 2,764 6,565 4.75 0.872 2.07 713/319 334/448 303/168 303/168 38/17 45/23

5 40 2 997 4,346 8.72 0.936 1.86 197/136 115/107 81/35 81/35 11/7 3/2

6 123 25 2,446 15,547 12.71 0.835 1.75 507/458 254/854 203/360 203/360 24/19 18/24

7 75 22 2,491 4,259 3.42 0.842 2.26 705/229 267/148 251/77 251/77 21/13 10/8

8 42 4 1,596 5,282 6.62 0.964 1.92 315/217 90/72 88/65 88/65 13/13 19/15

9 84 2 1,859 16,072 17.29 0.876 1.64 327/374 121/927 90/165 90/165 22/92 24/39

10 147 16 1,804 9,878 10.95 0.898 1.70 317/329 168/543 111/98 111/98 16/44 46/93

11 63 1 1,971 16,547 16.79 0.889 1.62 351/484 175/1070 148/402 148/402 19/39 15/46

12 124 14 1,257 5,985 9.52 0.875 1.75 212/294 63/93 47/43 47/43 5/16 12/8

13 49 5 1,293 3,808 5.89 0.952 1.96 295/158 59/84 79/39 79/39 7/16 1/2

14 87 10 3,286 37,336 22.72 0.867 1.58 583/779 218/1186 190/328 190/328 24/44 69/117

15 46 10 1,925 10,961 11.39 0.941 1.75 382/350 86/71 123/48 123/48 8/6 21/51

16 64 9 1,552 5,071 6.53 0.926 1.94 359/220 98/60 114/35 114/35 3/8 6/3

17 37 7 1,895 12,248 12.93 0.945 1.66 347/472 109/465 72/129 72/129 14/49 19/29

18 43 6 1,783 6,340 7.11 0.943 1.90 416/322 78/86 120/69 120/69 15/14 12/14

19 166 33 2,866 9,723 6.79 0.795 1.89 628/393 323/278 293/116 293/116 36/33 40/44

20 142 34 3,440 12,799 7.44 0.783 1.88 752/432 336/385 294/196 132/149 34/35 36/52

21 71 9 1,525 12,678 16.63 0.922 1.62 263/332 121/354 84/98 30/75 16/53 29/68

22 70 9 2,465 6,898 5.60 0.903 2.03 633/288 191/200 231/109 99/67 19/18 15/37

23 24 1 402 3,010 14.98 0.983 1.60 66/97 3/15 8/10 7/8 0/0 0/5

24 87 6 2,347 5,280 4.50 0.905 2.09 599/298 169/184 172/133 86/78 12/5 14/15

25 72 14 3,512 10,063 5.73 0.856 2.06 895/319 338/203 295/93 146/59 37/25 43/54

26 32 5 1,792 26,789 29.90 0.920 1.62 413/280 41/23 72/32 33/9 11/11 28/244

27 72 1 634 2,043 6.44 0.966 1.91 128/103 52/52 57/46 24/24 4/3 6/3

28 75 9 593 5,428 18.31 0.961 1.57 96/128 21/21 28/20 12/24 5/16 1/3

29 129 22 2,798 9,343 6.68 0.814 1.91 595/366 299/282 254/153 118/107 37/26 23/12

30 104 9 2,107 21,381 20.30 0.870 1.60 363/495 128/314 115/168 66/88 18/73 19/28

31 40 10 2,715 7,370 5.43 0.895 2.06 725/293 147/156 217/144 100/103 32/27 23/54

32 104 9 1,918 6,878 7.17 0.910 1.86 420/387 247/488 154/106 82/137 16/39 13/13

33 61 4 1,409 5,306 7.53 0.923 1.94 349/200 81/35 111/36 44/13 12/5 7/4

34 34 4 2,213 7,181 6.49 0.932 1.92 524/238 111/109 153/74 56/29 16/13 52/56

35 49 9 2,004 6,306 6.29 0.935 1.93 458/297 217/394 155/125 88/107 19/41 9/16

36 18 1 1,365 7,141 10.46 0.952 1.79 2889/198 79/98 68/60 30/38 13/10 15/18

37 55 6 2,450 7,970 6.51 0.941 1.94 556/318 138/269 166/84 75/72 21/38 9/4

38 18 2 1,904 4,469 4.69 0.955 2.13 575/229 39/26 145/24 49/10 17/9 5/11

39 54 7 1,780 5,460 6.13 0.871 1.97 443/236 144/129 159/126 68/74 7/5 28/19

40 60 7 1,867 5,686 6.09 0.903 1.94 415/212 241/227 174/78 96/89 32/24 13/7

41 73 13 2,045 4,463 4.36 0.897 2.14 558/217 166/162 179/47 86/57 21/26 5/11

42 74 3 1,757 8,417 9.58 0.902 1.78 346/322 150/449 134/257 59/162 16/49 26/12

43 127 1 n.a. n.a. n.a. n.a. n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a.

44 24 1 428 6,269 29.29 0.978 1.43 60/128 16/44 20/18 10/17 4/1 0/1

45 177 40 2,436 9,984 8.20 0.808 1.81 478/392 248/590 211/198 92/183 28/29 24/15
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Table 1 K90 GIL Collection Overview (Continued)

GILA Arrays Datasets Nodes Edges <k> RMT γ ModulesB GOc Interpro KEGGC AraCycc POC

46 116 28 n.a. n.a. n.a. n.a. n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a.

47 105 12 1,445 4,969 6.88 0.910 1.85 280/282 122/123 119/110 54/90 15/15 10/19

48 269 31 2,638 11,228 8.51 0.803 1.78 489/493 316/663 231/317 103/200 35/38 45/62

49 39 2 1,954 9,688 9.92 0.935 1.76 413/376 177/286 160/133 78/86 15/10 14/3

50 113 27 3,520 11,996 6.82 0.809 1.92 770/497 330/350 284/222 144/99 30/5 21/14

51 45 9 2,377 4,570 3.85 0.911 2.20 651/223 153/132 173/75 90/43 16/9 4/3

52 8 1 n.a. n.a. n.a. n.a. n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a.

53 143 32 1,898 5,518 5.81 0.826 1.96 438/232 231/186 192/94 86/64 17/15 19/12

54 85 13 1,983 3,849 3.88 0.859 2.23 522/206 166/80 191/52 70/36 22/14 18/9

55 87 29 3,811 16,013 8.40 0.802 1.83 815/668 373/580 311/261 137/170 38/27 28/14

56 40 4 1,414 13,540 19.15 0.965 1.54 206/448 87/540 63/87 23/103 8/3 46/265

57 27 3 1,944 7,628 7.85 0.916 1.91 506/229 106/319 125/65 52/81 13/17 32/36

58 131 17 1,861 8,262 8.88 0.865 1.81 367/360 283/694 183/200 79/186 38/84 33/73

59 50 13 926 2,415 5.22 0.927 2.05 229/102 41/27 63/20 20/6 7/0 6/5

60 44 13 1,703 6,996 8.22 0.916 1.83 381/267 199/404 165/85 75/118 17/10 34/64

61 59 4 2,006 10,532 10.50 0.891 1.69 327/391 175/582 102/192 44/137 13/54 30/38

62 73 16 1,185 4,543 7.67 0.886 1.91 278/213 139/177 143/79 74/70 13/6 6/2

63 131 23 2,448 6,632 5.42 0.850 1.98 538/303 234/279 193/143 98/93 18/32 31/45

64 197 30 3,122 11,982 7.68 0.781 1.81 589/435 361/484 257/234 114/147 33/35 48/66

65 30 3 332 1,685 10.15 0.988 1.69 60/85 64/263 23/54 11/61 5/27 1/4

66 23 4 2,523 20,630 16.35 0.954 1.86 626/325 132/64 158/34 72/27 16/5 26/34

67 215 41 3,254 16,033 9.85 0.762 1.78 617/461 377/533 285/298 128/172 48/68 63/66

68 86 18 1,283 7,209 11.24 0.893 1.69 223/268 171/767 99/230 47/172 19/43 24/22

69 192 19 3,597 40,668 22.61 0.823 1.59 585/597 301/504 269/264 103/77 26/58 78/946

70 37 8 n.a. n.a. n.a. n.a. n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a. n.a./n.a.

71 235 24 2,034 7,791 7.66 0.859 1.85 410/282 231/250 202/141 78/70 16/33 39/137

72 24 2 1,314 4,931 7.51 0.948 1.88 279/262 47/39 68/28 22/25 7/18 13/6

73 114 16 2,145 13,061 12.18 0.836 1.76 454/403 131/126 176/131 70/66 18/43 21/41

74 42 7 1,244 3,508 5.64 0.956 2.00 284/183 55/26 92/16 46/34 8/13 4/0

75 161 44 2,689 13,042 9.70 0.791 1.84 554/342 247/579 262/247 112/158 34/15 12/12

76 34 4 1,198 8,819 14.72 0.930 1.66 215/313 46/104 65/190 22/14 9/24 7/32

77 70 9 2,340 5,730 4.90 0.893 2.07 591/291 239/315 194/103 110/77 20/19 10/5

78 172 31 3,513 15,437 8.79 0.777 1.76 665/570 451/880 361/392 150/287 53/45 40/107

79 26 6 2,599 5,542 4.26 0.927 2.22 741/225 124/67 186/44 85/25 12/5 14/13

80 112 30 3,288 23,432 14.25 0.821 1.75 628/621 294/324 246/134 124/75 31/29 23/19

81 18 1 678 2,830 8.35 0.959 1.83 146/132 11/2 34/17 6/8 1/6 0/3

82 125 22 1,979 9,804 9.91 0.841 1.80 416/306 189/314 152/116 60/90 19/21 14/10

83 54 2 915 4,027 8.80 0.948 1.79 164/115 106/291 67/36 25/51 11/28 8/12

84 116 12 2,531 9,667 7.64 0.866 1.86 554/413 204/232 189/174 89/85 22/17 29/24

85 34 5 1,749 6,155 7.04 0.939 1.92 424/237 137/138 129/54 64/65 19/21 12/15

86 99 20 2,979 10,234 6.87 0.812 1.91 671/439 282/432 253/149 106/129 37/58 35/23

87 18 5 1,871 2,559 2.74 0.968 2.60 619/147 58/35 117/29 62/13 10/3 12/6

88 77 16 2,926 10,935 7.47 0.860 1.89 650/326 304/413 224/153 108/109 20/17 39/53

89 20 2 1,359 6,848 10.08 0.957 1.73 270/265 71/24 72/63 38/25 7/18 17/39

90 54 7 612 1,398 4.57 0.957 2.07 139/87 49/42 51/32 25/9 7/4 2/0
AGene Interaction Layers 43,46,52,72 failed to construct; BModules counts are listed as MCL/LCM; CNumber of enriched terms in MCL/LCM modules.
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groups were constructed for “leaf”, “light/dark”, “root”
and “stress”. The number of specific enriched words from
functional terms (e.g. *auxin*, *photo*, *stress*, *ribo-
some*; * = wildcard) found to be functionally enriched in
LCMs were counted in both keyword and non-keyword
groups. The ratio of these enriched terms between key-
word and non-keyword groups can be found in Figure 5.
For the auxin group, there was a 6.78 fold increase of
enriched functional terms that contained “auxin”. In
addition, we performed functional term enrichment on
all genes in a GIL as final indicator of GIL context
(Additional file 3: Table S2).

Discussion
The partitioning method we describe dramatically in-
creases the capture of significant co-expression relation-
ships by segregating expression profiles into similar
groups prior to correlation calculation. In effect, this ap-
proach is a dynamic significance thresholding strategy
where a local hard threshold is determined for each GIL
separately using the correlation matrix of each GIL. It is
different from other dynamic thresholding methods
which perform thresholding using the global correlation
matrix. With pre-clustering of samples, correlation calcu-
lations occur locally for each GIL, allowing for existing
threshold detection methods, such as RMT, to be used in
a dynamic way. Naturally, there will be some false posi-
tives that surpass any thresholding method, but the lack
Figure 5 Functional Term Enrichment Counting in Keyword Sorted GI
ribosome) in LCM module enriched term descriptions was counted in GILs
of keywords within the GIL to GILs without the keyword. GIL identifier is sh
of knowledge of true positive co-expression relationships
make sensitivity and specificity difficult to quantify.
A second benefit for pre-clustering is reduction of com-

plexity that results from mixing of samples from various
conditions. It has been shown that as the number of con-
ditions in a sample set increase, the distribution curve of
correlation changes such that most correlations are cen-
tered around zero [26]. Thus, there are fewer high correla-
tions and fewer significant co-expression relationships,
and hence smaller networks as more conditions are
present. Pre-sorting of samples groups them by similar
overall expression levels, reduces the complexity of the
dataset and mimics separation of samples by condition.
A third benefit to un-supervised pre-sorting of samples

is that limited human understanding does not constrain
the network. For example, grouping a set of samples into
a control group (condition #1) and a disease state group
(condition #2), may overlook changes in gene expression
due to differences in genotype, tissue type and environ-
mental conditions between the various individuals in the
study. Even for carefully designed studies, confounding ef-
fects due to unrecognized or immeasurable conditions
may hide subtle expression relationships. By pre-sorting
without bias towards specific conditions, the underlying
expression levels of each sample dictate membership in
a group. The resulting GIL can therefore be multi-condi-
tional which is more realistic than the idea that co-ex-
pression within a GIL is specific to a single condition. As
L Sets. The occurrence of keyword sub-patterns (auxin, photo, stress,
sorted by presence of high frequency keywords. Bars show the ratio
own in italics.
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mentioned previously, we do not see a single condition
present for a GIL, although we did see some evidence that
some GILs may be more representative of certain bio-
logical contexts.
Fourth, the GIL collection provides a novel framework

for exploration of gene co-expression. We do not com-
bine the co-expression relationships from all GILs into a
single global network–GILs remain as separate entities.
The modules within a single GIL provide a unique set of
relationships for a unique biological function. A module
in one GIL with a similar set of genes as a module in an-
other GIL may have different co-expression relation-
ships. This redundancy provides a realistic framework
where genes and pathways are represented in different
condition contexts. While the exact biological context of
each GIL is unknown, differential connectivity between
similar modules can indicate how co-expression changes
between genes of interest. It is clear from our attempts
to annotate the GILs that more research is required to
assign conditions to the GILs and place genes and gene
interactions into experimental contexts.
A disadvantage to K-means clustering for pre-sorting of

input samples is that samples can only belong to a single
GIL. It seems realistic to believe that the gene expression
in one sample could share similarity with samples from
several GILs. Biclustering draws on this idea that gene co-
expression is a product of overlapping genes and samples.
Also, Ruan et. al. constructed a sample co-expression net-
work where samples were nodes and edges existed when
samples shared similar expression patterns [52]. They
show that module detection of a “sample network” yields
modules with samples that share a similar biological con-
text (e.g. lymphoma cell types). It seems logical to there-
fore use a link-community algorithm for detecting sample
modules in such a sample network, from which we could
therefore construct GILs where samples can be members
of multiple GILs. Additionally, we used K-means cluster-
ing to segregate the expression datasets, but other cluster-
ing approaches, such as that proposed by Ruan et. al, or
other commonly used clustering techniques, could also
be effective in pre-sorting of samples.
Finally, is the A. thaliana interactome represented by

the K90 GIL compendium comprehensive? While we
detected 558,022 unique gene interactions, there were
1,584,378 total interactions, as well as gene modules that
intersect through shared nodes between GILs. While an
accurate protein coding gene count for A. thaliana has
yet to be determined, a recent tally identified 27,416 loci
and 35,386 transcript variants (TAIR10 build). The
ATH1 microarray platform interrogates 20,677 of these
known genes albeit with little transcript variant discrim-
inatory power. The K90 GIL collection captured 19,588
loci in 558,022 temporal gene interactions. Extrapolating
to include genes not measured by the array, we estimate
the unique Arabidopsis co-expression interactome to be
a minimum of 589,045 binary interactions. While this
number is certain to increase with higher resolution
RNA expression measurements (e.g. deep RNAseq sam-
pling) obtained under additional experimental condi-
tions, it does provide a baseline model of the RNA
co-expression interactome.
An interactome estimate on a 105 scale is not unprece-

dented for A. thaliana. A recent A. thaliana study esti-
mated the baseline protein interaction space to be
299,000 ± 79,000 (μ ± SD) without accounting for protein
isoforms. This estimate was based on approximately 2%
(2,661 peptides) of the predicted interactome [53]. While
not statistically significant, 2.1% (237/11,374 edges) of
the PPI interactions overlapped with the K90 GIL
collection. It is intriguing that a PPI network predicted to
represent 2% of the interactome overlaps with 2%
of interactome modeled by the GIL collection. We
hypothesize that the capture of interactome space repre-
sented in the K90 GIL collection approaches the maximal
interaction space of the measured genes across all the in-
put samples.

Conclusions
Our results indicate that pre-clustering transcriptome
measurements by expression similarity prior to co-ex-
pression network construction captures more significant
co-expression relationships than networks constructed
without pre-clustering. In summary, we believe that this
approach is simple, reduced-bias, and practical to reduce
noise in large expression dataset collections. The en-
hanced resolution afforded by the GIL collection provides
a more holistic platform for improved identification of
gene modules that can be interrogated for novel biochem-
ical pathways, used to assign new genes to known path-
ways, predict gene sets causal for important complex
traits, and indicate pleiotropic relationships within and be-
tween modules derived from specific GILs in the GIL col-
lection. The A. thaliana K90 GIL compendium described
here is therefore the most comprehensive and we believe
the most natural model of the gene co-expression
interactome for a plant species. The method should be ap-
plicable to any organism where a large number of gene ex-
pression profiling datasets have been generated.

Methods
Partitioning expression datasets by K-means clustering
Expression measurements used for network construction
were obtained from publicly available Affymetrix Arabi-
dopsis ATH1 Genome Array experiments available in NCBI
GEO (platform GPL198). A total of 7,158 samples were ob-
tained in November 2011. RMA normalization [42] was
performed for all samples together using the command-line
utility of RMAExpress (http://rmaexpress.bmbolstad.com).

http://rmaexpress.bmbolstad.com


Feltus et al. BMC Systems Biology 2013, 7:44 Page 10 of 12
http://www.biomedcentral.com/1752-0509/7/44
Sample outlier detection was performed using the
arrayQualityMetrics [54] tool for Bioconductor [55].
Samples that failed two of the three outlier tests were re-
moved from the dataset. The normalized expression file,
an n × m matrix of expression values with 22,746 rows
of probe sets (no control) and 7,105 columns of samples
(Additional file 2: Table S1), was clustered by similarity of
expression values using K-means clustering via the kmeans
function of R. K-means clustering was repeated for differ-
ent values of K at 30, 60, 70, 80, 90, 120, 150, 180, and 210.

Co-expression network construction
Each cluster of samples derived from the K-means cluster-
ing was used to construct individual networks—one for
each cluster. Additionally, a “global” network was cons-
tructed consisting of all available samples. The network
construction process was performed on each dataset clus-
ter which included: 1) RMA normalization of the clus-
tered datasets and not all possible arrays; 2) removal of
control probes; 3) outlier sample removal; 4) removal of
ambiguous probe sets; 6) calculation of a similarity matrix
of pair-wise Pearson correlation values between all probe
sets; 7) use of Random Matrix Modeling (RMT) [9] to
identify a significant threshold to cull the similarity matrix;
8) conversion of the thresholded ATH1 probeset similarity
matrix to an Arabidopsis gene network; and 9) module de-
tection. Details specific to each step are further described.
The software package RMAExpress (http://rmaexpress.

bmbolstad.com) was used to normalize each cluster indi-
vidually. The samples of each cluster were provided as
input, and the Chip Description File (CDF) was obtained
from the Affymetrix website. A file containing an n x
m expression matrix of normalized expression values,
where n is the number of probe sets and m is the number
of samples, was generated for each cluster. The rows of
the expression matrix were then reduced in size through
the removal of control probes using an in-house Perl
script. Outlier samples within the cluster itself were
identified using the arrayQualityMetrics [54] tool for
Bioconductor [55]. The columns of the expression
matrix were then reduced in size through removal of the
outlier samples using an in-house Perl script. The rows
of the expression matrix were then reduced again to re-
move any ambiguous probesets. Ambiguous probe sets
are those that potentially hybridize to multiple genes in
the Arabidopsis genome. Ambiguous probe sets were
identified using megablast from the NCBI BLAST [56]
package to align a FASTA file of probe sequences
obtained from the Affymetrix website with the
Arabidopsis coding sequences (CDS) obtained from the
TAIR website (Lamesch et. al. 2012). Parameters for
megablast set the word size to 25 (-W 25, the length of
the probe sequence), and disabled low-complexity filter-
ing (-F F). An in-house Perl script counted the probe to
gene mappings and identified ambiguous probe sets.
Pearson correlation coefficients were calculated using
optimized C-code and an m x m similarity matrix was
produced, where m is the number of remaining probe
sets. Random Matrix Theory, which employs threshold
detection using the nearest neighbor spacing distribution
of eigenvalues, was used to identify an appropriate
threshold for filtering the similarity matrix [9]. Opti-
mized C-code, produced in-house, was used for RMT
thresholding. An adjacency matrix is effectively produced
by ignoring values (or setting values to zero) in the simi-
larity matrix that are less than the threshold. Using an
in-house Perl script, a network file was constructed, and
edges in the network correspond to probe sets in the ad-
jacency matrix that have a non-zero correlation value.
Using mappings of probe set to TAIR gene models de-
rived earlier with megablast, the probe set-based network
was converted to a gene-based network. Edge lists for all
K90 GILs and the Global network can be found in
Additional file 4 and online at sysbio.genome.clemson.
edu. Finally, modules, or sets of closely linked genes,
were identified in each of the networks using the link
community method [51] which circumscribes edges into
communities using the ‘linkcomm’ binary version 1.0-4
in R [57] or MCL modules using the ‘mcl’ binary version
11-294 (http://micans.org/mcl/). Gene assignment to
modules can be found in Additional file 5: Table S3.

Functional enrichment analysis
Functional enrichment was performed for each of the
modules from each GIL. Functional terms used for enrich-
ment include Gene Ontology (GO) [46], InterPro [58],
AraCyC [50], Plant Ontology (PO) [49], and KEGG [47]
terms. Mappings of GO, PO, AraCyC, and InterPro terms
to genes were obtained from the TAIR website (Lamesch
et. al. 2012). KEGG terms were obtained by uploading
Arabidopsis coding sequences (CDS) to the KEGG/KAAS
server which maps KEGG terms using a homology-based
method [59]. Functional enrichment was then performed
using an in-house Perl script that functions similar to the
online DAVID tool [60,61]. The tool uses a Fisher’s Exact
test to look for significant over-representation of terms
within a module versus the TAIR10 genes represented on
the ATH1 platform as background. Module functional en-
richment results (Bonferroni adjusted p < 0.001) can be
found in Additional file 6: Table S4. Network functional
enrichment results (Bonferroni adjusted p < 0.001) can be
found in Additional file 3: Table S2.

Network topology analysis
Network topology parameters were determined using the
Netstat, Centrality, and Kronfit ‘example applications’ im-
plementing the Stanford Network Analysis Project (SNAP)
library Ver. 2011-12-31 (http://snap.stanford.edu/snap).

http://rmaexpress.bmbolstad.com
http://rmaexpress.bmbolstad.com
http://micans.org/mcl/
http://snap.stanford.edu/snap
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The scaling exponent (γ) was estimated using the
‘power.law.fit’ function in the igraph R package version
0.5.4 (http://igraph.sourceforge.net/) under 64-bit R ver-
sion 2.10.1.
Semantic analysis
First, we counted all words in each GEO experiment de-
scription. After filtering for uninformative words from a
custom dictionary, we listed the top ten words found in
each GIL collection. These words were then manually
inspected for RNA source (e.g. “anther” “leaf”), treatment
(e.g. “light” ”dark”), “stress”, and “mutant”. These frequent
keywords were then assigned to the respective GIL
(Additional file 1: Figure S4; Additional file 7: Table S5).
Additional files
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enrichment in MCL modules. Figure S3. Module discovery in GIL
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the K90 GIL collection.

Additional file 2: Table S1. GEO Experiment Assignments to K90 GILs.

Additional file 3: Table S2. Functional Enrichment Results for Global,
K90 GIL Networks.
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