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Abstract

Background: Enterobacteriaceae diversified from an ancestral lineage ~300-500 million years ago (mya) into a wide
variety of free-living and host-associated lifestyles. Nutrient availability varies across niches, and evolution of
metabolic networks likely played a key role in adaptation.

Results: Here we use a paleo systems biology approach to reconstruct and model metabolic networks of ancestral
nodes of the enterobacteria phylogeny to investigate metabolism of ancient microorganisms and evolution of the
networks. Specifically, we identified orthologous genes across genomes of 72 free-living enterobacteria (16 genera),
and constructed core metabolic networks capturing conserved components for ancestral lineages leading to E. coli/
Shigella (~10 mya), E. coli/Shigella/Salmonella (~100 mya), and all enterobacteria (~300-500 mya). Using these
models we analyzed the capacity for carbon, nitrogen, phosphorous, sulfur, and iron utilization in aerobic and
anaerobic conditions, identified conserved and differentiating catabolic phenotypes, and validated predictions by
comparison to experimental data from extant organisms.

Conclusions: This is a novel approach using quantitative ancestral models to study metabolic network evolution
and may be useful for identification of new targets to control infectious diseases caused by enterobacteria.

Keywords: Constraint-based modeling, Enterobacteria, Metabolic network reconstruction, Ancient metabolism,
Paleo systems biology, Ancestral core
Background
Initially named for a group of intestinal bacteria, mem-
bers of the family Enterobacteriaceae are distributed
worldwide and are found in soil, water, agronomic crops
and produce, plants and trees, and in animals ranging
from insects to humans. Pathogenic enterobacteria cause
biomedically and agriculturally significant diseases, and
historically have resulted in numerous pandemics, food-
borne outbreaks, and nosocomial infections, arguably
impacting human health more than any other microbial
family. Enterobacteria have been extensively studied in
the laboratory due to their importance to human health
and as standard laboratory strains for molecular biology.
The family includes 44 distinct genera and 176 named
species [1], and there are over 150 complete or nearly
complete genomes currently available for enterobacteria.
Extensive comparative analysis between these genomes
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has revealed some of the genomic variations linked to
host/niche specialization. The metabolic gene content of
these genomes is complex, with each strain predicted to
contain over 800 genes encoding metabolic enzymes and
transporters. One method to investigate the complexity of
genome-scale metabolic networks is through the con-
struction of computational models.
Computational modeling of bacterial metabolism of-

fers a promising approach to predict strain-to-strain
variation in metabolic capabilities and microbial strat-
egies used in different environments, including host tis-
sues. The number of available genome-scale metabolic
models (GEMs) has grown in the last ten years to over
50 GEMs, and they capture the metabolic capabilities of
numerous microbial taxa important to human health,
biotechnology and bioengineering [2,3]. Systems biology
combines computational and experimental approaches to
study the complexity of biological networks at a systems
level, where the cellular components and their interactions
lead to complex cellular behaviors. Genome-scale bio-
logical networks have proven useful for interpreting high-
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Figure 1 Phylogenetic reconstruction for the family of
Enterobacteriaceae. Total evidence Maximum Likelihood tree
(* indicates phylogenetic branching point for ancestral core
metabolic models).
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throughput data and generating computational models.
Mathematical models are constructed from network re-
constructions, and they include variables, parameters,
and equations to describe the potential behavior of
these networks. Starting with E. coli K-12 numerous
types of genome-scale biological networks have been
constructed including metabolic, regulatory, and tran-
scriptional and translational machinery [4-9], and add-
itional GEMs for additional enterobacteria have recently
been constructed [4,10-15].
To date, GEMs of enterobacteria have been constructed

for three standard laboratory E. coli strains [4,6-8,10], four
pathogenic E. coli strains [4], one Salmonella strain [14,16],
one Klebsiella strain [12], two Yersinia strains [10,13], and
one insect endosymbiont, Buchnera [15]. These GEMs
have been used to bioengineer strains for valuable end
product formation [17-22], to conduct simulations to
investigate metabolic processes during host-pathogen
interactions [14], to identify differentiating metabolic
properties between commensal and pathogenic E. coli
strains [4], and to provide insight into the genome evo-
lution of other enterobacteria [23-25]. In addition to
strain-specific enterobacterial GEMs, recently 16 E. coli
genomes were used to construct models from the
combined genomic content of these E. coli strains,
representing the intersection (ancestral core) and union
(pangenome) and revealed new insight into the evolu-
tion of this species [4].
Members of the family Enterobacteriaceae diversified

from a common ancestor ~300-500 million years ago
(mya) into a wide variety of free-living and host-
associated lifestyles [26,27], yet based on conserved
metabolic phenotypes of all modern enterobacteria, lit-
tle is known about ancestral traits of metabolism be-
yond that they were able to catabolize glucose and grow
in the presence or absence of oxygen [1]. Here the me-
tabolism of ancient microorganisms has been investi-
gated by identifying orthologous genes shared in the
genomes of 72 free-living enterobacteria from 16 gen-
era, and constructing metabolic networks representing
the ancestral core at three phylogenetic points: the E.
coli/Shigella ancestral core (~10 mya), the E. coli/
Shigella/Salmonella ancestral core (~100 mya), and the
enterobacterial ancestral core (~300-500 mya). Using
these metabolic models we have analyzed the metabolic
capacity for carbon, nitrogen, phosphorous, sulfur, and
iron utilization in aerobic and anaerobic conditions and
have identified conserved and differentiating catabolic
phenotypes and validated these predictions by comparison
to experimental data. Apart from our previous publication
on E. coli, this is the first study to use constraint-based
modeling to examine the metabolic properties of ancestral
bacteria and provides new insight into the evolution of
metabolism for the family Enterobacteriaceae.
Results
The first GEM for E. coli K-12 MG1655, was developed
10 years ago and has undergone numerous improve-
ments and updates. It is now a sophisticated compart-
mentalized model containing over 1,300 genes and 2,400
reactions [4,7]. It has been used extensively for biotech-
nology, discovery applications, and to study evolutionar-
ily related enterobacteria. Here we generated ancestral
core metabolic GEMs at three phylogenetic branching
points within the family Enterobacteriaceae from a E. coli
K-12 MG1655 GEM [4] based on the retained metabolic
capability determined through a comparative genomic
analysis of 72 enterobacterial genomes. We validated these
models by comparing in silico carbon source utilization
predictions to experimental data spanning 36 extant
strains from 16 genera to examine the shared metabolic
capabilities of modern-day enterobacteria and the impact
of changes in the metabolic network on phenotypic traits.

Phylogenetic reconstruction for the family
Enterobacteriaceae
A total evidence tree was constructed for the enterobacteria
with available genome sequence data (Figure 1). The
total evidence tree is extremely robust with full support
at every internal tree node. Trees were concordant be-
tween the neighbor joining and maximum likelihood
methods, as well as between the total evidence trees and
consensus trees. This phylogeny in phylogram form



Baumler et al. BMC Systems Biology 2013, 7:46 Page 3 of 17
http://www.biomedcentral.com/1752-0509/7/46
indicates a general trend that plant-associated clades
have a relatively deeper split including both the soft-
rotting clade with Dickeya and Pectobacterium, as well
as the Erwinia-Pantoea clade, suggesting ancient speci-
ation events for these genera. The clade including
Escherichia, Salmonella and other animal-associated or-
ganisms shows relatively shorter intra-clade branches
length, indicating their relatively recent speciation. This
phylogenetic tree for the enterobacteria was used to de-
termine the order of genomes used in subsequent ana-
lysis for ancestral core metabolic gene determination.

Generation of an E. coli/Shigella core metabolic network
E. coli and Shigella strains are thought to have diverged
from a common ancestor ~10 mya [27]. Although this is
the most recent ancestral state we investigate here, gene
losses and acquisition of genes via horizontal transfer have
led to extensive differences in genome content among de-
scendants of this node with some E. coli strains differing
by as much as 25% of their gene content [28]. It is of inter-
est to understand the extent to which this has impacted
the metabolic network over this time frame. We assume
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that genes conserved across all strains represent a conser-
vative estimate of the core genome of the ancestor of
modern E. coli strains. From the 16 E. coli and seven Shi-
gella spp. genomes we identified a collection of 2,073 con-
served genes to construct iEcoli_core (Figure 2). Of these
conserved genes, 790 have been experimentally character-
ized for metabolic function and are present in the E. coli
K-12 MG1655 GEM (iEco1339_MG1655) [4]. As previ-
ously described for construction of ancestral core meta-
bolic models [4], a metabolic network for the E. coli/
Shigella ancestral core was made by removing reactions
from the iEco1339_MG1655 network if orthologs to the
associated gene(s) were absent in one or more of the 23
genomes and if the reactions did not have any isozymes. If
removing a reaction prevented biomass production
(predicted using flux balance analysis) then the reaction
was added back to the metabolic model without a gene
associated with it and the reaction was classified as an
orphan reaction (i.e. a reaction without any associated
genes). Using this approach 549 ORFS associated with 454
reactions were removed from iEco1339_MG1655 resulting
in an E. coli core metabolic network (iEcoli_core)
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consisting of a total of 790 ORFs and 1,674 reactions
(Table 1), and the reactions retained in the core model
were classified based on metabolic subsystem (Figure 3).

Generation of an E. coli/Shigella/Salmonella core
metabolic network
E. coli and Salmonella strains are thought to have di-
verged from a common ancestor ~100 mya [27] and it is
of interest to understand how the metabolic networks
have evolved over time to have an estimate of the meta-
bolic capabilities of an ancestor to modern day E. coli
Table 1 Metabolic model information and reaction subsystem

Model iEco1339_MG1655

Genomes included in analysis 1

Genes 1339

Reactions Total 2,128

Orphan Reactions 100

Reactions by subsystem

Alternate Carbon Metabolism 192

Amino Acid Metabolism 170

Anaplerotic Reactions 8

Carnitine Degradation 1

Cell Envelope Biosynthesis 134

Citric Acid Cycle 13

Cofactor and Prosthetic Group Biosynthesis 164

Folate Metabolism 6

Glycerophospholipid Metabolism 225

Glycine Betaine Biosynthesis 1

Glycolysis/Gluconeogenesis 22

Glyoxylate Metabolism 4

Inorganic Ion Transport and Metabolism 105

Lipopolysaccharide Biosynthesis / Recycling 68

Membrane Lipid Metabolism 46

Methylglyoxal Metabolism 8

Murein Biosynthesis 15

Murein Recycling 38

Nitrogen Metabolism 13

Nucleotide Salvage Pathway 131

Oxidative Phosphorylation 55

Pentose Phosphate Pathway 10

Purine and Pyrimidine Biosynthesis 26

Pyruvate Metabolism 10

Transport, Inner Membrane 307

Transport, Outer Membrane 39

Transport, Outer Membrane Porin 247

tRNA Charging 22

Unassigned 37
and Salmonella strains. We assume that genes conserved
across all strains represent a conservative estimate of
the core genome of the ancestor of modern E. coli and
Salmonella strains and from these 16 E. coli, seven Shi-
gella spp., and 16 Salmonella spp. genomes the collec-
tion of 1,703 conserved genes were used to construct
the ancestral metabolic model iSalcoli_core (Figure 2).
There are 683 of these genes that have characterized
metabolic function in the E. coli K-12 MG1655 GEM
(iEco1339_MG1655) [4]. A metabolic network for the E.
coli/Shigella/Salmonella ancestral core was made as
classification
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before by removing reactions from the iEco1339_MG1655
network if orthologs for the associated genes were absent
in one or more of the 39 genomes. Reactions were added
back as orphan reactions if they were essential for biomass
production during growth simulation in minimal media
with glucose as the sole carbon source. Using this approach
657 ORFS associated with 527 reactions were removed
from iEco1339_MG1655 resulting in an E. coli/Salmonella
core metabolic network (iSalcoli_core) consisting of a total
of 683 ORFs and 1,601 reactions (Table 1), and the
reactions remaining were classified based on metabolic
subsystem (Figure 3).

Generation of an enterobacterial core metabolic network
All members of the family of enterobacteria are thought
to have diverged from a common ancestor ~300-500
mya [26]. The metabolic network present at that time
represents the backbone on which the metabolism of all
modern enterobacteria was built. We again assume that
genes conserved across all strains represent a conserva-
tive estimate of the core genome of the ancestor of
modern enterobacterial strains and from these 72 ge-
nomes the collection of 756 conserved genes to construct
iEntero_core (Figure 2). There are 325 of these genes that
have characterized metabolic function in the E. coli K-12
MG1655 GEM (iEco1339_MG1655) [4]. A metabolic net-
work for the enterobacterial ancestral core was made by
removing reactions from the iEco1339_MG1655 network
if one or more of the 72 genomes did not have an
orthologous gene to associate to the reaction and if the re-
action was not essential. In the case of transport outer
membrane porin reactions (n = 247), no single othologous
gene was found that spans all 72 enterobacterial genomes,
yet four genes (b0241, b0929, b1377, or b2215) have
equivalent function for 244 of these reactions in the
iEco1339_MG1655 network. For all 72 genomes of
enterobacteria examined, one or more of these genes en-
coding functionally equivalent proteins were found, and
led to the retention of these 244 reactions in the entero-
bacterial core network classified as orphan reactions.
Using this approach 1,014 ORFS associated with 937 reac-
tions were removed from iEco1339_MG1655 resulting in
an enterobacterial core metabolic network (iEntero_core)
consisting of a total of 325 ORFs and 1,191 reactions
(Table 1), and the reactions remaining were classified
based on metabolic subsystem (Figure 3).

Assessment and validation of models for carbon source
utilization
To evaluate the accuracy of three ancestral core GEMs,
we predicted if these ancestral strains could use 190
different carbon sources under aerobic and anaerobic
conditions. These predictions were then compared to ex-
perimental growth phenotypes for current strains mea-
sured using Biolog phenotypic arrays or published carbon
source utilization data for 38 enterobacteria spanning 23
genera listed in Table 2 [1,4]. There are numerous strain-
specific differences in carbon source utilization in both
aerobic (Additional file 1) and anaerobic conditions
(Additional file 2). For the experimental growth pheno-
types, if any of the current strains could not grow on a
carbon source then we assumed the ancestral core model
could also not grow on the carbon source. These expected
experimental results for the ancestral strains were then



Table 2 Sources for experimental carbon source
utilization data for modern day enterobacterial strains

Genus species strain Column
number

Source or
reference

Escherichia coli K-12 MG1655 1 [4] and this study

Escherichia coli K-12 W3110 2 [4] and this study

Escherichia coli EDL933 3 [4] and this study

Escherichia coli Sakai 4 [4] and this study

Escherichia coli CFT073 5 [4] and this study

Escherichia coli UTI89 6 [4] and this study

Shigella flexneri 2457 T 7 This study

Shigella dysenteriae 8 [1]

Shigella boydii 9 [1]

Shigella sonnei 10 [1]

Salmonella typhimurium LT2 11 [4] and this study

Salmonella Arizonae 12 [1]

Salmonella Choleraesuis 13 [1]

Salmonella Gallinarum 14 [1]

Salmonella Paratyphi 15 [1]

Salmonella Typhi 16 [1]

Citrobacter koseri 17 [1]

Enterobacter cloacae 18 [1]

Leclercia adecarboxylata 19 [1]

Klebsiella pneumoniae 20 [1]

Yokenella regensburgei 21 [1]

Cronobacter sakazakii 22 [1]

Cedecea davisae 23 [1]

Erwinia amylovora ATCC 49946 24 This study

Pantoea stewartii DC283 25 This study

Brenneria salicis 26 [1]

Serratia marcescens 27 [1]

Ewingella americana 28 [1]

Dickeya dadantii 3937 29 This study

Pectobacterium atrosepticum SCRI1043 30 This study

Yersinia enterocolitica 31 [1]

Yersinia pestis 32 [1]

Yersinia pseudotuberculosis 33 [1]

Edwardsiella tarda 34 [1]

Hafnia alvei 35 [1]

Photorhabdus luminescens 36 [1]

Xenorhabdus nematophila 37 [1]

Proteus vulgaris 38 [1]
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compared to FBA predictions of growth for the different
ancestral core GEMs using different carbon sources. For
those compounds included in the Biolog plates that
have transporters in the model, FBA was used to predict
if they could be used for growth as sole carbon source.
Comparisons were made for all three ancestral meta-
bolic models (Figure 4, Additional file 3). We compared
the accuracy of the ancestral models for carbon source
predictions to all other microbial GEMs that were vali-
dated through a comparison to carbon source utilization
data (Figure 5), and determined that the accuracy of car-
bon source utilization predictions for ancestral meta-
bolic models was similar to the range of accuracy for
GEMs of extant bacteria under both aerobic and anaer-
obic conditions [4,6,10-12,14,16,29-32].

In silico predictions for nitrogen, phosphorous, iron, and
sulfur utilization predictions
Once all three ancestral core models were validated
through comparison to experimental data for determin-
ing accuracy of in silico carbon source utilization using
FBA, predictions were generated for utilization of sole
nitrogen, phosphorous, iron, and sulfur compounds. As
the number of genomes used for the generation of the
three ancestral core models increased, the number of
metabolites decreased that were predicted as useable ni-
trogen, phosphorous, iron, or sulfur source under aer-
obic (Figure 6A) or anaerobic conditions (Figure 6B).

Analysis of gene essentiality
To further explore the metabolic similarities between all
enterobacteria, we determined reaction essentiality pre-
dictions of the enterobacterial core metabolic network
(iEntero_core) for conditions simulating aerobic and an-
aerobic growth in glucose containing minimal media
(Table 3). Of the 325 genes included in the enterobacte-
rial ancestral core model, we compared the 169 genes
predicted in silico as essential to orthologous genes in
other enterobacteria strains for which GEMs have been
constructed [4,11,12,14], to experimentally determined
essential genes [14,33,34], and to “superessential” gene
predictions (required in all metabolic networks analyzed
[35]) (Figure 7). 39% of genes predicted as essential (66/
169) using the enterobacterial ancestral core metabolic
network were also predicted as essential in silico in one or
more GEMs generated from genomes of extant entero-
bacteria. Of the 325 genes contained in the enterobacterial
ancestral core metabolic network, 156 genes were pre-
dicted as non-essential and 98% (154/156) of these
predictions matched non-essential gene predictions from
orthologous genes contained in GEMs generated from ge-
nomes of extant enterobacteria.
When the predicted 169 genes predicted as essential

using the enterobacterial ancestral core metabolic model
were compared to experimental data for modern day en-
terobacterial strains, 39% of essential gene predictions
(66/169) were in agreement with the experimentally deter-
mined essential genes for E. coli and Salmonella strains,
and out of the 156 non-essential gene predictions
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generated using the enterobacterial ancestral core meta-
bolic network 74.3% were in agreement with experimen-
tally determined non-essential genes (116/156) (Figure 7).
When gene essentiality predictions generated using the
enterobacterial ancestral core metabolic network were
compared to “superessential” genes, 43.7% (74/169) were
in agreement for essential gene predictions and 96.7%
were in agreement for non-essential gene predictions
(151/156). For each of these comparative gene essentiality
data sets, overall predictions using the enterobacterial an-
cestral core metabolic model were in agreement with gene
essentiality predictions from in silico enterobacterial
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Figure 5 Comparison of in silico carbon source utilization accuracy for E. coli/Shigella, E. coli/Shigella/Salmonella, and enterobacterial
ancestral core metabolic models in comparison to all other existing GEMs validated with carbon source utilization data.
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GEMs for 68% (221/325) of gene essentiality predictions,
76% (241/325) when compared to experimental data from
enterobacterial members, and 70.4% (229/325) when com-
pared to “superessential” gene predictions. In summary,
essential gene predictions from the enterobacterial ances-
tral core were 80.3% in agreement with essentiality data
determined previously in one or more published studies
from individual enterobacterial members (Figure 7).

Discussion
This study describes the generation of three computa-
tional models designed as a first approximation of the
metabolic capacity of ancestral enterobacteria. We se-
lected three nodes in a well resolved phylogenetic tree of
enterobacteria with complete genome sequences (Figure 1).
The first node represents the common ancestor of E. coli
and Shigella (~10 mya), the second represents the ances-
tor of Ecoli/Shigella and Salmonella (~100 mya), and the
third represents the ancestor of all enterobacteria (~300-
500 mya). Each model includes all identifiable metabolic
reactions from a previous GEM for E. coli K-12 that are
linked to genes conserved among (23, 39 and 72 genomes,
respectively) descendants of the phylogenetic node, plus
orphan reactions from the E. coli K-12 model that must be
retained because removal would prevent production of
biomass. Thus, these three models are progressively
smaller subsets of the E. coli K-12 model. The models
were created in a step-wise fashion by deleting reactions
missing from one taxon at a time selected approximately
in order of increasing phylogenetic distance from E. coli
K-12. Figure 2 shows the impact of each successive
addition on the number of genes and reactions retained.
The number of orphan reactions is also shown in Figure 2
and increases with divergence time of the ancestral node.
For the model representing the ancestor of all entero-

bacteria, over 600 of the approximately 1,200 reactions
in the model are orphans (Figure 2). There are several
possible explanations. These orphans may arise from
false-negative ortholog predictions that support remov-
ing a reaction that appears to be missing from a taxon,
but for which the genes are truly present in the anno-
tated genome. Similarly, orphans could arise from false-
negative gene prediction errors. Both these mundane
error sources could be corrected manually, but this
would require a good deal of effort. A more interesting
explanation is that these reactions might be carried out
by non-orthologous isofunctional equivalents in the or-
ganisms that suggested removing them from the model.
This was the case for 244 transport outer membrane
porin reactions that were retained in the enterobacterial
ancestral core model that did not have a single ortholog
conserved across all 72 genomes, yet each of these ge-
nomes contained one or more functionally equivalent
genes encoding isozymes for these reactions. Further
examination of these cases could advance understanding
of the rates and patterns of non-orthologous displace-
ment in the evolution of metabolic processes. It is also
likely that we will see a reduction of orphan reactions in
the next generation of ancestral models that makes use
of parsimony or maximum likelihood based ancestral
state prediction to determine which genes are present at
each internal node, because this approach will be more
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tolerant of annotation or orthology errors affecting a
subset of taxa. It will also expand the models to include
reactions that were legitimately lost in individual taxa
and lineages allowing us to further probe the evolution-
ary dynamics of metabolic networks and perhaps dis-
cover system-scale emergent phenotypes linked with
losses of particular reactions.
Here, we focus on these models representing core ab-

solutely conserved reactions to examine a conservative
estimate of the metabolic capacity of each ancestral
lineage. We compared the reactions retained in each an-
cestral model to the total set of reactions in the mature E.
coli K-12 model for each reaction subsystem classification
category (Figure 3). Some subsystems are particularly
highly conserved. Murein biosynthesis and transport outer
membrane porin reactions are almost entirely conserved
across all phylogenetic depths assayed. Other categories,
like alternate carbon metabolism, transport inner mem-
brane and glycerophospholipid metabolism are highly
variable across the models. For example, 119 reactions in-
volved with alternate carbon metabolism were deleted
from the E. coli K-12 model in order to create the E. coli
ancestral core model, 9 additional deletions were required
for the E. coli/Salmonella ancestral core model, and 27
more were required for the enterobacteria ancestral core
model. This pattern suggests that much of the variation in



Table 3 Subsystem classification for essential reactions
predicted for all metabolic models under anaerobic
conditions

Source iEcoli_core iSalcoli_core iEntero_core

Essential reactions 284 286 326

Essential reactions
subsystem classification

Alternate Carbon
Metabolism

2 2 2

Amino Acid Metabolism 82 82 84

Cell Envelope Biosynthesis 45 45 45

Citric Acid Cycle 4 4 5

Cofactor and Prosthetic
Group Biosynthesis

66 66 69

Folate Metabolism 2 2 4

Glycerophospholipid
Metabolism

10 10 10

Glycolysis 1 1 10

Inorganic Ion Transport
and Metabolism

8 9 12

Lipopolysaccharide
Biosynthesis / Recycling

11 11 11

Membrane Lipid
Metabolism

2 2 4

Murein Biosynthesis 2 2 2

Pentose Phosphate
pathway

2 2 3

Purine and Pyrimidine
Metabolism

26 26 34

Transport, Inner Membrane 4 5 8

Transport, Outer Membrane 15 15 19

Unassigned 2 2 4
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this biological process lies at the species level. In contrast,
for the glycerophospholipid metabolism subsystem, the E.
coli/Shigella core and E. coli/Salmonella core models are
identical, but 116 reaction deletions were required to cre-
ate the enterobacteria core model. This tells us that this
metabolic process was largely intact by the time E. coli
and Salmonella diverged, but these metabolic capabilities
were likely acquired since the ancestor of all entero-
bacteria. Future modeling of additional nodes with incorp-
oration of ancestral state reconstruction will further
illuminate the timing of these metabolic innovations. This
in turn, can be used to simulate metabolic evolution in
the forward direction, adding capabilities in step-wise evo-
lutionary order. With each addition, it will be possible to
compete each “evolved” strain against its ancestor in silico
altering the environmental conditions in the simulation to
examine the relative predicted biomass (i.e. fitness).
Since the biomass of ancestral cells is impossible to

determine empirically, we used the E. coli Biomass equa-
tion from iAF1260 [6] for all ancestral core metabolic
models in this study. The iAF1260 biomass equation is
the most extensive biomass equation of all enterobacte-
rial GEMs containing 92 metabolites including many
trace metals and elements such as iron and sulfur that
are known to be essential for supporting microbial life.
Since unique biomass equations exist for three other
strains of enterobacteria with GEMs [11,12,14], we com-
pared the metabolites present in all strain-specific entero-
bacterial GEMs and determined that there are 34 present
in all four biomass equations, 8 in three of the four, 18 in
two of the four, and that there are metabolites specific to
each strain-specific biomass equation for E. coli (23), Sal-
monella (8), Klebsiella (12), and Yersinia (6). As more
enterobacterial members have GEMs constructed with
strain-specific biomass equations, a future direction may
be to generate an average biomass composition from all
modern-day GEMs of enterobacteria to use in the en-
terobacterial ancestral core metabolic model, or to use
parsimony-based ancestral state reconstruction to esti-
mate node-specific ancestral biomass composition. Fu-
ture studies are warranted to investigate whether and
how these alternative approaches impact insights gained
through simulations.
We used the models to predict whether each ancestral

“strain” would grow on a large number of carbon, nitro-
gen, phosphorous, iron, and sulfur sources under aerobic
and anaerobic conditions. We compared these predic-
tions to previously published experimental growth data
for 38 extant enterobacteria representing the 23 genera
used in the phylogenetic analysis (Figure 1) (several of
which were not represented among the genomes used to
construct our models) to investigate the accuracy of the
models (Figure 4). For each node corresponding to one
of our models, we first compiled published experimental
data recording whether each nutrient could serve as a
sole source for growth in all reported wild-type descen-
dants of the node. If even a single report indicated that a
strain was unable to utilize the nutrient as a sole source,
we recorded it as a negative. For the E. coli/Shigella,
Ecoli/Shigella/Salmonella, and the enterobacteria core
model reconstructions, the total number of experimen-
tally reported carbon sources utilized by all relevant
strains in anaerobic conditions were 81, 65, and 33,
and in anaerobic conditions were 77, 46, and 16, re-
spectively (Figure 4). Previously it was appreciated that
all free-living enterobacteria could utilize glucose as a
sole carbon source [1]. Our compilation of experimen-
tal data identified 15 additional carbon sources that
are utilized by all free-living enterobacteria (alpha-
D-Glucose, D, L-Malic Acid, D-Alanine,D-Fructose,
D-Fructose-6-Phosphate, D-Galactose, D-Glucose-1-
Phosphate, D-Glucose-6-Phosphate, D-Ribose, Inosine,
L-Aspartic Acid, L-Glutamic Acid, L-Serine, N-Acetyl-
D-Glucosamine, Pyruvic Acid, and Uridine). Catabolism of



Figure 7 Comparison of the enterobacterial ancestral core metabolic model gene content to predicted essential genes from in silico
predictions and to experimentally determined essential genes.
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these substrates has been conserved in all free-living
enterobacteria as they diverged over ~300-500million years.
Once experimental data was summarized, we sought

to determine how well the ancestral core metabolic
models accurately predicted carbon source utilization
phenotypes. In order to compare experimental data
(Additional files 1,2, and 3) to in silico predictions, ex-
perimental growth data was summarized for the mem-
bers contained at each major branching point for E. coli/
Shigella (strains 1–10 in Table 2), Ecoli/Shigella/Salmon-
ella (strains 1–16 in Table 2), and the enterobacteria
(strains 1–38 in Table 2). Growth or no-growth data was
then determined, and if one member had a no growth
phenotype, the consensus of experimental data to
compare with ancestral core metabolic models was no
growth. For each experimental growth prediction, all of
the strains with experimental data had to be positive for
growth or not determined for a positive growth predic-
tion to compare with in silico ancestral core predictions.
Of the 190 carbon sources with experimental data, 87 of
these are present with exchange and transport reactions
in the metabolic ancestral core models and thus provide
an opportunity for a comparison between experimental
and in silico carbon source utilization predictions. Based
on these 87 carbon sources, the accuracy of the three
models, iEcoli_core, iSalcoli_core, and iEntero_core, for
aerobic carbon source utilization predictions were 75,
77, and 75%, and in anaerobic conditions were 76, 80.5,
and 86%, respectively (Figure 4). When compared to all
existing microbial GEMs that used experimental carbon
source utilization data to validate in silico metabolic
model predictions, the accuracy observed for the three
ancestral metabolic models for aerobic (75.3% ± 1.5) or
anaerobic (81.5% ± 4) conditions is within the range of
accuracy for all 16 GEMs (86% ± 7.5) that have been
published (Figure 5). This supports the use of more gen-
eral ancestral models in cases where a genome sequence,
or specific model, or both are lacking. These core models
are also an excellent starting point for generation of add-
itional strain-specific models for other enterobacteria.
Having validated the ancestral core models using a

subset of experimentally determined carbon source
utilization data, we examined the predictions of each
model for a wider variety of carbon, nitrogen, phosphor-
ous, iron, and sulfur source utilization phenotypes
(Figure 6). There were three carbon sources (glucose,
ribose, and pyruvic acid), five nitrogen sources (D-
alanyl-D-alanine, L-asparagine, L-aspartate, glycine, and
ammonia), four phosphorous sources (N-Acetyl-D-
galactosamine 1-phosphate, N-acetyl-D-glucosamine 1-
phosphate, D-glucuronate, and phosphate), one iron
source (ferric iron Fe3+), and one sulfur source (sulfate
SO4) predicted to support growth of the ancestral core
of enterobacteria (Figure 6). These results provide new
insight about the metabolic capability that has been
retained in almost all free-living enterobacteria over ~300-
500 mya of divergence.
Finally, we examined which genes/reactions are pre-

dicted as essential based on the enterobacteria ancestral
core metabolic model. We conducted in silico gene es-
sentiality analysis of all 325 genes contained in the
iEntero_core model, and identified 169 genes/reactions
that were predicted to be essential for growth. We
compared these predictions to available in silico and ex-
perimental essential gene data for extant strains of
enterobacteria. When genes predicted as essential for
iEntero_core were compared to in silico predictions of
GEMs for E. coli K12 [4], Salmonella [14], Klebsiella
[12], and Yersinia [11], 63 enterobacterial ancestral core
metabolic model essential gene predictions matched the
essential genes predicted for all four enterobacterial
strain-specific GEMs, and five predicted essential genes
matched essential gene predictions for 3 out of 4 strain-
specific GEMs (Figure 7). When genes predicted as es-
sential for iEntero_core were compared to experimental
data for E. coli K12 [33,34] or Salmonella [14], 128
iEntero_core essential genes matched at least one of the
experimental essential gene predictions for E. coli K12,
and 15 matched experimental essential gene predictions
for Salmonella. In addition “superessential” genes identi-
fied for reactions essential to almost all prokaryotic
organisms [35] were compared to enterobacterial core
predictions, and 74 were found to match genes predicted
as essential and 116 predicted as nonessential. Overall,
gene essentiality predictions using the iEntero_core an-
cestral model were in 80.3% (n = 325) agreement with at
least one other data set from previously published data
(Figure 7). This analysis also pinpoints which genes have
been identified or predicted to be essential across nearly
all studies, and these may represent the best targets for
the generation of antibiotics or other control strategies
for infectious diseases associated with enterobacteria.

Conclusions
The work presented here are the most advanced and
comprehensive quantitative ancestral metabolic models
to date to investigate metabolism through genomic com-
parison of extant descendants, and has provided insight
into aspects of metabolism of ancient microbes. We
showed evidence that different subsystems of the meta-
bolic network evolved according to different rates and
patterns. This includes subsystems that vary extensively
within species after remaining relatively stable for much
longer evolutionary times, as well as subsystems whose
composition has been retained in all extant strains. This
work demonstrated a new approach for validation of
carbon source utilization of ancestral models, yielding
accuracies of >75%, for aerobic and anaerobic conditions
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for the ancestral core models for Ecoli/Shigella, E. coli/
Shigella/Salmonella, and enterobacteria. Importantly,
the ancestral core models showed comparable accuracy
to organism-specific models suggesting they will be use-
ful starting points for modeling lesser-characterized
enterobacteria. Essential gene predictions for the entero-
bacterial ancestral core were compared to extensive
experimental data and revealed the most promising new
targets for future development of control strategies such
as new broad-spectrum antibiotics to treat disease
caused by enterobacteria. These insights support the use
of this “paleo systems biology” approach to study ancient
metabolism and metabolic network evolution through
reconstruction of models of ancestral lineages that are
otherwise inaccessible for experimentation.

Materials and methods
Bacterial strains and growth conditions
Six E. coli strains, one Salmonella strain, one Shigella
strain, one Erwinia strain, one Pantoea strain, one
Dickeya strain, and one Pectobacterium strain were used
in this study (Table 4). Frozen cultures were streaked
onto Luria Bertani (LB) agar plates and grown overnight
at 37ºC for E. coli, Salmonella, and Shigella strains, and
at 28ºC for the Erwinia, Pantoea, Dickeya, and
Pectobacterium strains. For carbon plate utilization as-
says, isolated colonies were used to inoculate BUG
Sheep Blood Agar plates (Biolog, Hayward, CA) and
incubated at 37ºC or 28ºC overnight aerobically or an-
aerobically in sealed Whirl-Pak® Long-Term Sample
Retention Bags (Nasco, Fort Atkinson, Wisconsin) satu-
rated with an anaerobic gas mixture (95% N2 and 5%
CO2) as described [4]. Cells were collected and used to
inoculate Biolog PM1 and PM2 plates following the
manufacturers recommendations with a minor modifi-
cation of adding a top layer of mineral oil to each well
for anaerobic culture conditions as described [4], and
Table 4 List of bacterial strains used in this study

Strain Genotype

E. coli K-12 MG1655 Wild type

E. coli K-12 W3110 Wild type

E. coli O157:H7 EDL933 Wild type

E. coli O157:H7 RIMD/Sakai Wild type

E. coli CFT073 Wild type

E. coli UTI89 Wild type

Shigella flexneri 2457 T Wild type

Salmonella enteric serovar Typhimurium LT2 Wild type

Erwinia amylovora ATCC 49946 Wild type

Pantoea stewartii DC283 Wild type

Dickeya dadantii 3937 Wild Type

Pectobacterium atrosepticum SCRI1043 Wild type
Biolog plates were monitored for up to 48 h for the E. coli,
Salmonella, and Shigella strains, and up to 72 h for the
Erwinia, Pantoea, Dickeya, and Pectobacterium strains.

Genome-wide phylogenetic reconstruction
Genomes used in this study for phylogenetic reconstruc-
tion, their sources, dates of isolation, and hosts are listed
in Additional file 4. Out of the total 44 genera and 176
named species for the family of Enterobacteriaceae [1],
there are over 147 complete or nearly complete genomes
from 23 genera currently available, according to NCBI
microbial genome project and ASAP databases [36]. For
all strains with available genomes, one strain from each
genus was selected for phylogenetic analysis from those
contained in the ASAP database Vibrio cholerae and
Pseudomonas syringae were designated as outgroup taxa,
because they are members of phylogenetically closely re-
lated families from the order of gamma proteobacteria.
Genome-wide orthologous genes among selected ge-
nomes were retrieved in two steps. We first generated
all-against-all BLASTP reciprocal (best or nearly best)
matches for all investigated sequences, using an E-value ≤
0.000001 cutoff. We then use a threshold based on a
metric that is defined as the minimal number of pair-wise
comparisons consistent across a putative orthologous
sequence cluster, in order to preserve a genome-wide
dataset with maximal phylogenetic informativeness. Align-
ment of each retrieved orthologous data among all strains
under investigation was performed in AMAP (Protein
multiple alignment by sequence annealing) [37] with 0.5
as the gap factor. Amino acid sequence alignments were
concatenated to form a single composite alignment. We
further employed both neighbor joining (NJ) and the max-
imum likelihood estimation (MLE) for phylogenetic re-
construction. NJ trees were calculated in PAUP* 4.0b10
[38,39] and maximum likelihood trees were constructed
in PhyML [40] for both individual genes and the
Source or reference

Dr. Patricia J. Kiley, University of Wisconsin-Madison [45]

ATCC 39936

Dr. Charles W. Kaspar, University of Wisconsin-Madison [46]

ATCC BAA-460 [47]

Dr. Rodney A. Welch, University of Wisconsin-Madison [48]

Dr. Scott J. Hultgren, Washington University, St. Louis [49]

Dr. Nicole T. Perna, University of Wisconsin-Madison [50]

Dr. Diana M. Downs, University of Wisconsin-Madison [51]

Dr. Nicole T. Perna, University of Wisconsin-Madison [52]

Dr. Nicole T. Perna, University of Wisconsin-Madison

Dr. Nicole T. Perna, University of Wisconsin-Madison [53]

Dr. Nicole T. Perna, University of Wisconsin-Madison



Table 5 Genomes used to construct ancestral core
metabolic networks

Strain ORFs Genome
number

Escherichia coli K-12 MG1655 4,141 1

Escherichia coli EDL933 5,196 2

Escherichia coli 53638 5,172 3

Escherichia coli CFTO73 4,889 4

Escherichia coli E2348/69 4,652 5

Escherichia coli EC4115 5,467 6

Escherichia coli UTI89 4,944 7

Escherichia coli E24377A 4,953 8

Escherichia coli Sakai 5,253 9

Escherichia coli SE11 4,973 10

Escherichia coli APEC O1 5,045 11

Escherichia coli SMS-3-5 4,906 12

Escherichia coli 536 4,599 13

Escherichia coli HS 4,393 14

Escherichia coli ATCC 8739 4,236 15

Escherichia coli K-12 W3110 4,171 16

Shigella boydii 227 4,578 17

Shigella boydii BS512 4,578 18

Shigella dysenteriae 197 4,460 19

Shigella flexneri 2457 T 4,527 20

Shigella flexneri 301 4,460 21

Shigella flexneri 8401 4,135 22

Shigella sonnei 046 4,456 23

Salmonella Agona SL483 4,613 24

Salmonella Arizonae CDC 346-86 4.505 25

Salmonella Choleraesuis SC-B67 4,663 26

Salmonella Dublin CT_02021853 4,619 27

Salmonella Enteritidis P125109 4,204 28

Salmonella Gallinarum 287/91 3,963 29

Salmonella Heidelberg SL476 4,779 30

Salmonella Newport SL254 4,807 31

Salmonella Paratyphi A AKU_12601 4,286 32

Salmonella Paratyphi A ATCC 9150 4,095 33

Salmonella Paratyphi B SPB7 5,590 34

Salmonella Schwarzengrund CVM19633 4,628 35

Salmonella Typhi CT18 4,696 36

Salmonella Typhi Ty2 4,323 37

Salmonella Typhimurium 14028S 5,474 38

Salmonella Typhimurium LT2 4,525 39

Leclercia adecarboxylata ATCC 23216 4,732 40

Klebsiella pneumoniae MGH 78578 5,185 41

Yokenella regensburgei ATCC 49455 4,657 42

Cedecea davisae ATCC 33431 4,590 43

Table 5 Genomes used to construct ancestral core
metabolic networks (Continued)

Erwinia amylovora ATCC 49946 3,616 44

Erwinia tasmaniensis Et1/99 3,623 45

Pantoea stewartii DC283 4,964 46

Serratia marcescens subsp. marcescens ATCC 13880 4,892 47

Ewingella americana ATCC 33852 4,444 48

Dickeya dadantii 3937 4,494 49

Dickeya sp.i Ech586 4,215 50

Dickeya sp. 703 3,970 51

Dickeya sp Ech1591 4,162 52

Pectobacterium atrosepticum SCRI1043 4,466 53

Pectobacterium brasiliensis 1692 5,127 54

Pectobacterium carotovorum PC1 4,245 55

Pectobacterium carotovorum WPP14 4,818 56

Pectobacterium wasabiae WPP163 4,507 57

Yersinia enterocolitica 8081 4,054 58

Yersinia pestis 91001 4,190 59

Yersinia pestis Angola 4,044 60

Yersinia pestis Antiqua 4,357 61

Yersinia pestis CA88-4125 4,115 62

Yersinia pestis CO92 3,986 63

Yersinia pestis KIM 4,321 64

Yersinia pestis Nepal516 4,085 65

Yersinia pestis Pestoides F 4,063 66

Yersinia pseudotuberculosis IP31758 4,324 67

Yersinia pseudotuberculosis IP32953 4,058 68

Yersinia pseudotuberculosis PB1/+ 1 4,235 69

Yersinia pseudotuberculosis YPIII 4,190 70

Hafnia alvei ATCC 13337 4,509 71

Photorhabdus luminescens TTO1 4,684 72
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composite data sets. BioNJ tree [41] is used as starting tree
topology in PhyML, and optimized tree topology and opti-
mized branch lengths and rate parameters are also used.
WAG (Whelan And Goldman) is employed as the amino
acid substitution model [42] and gamma distribution par-
ameter and proportion of invariable sites are estimated
using four substitution rate categories are used. The 50%
majority-rule consensus trees were calculated using 1000
bootstrap pseudo-replicates with sampling limited to non-
excluded, parsimony-informative characters.

Generation of ancestral metabolic networks
Draft and complete enterobacterial genomes in the ASAP
database have been continually updated using new pub-
licly accessible genomes since the database’s inception
[36]. Orthologs in the ASAP database are derived from
multiple criteria, including pairwise reciprocal BLASTP
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searches filtered with comparison-specific thresholds for
percent identity restricted to hits encompassing > 60% of
both aligned proteins, followed by manual curation based
on local and larger-scale conservation of genome context
as well as expert review of alignments, and comparison to
large-scale OrthoMCL analyses [36]. There are more than
300 genomes of enterobacteria in the ASAP database, of
which 72 genomes (spanning 16 genera) were chosen that
all have gene orthology predictions determined in com-
parison to E. coli K12 MG1655 (Table 5). Using the phylo-
genetic tree as a guide, we generated a table of genes
(rows) contained in the iEco1339_MG1655 metabolic
model [4] with the 72 genomes (columns) and column
entries correspond to orthologous ASAP gene identi-
fiers, with blank entries representing cases in which no
orthologous gene exists (Additional file 5). We then
chose three phylogenetic branching points to identify
genomes representing the conserved ancestral core for E.
coli/Shigella (genomes #1-23), Ecoli/Shigella/Salmonella
(genomes #1-39), and the enterobacterial core (genomes
#1-72). The GEMs for these ancestral core models were
made by removing orthologous ORFs and their associated
reactions from the iEco1339_MG1655 GEM if one or
more of the enterobacteria genomes leading up to the
phylogenetic branching point did not have a gene assigned.
If removing a reaction prevented biomass production for
anaerobic growth on glucose (predicted using FBA) then
the reaction was added back to the metabolic reconstruc-
tion without a gene associated with it. Gene-to-protein-to-
reaction associations representing the metabolic models of
the E. coli/Shigella (iEcoli_core),E.coli/Shigella/Salmonella
(iSalcoli_core), and the Enterobacterial (iEntero_core)
ancestral core are provided (Additional file 6). Ancestral
core metabolic models were converted to SBML file
format and are provided for iEcoli_core (Additional file 7),
iSalcoli_core (Additional file 8), and iEntero_core
(Additional file 9).

Flux balance analysis
Fluxes through metabolic network reactions can be pre-
dicted using flux balance analysis (FBA) [43]. In FBA,
fluxes are constrained by steady-state mass balances, en-
zyme capacities and reaction directionality. These con-
straints yield a solution space of possible flux values, and
FBA uses an objective function to identify flux distribu-
tions that maximize (or minimize) the physiologically
relevant predicted solution. Cellular growth rate (or bio-
mass production) is often used as an objective function
for FBA [44], and was used for FBA analyses performed
in this study in addition to an objective function for res-
piration which has been shown to improve comparisons
to Biolog carbon source experimental data [4]. The same
biomass equation, GAM and NGAM values, and PO ra-
tio were used for all developed models, and were the
same as that in iAF1260 [6]. Using FBA, in silico predic-
tions of carbon, nitrogen, phosphorous, iron, and sulfur
source utilization were compared to experimentally de-
termined values for 38 enterobacterial strains spanning
23 genera for both aerobic and anaerobic conditions. For
carbon, nitrogen, phosphorous, iron, and sulfur source
utilization and gene deletion simulations, a maximum
uptake rate of 10 mmol per gram of dry weight per hour
(mmol/gDW cell/h) was used. FBA was also used to pre-
dict essential reactions by constraining reactions to have
zero flux and maximizing growth rate. If the resulting
maximum predicted growth rate (using FBA) was zero
then the reaction and the associated genes were consid-
ered to be essential. Reaction deletion simulations were
evaluated under both aerobic and anaerobic conditions.
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