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Transcriptome meta-analysis reveals a central role
for sex steroids in the degeneration of
hippocampal neurons in Alzheimer’s disease
Jessica M Winkler and Howard S Fox*
Abstract

Background: Alzheimer’s disease is the most prevalent form of dementia. While a number of transcriptomic studies
have been performed on the brains of Alzheimer’s specimens, no clear picture has emerged on the basis of
neuronal transcriptional alterations linked to the disease. Therefore we performed a meta-analysis of studies
comparing hippocampal neurons in Alzheimer’s disease to controls.

Results: Homeostatic processes, encompassing control of gene expression, apoptosis, and protein synthesis, were
identified as disrupted during Alzheimer’s disease. Focusing on the genes carrying out these functions, a protein-protein
interaction network was produced for graph theory and cluster exploration. This approach identified the androgen and
estrogen receptors as key components and regulators of the disrupted homeostatic processes.

Conclusions: Our systems biology approach was able to identify the importance of the androgen and estrogen
receptors in not only homeostatic cellular processes but also the role of other highly central genes in Alzheimer’s
neuronal dysfunction. This is important due to the controversies and current work concerning hormone replacement
therapy in postmenopausal women, and possibly men, as preventative approaches to ward off this neurodegenerative
disorder.
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Background
Alzheimer’s disease (AD) is of high interest in neurode-
generative research because an increasing rate of
occurrence and lack of effective treatment or prevention.
By 2050, 1 in 85 people globally are predicted to suffer from
AD. This increase is thought to be due to the elevation in
life expectancy and the resulting growing elderly population
[1]. Signs of AD first begin with problems in short term
memory progressing to a loss of long term memory and
body functions. AD progression continues with increasing
loss of memory and faculties ending in death [2].
Brain pathologies, amyloid beta plaques, neurofibrillary
tangles and a loss of synaptic connections contribute to
the progression [3].
Many AD studies focus on the brain’s memory and

learning specific area, the hippocampus. The hippocampus,
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which functions in consolidation of new memories,
emotional responses, navigation, and spatial orientation, is
affected early in AD. The functions of the hippocampus
are progressively disrupted, and AD neuropathology can
be prominent in the hippocampus [4]. In order to obtain
molecular clues to the etiology and pathogenesis of AD,
investigators have performed a number of gene expression
profiling studies on the hippocampus of AD and control
brains [5-13]. Yet synthesizing the information from these
different studies has been problematic. One of the reasons
for this is the variability that stems from numerous
sources during biological experimentation. Four of these
are prominent in such studies on AD: the use of post
mortem human samples, potential differences in the brain
regions and cellular composition of examined specimens,
carrying out experimentation in different labs, and the
generation of high density “omic” data.
While microarray analysis has grown in popularity

since its introduction 20 years ago many limitations have
been found in both array and protocol design, including
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batch effect, uniform hybridization conditions for the
probes, and ratio compression. However being a rather
mature technology such problems are well known and
these effects can be taken into consideration in the data
analysis methods.
In our study we utilized a meta-analysis technique.

Meta-analysis refers to the statistical methods for
combining data from similar biological studies. Microarray
datasets are excellent meta-analysis candidates due to the
high use and deposit in publically accessible data banks,
complete with information on experimental conduct.
Advantages of meta-analysis include an increase in
precision due to increased effect size, control for
between-study variation and overcoming bias of individual
studies [14,15]. As different microarray platforms can
have different limitations as well as in some cases
yield different results, we designed our study design
by choosing independent experiments that use the
same platform. By doing so the technical specifics
and probe sequences are the identical. Furthermore
we used a non-parametric permutation test based on
ranks instead of gene expression values themselves to
capture statistically significant genes that change between
the conditions [15-17].
These differentially changed genes were then assessed

through a systems biology approach. Systems biology can
have many applications; we refer to its use to obtain bio-
logical information through utilizing whole-genome tran-
scriptome analysis to assess networks and their interactions
through the use of computational methods. Here we report
that a meta-analysis of specific microarray datasets investi-
gating AD, followed by a systems biology approach, yields
unique insights into AD etiopathogenesis.

Results
Dataset gathering, ensemble mapping and expression
analysis
Studies on gene array expression profiling for AD have
examined different stages of disease and different areas
of the brain. One important aspect of such studies on
the brain is that the dissected tissue contains neurons, as
well as glia (astrocytes, oligodendrocytes and microglia)
and other cell types such as endothelial cells and pericytes.
Gene expression in cell-types of interest within specific re-
gions of the brain can be studied through microdissection,
usually through laser capture. The functional pathology in
AD is primarily linked to the neurons themselves. Given
the predominance of the hippocampus in the initiation
and progression of the disease, we searched the Gene
Expression Omnibus (GEO) for transcriptional profiling
studies on hippocampus in AD in which neurons had
been microdissected. Two such studies were identified in
which neurons were laser captured from the CA1 region
of the hippocampus (Table 1) [5-7], totaling 17 arrays
from AD cases and 21 arrays from controls. Both studies
utilized Affymetrix Human Genome U133 Plus 2.0
GeneChip arrays; no such studies have been performed on
other platforms or other technologies such as SAGE or
RNA-Seq.
Most microarray analysis occurs by mapping to platform

specific “probe” or “probe set” IDs with manufacturer-
supplied annotations. This approach poses three problems:
errors and irrelevancies, multiple IDs for a single gene, and
combining multiple microarray platforms. While the latter
does not apply to this study, the others pose a serious
problem to accurate data analysis. The Affymetrix
platform utilizes multiple probes assembled into
probe sets to define the expression of genes. Using
the GeneMapper program we deconvoluted the probe
sets and remapped the probes to a singular identifier
for known genes updated to our current understanding of
the human genome. Fitting our criteria, we choose
Ensemble Gene (ENSG) IDs for re-mapping individual
probes from the probe sets to gene IDs, and reassembling
the correctly mapping probes into new sets resulting in
probe sets corresponding to 20,172 ENSG IDs.
After remapping, we then evaluated the presence of

differentially expressed genes (DEGs) between AD and
controls in each separate experiment. We utilized Rank
Product analysis, a non-parametric method based on
geometric mean of fold changes, to produce a fold-change,
statistics and a ranking for each ID. Importantly Rank
Product is efficacious for both single studies as well
as meta-analysis. We then used the rankings to construct
a Correspondence At the Top (CAT) plot, measuring
proportions of DEGs in common between the two
studies [19]. The CAT plot revealed that there was
very little in common between the two studies (Figure 1),
unfortunately not an infrequent finding, especially when
each study itself has a limited sample size. Therefore we
combined data for meta-analysis, again using Rank
Product analysis, in order to obtain a clearer picture
of the transcriptomic changes in neurons in AD.

Meta-analysis and bioinformatics of hippocampal neurons
in AD reveals dysfunction in homeostatic processes
Utilizing a false discovery rate of <0.05, we found
that 2126 genes were differentially regulated in AD
hippocampal neurons compared to controls when
combining the two studies (Additional file 1: Table S1).
We next wanted to compare the DEGs with genes that
have been identified as expressed in CA1 hippocampal
neurons. Using the rat CA1 hippocampal cell body
transcriptome identified by Cajigas et al. [20], 74.5%
of the DEGs found in the studies we examined from
aged brains are indeed known to be expressed in
CA1 hippocampal neurons, confirming the efficacy of
the microdissection.



Table 1 GEO datasets used in the meta-analysis

GEO dataset ADC source of cases Group description Braak stage Age Brief summary of findings

GSE28146 University of Kentucky Control 2.3 ± 0.4 85.3 ± 2.7 Down regulation of molecules that stabilize
ryanodine receptor Ca2+ release

Severe AD 5.8 ± 0.2 84.0 ± 4.0 Up regulation of vasculature development

GSE5281 Arizona, Duke University,
Washington University

Not AD 1.2 ± 0.1 79.6 ± 2.6 Mitochondrial and electron transport dysfunction

Definite AD 5.3 ± 0.2 77.8 ± 1.8 Expression changes of metabolism-related genes

ADC Alzheimer’s Disease Center. Braak Stage Neuropathological staging according to [18]. Values for Braak stage and Age are mean ± S.E.M.
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To achieve a functional understanding of the DEGs, we
then probed their biological function using the Ingenuity
Pathway Analysis tool (IPA) which curates biological func-
tion based on annotated ontologies. While analysis did
not reveal any neuron/brain specific functions, we found
an over representation of terms suggesting dysfunctions in
core homeostatic pathways: protein synthesis, repression
of RNA, and cell death/apoptosis (Table 2). Along with all
cell types, regulation of gene expression, the synthesis of
proteins and the control of cell death play a detrimental
roll in neuron health, survival, and overall brain function.
The genes represented by the functional annotation
Apoptosis are also found with the genes in the Cell death
annotation, and combining these lists resulting in a total
of 329 unique genes participating in these homeostatic
processes (Additional file 2: Table S2). This led us to the
hypothesis that translation, transcription and cell death/
apoptosis are mechanisms through which AD compromises
neuronal integrity. For this reason we chose to further
investigate these genes to identify key specific genes to
these homeostatic pathways and AD.

Biological network generation of homeostatic process
genes utilizing protein-protein interactions
We next wanted to find which of these genes interacted
with each other directly and through other partners,
Figure 1 Correspondence at the Top plot. The x-axis is top
ranking genes based on rank product. The y-axis is the percentage of
genes in common among between the two studies at each level of
ranking, for the upregulated (red) and down regulated (blue) genes.
thus building on the gene list by incorporating additional
interacting partners that may not have been identified as
significantly differentially expressed. Because the protein
products of genes do not act alone but rather cooperate
with other proteins to perform a function, we assessed
the protein-protein interactions (PPIs) of the focal 329
genes. For this we used Genes2Networks, which integrates
the data contained in multiple interaction network datasets,
enables the user to determine the path length (degree of
interaction), and incorporates possible interacting proteins
which are not part of the user’s original input list.
We chose to explore 1st (direct) and 2nd (through another
protein) degree PPIs among the protein products of the
focal genes to gain complexity without losing specificity of
the overall network. The resulting PPI network consisted of
305 nodes and 727 edges (Figure 2). PPI networks hold an
immense amount of information not only about individual
proteins and pathways but also on directional flow
and interconnection of biological functions. In order
to understand key protein players within the network, we
next employed graph theory modeling for exploration of
the large number of proteins within the network.

Identification of central AD genes through graph
theory analysis
We then set out to identify the key genes crucial to
the mechanism of the overall interactome of these
proteins. Communication within networks is key to
their functions as a whole. PPI networks can form
hubs and complexes, or show enzymatic relationships.
To better understand critical nodes within our PPI
networks, we used graph theory for centrality modeling,
specifically closeness, eccentricity, and radiality. These
measure the network’s topology and use individual node
proximities in finding highly central nodes. Being highly
central to communication of the network highlights
the importance of that node in the overall functions
characterized [21]. Closeness, eccentricity and radiality
are similar but achieved differently mathematically;
with radiality and closeness being quite similar with
the exception that radiality is based on individual network
diameter whereas closeness is not. Each computes the
shortest paths between single proteins and all other
proteins in the network. By using these three similar
yet differently calculated centralities, we can compare



Table 2 Biologic functional analysis of DEGs

Category Functions annotation P-value Predicted activation state Regulation z-score Number of genes

Gene expression Repression of RNA 9.19E-03 Increased 2.617 17

Cell death Cell death 8.85E-03 Increased 2.234 291

Cell death Apoptosis 2.48E-02 Increased 2.168 213

Protein synthesis Synthesis of protein 4.92E-05 Decreased −2.064 40

IPA analysis of functions (p < 0.05, z-score > |2|), with predicted activation state.
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node placement between the measurements. This will
identify highly central nodes for further investigation.
We utilized CentiScaPe to calculate node centrality

values. We restricted our interest into nodes with above
average values when comparing closeness, radiality, and ec-
centricity, terming them as above average nodes (Figure 3).
As expected for the networks, closeness and radiality had a
linear relationship due to their similar calculations. When
comparing closeness and eccentricity, the androgen recep-
tor (AR) and the estrogen receptor alpha (ESR1) stand out
as the top two nodes within the network. ESR1 has a
greater eccentricity value than AR. This places more pro-
teins in ESR1’s proximity suggesting greater role in dictating
functional directions within the network. AR has a greater
closeness than ESR1 placing AR in proximity of more
proteins than ESR1. This suggests AR works more through
competition to achieve specific functions. Indeed sex
steroids have been implication in AD pathogenesis [22].

Isolating dense network regions of key AD genes through
cluster analysis
After graph theory analysis, we wanted to better understand
the relationships between the PPI network proteins that
Figure 2 Protein-protein interaction networks. The network
(biological function) is made up of 1st and 2nd degree protein-
protein interactions. Red nodes represent the proteins encoded by
genes identified as DEG belonging to the homeostatic pathways,
yellow nodes represents proteins added as interacting partners.
were above average for closeness, radiality, and eccentricity;
the 73 genes encoding these proteins were termed
highly central genes (Additional file 3: Table S3). Before
understanding the interconnection between these genes,
we once again examined whether these genes were
reported to be expressed in CA1 hippocampal neurons.
Indeed 90.4% of these above average, highly central genes
are expressed by these cells [20]. Highly interconnected,
dense areas within a network can denote protein clusters
or parts of pathways. Using MCODE, we identified five of
these dense regions within the network (Figure 4). The
first dense region (Figure 4A) contains AR along with
transcription factors, including the glucocorticoid receptor
(NR3C1), which belongs to the same protein subfamily
and group as AR. With the other proteins, such as
FOS and NFKB1, this cluster represents a complex of
transcription factors. Similarly ESR1 was found in the
fourth cluster with other transcription factors including
SP1, JUN and STAT3 (Figure 4D). The fifth cluster also
identifies transcription factors and a regulator, CREBBP,
RELA, and BRCA1 (Figure 4E). The second and third
clusters (Figure 4B,C) do not contain any transcription
factors, but rather kinases and ligases that carry out signal
and degradation pathways. Taken together these clusters
indicate that the original first list of genes/proteins
contain transcription, degradation, and signaling hubs
that regulate the transcription, translation, and cell
death/apoptosis in AD.

Corroboration of the selected genes’ involvement in AD
pathology
We predicted that the proteins produced during the
graph theory and cluster analyses would be integral for
AD dysfunction. To test this, the proteins above centrality
averages in the graph theory assessment were used as
input for three independent systems biology tools:
two propriety databases (IPA and MetaCore), and the
publically available database DAVID. These genes
were examined for enrichment in “diseases and disorders”.
Many of the genes had links to cancer for all three
databases due to the high amount of experimental data on
cancer curated within many databases, still in each case
these genes were significantly enriched in pathways for
neurodegenerative disorders, specifically AD (Table 3).
First for IPA, AD was found to be enriched, as well



Figure 3 Radiality, eccentricity, and closeness. Closeness (X-axis) is plotted versus Radiality (left) and Eccentricity (right) on the Y-axis. Each axis
represents the range of above average values for the centrality measures. The positions of ESR1 and AR are indicated.
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as, at lower levels of significance, Parkinson’s Disease
and Huntington’s Disease. The second database,
MetaCore, also identified gene enriched for neurodegener-
ative disease, dementia, and AD, and at a much lower
significance Parkinson’s Disease. Finally we used DAVID
to look for disease ontology enrichment and found AD,
and at a lower level of significance, Parkinson’s Disease. In
all three databases AD ontology had a greater statistical
significance than other neurodegenerative disorders such
as Parkinson’s or Huntington’s Disease. While there
are indeed similarities in pathways activated to result
in neuronal damage and death in neurodegenerative
diseases, the greater significance found for AD validates
the role of these genes in the deregulation of transcription,
translation, and cell death/apoptosis in CA1 hippocampal
neurons affected by AD.
Figure 4 MCODE complexes. Clusters A, D, and E contain transcription facto
contain kinases and ligases but not transcription factors. Yellow nodes represen
Discussion
The data in this study highlights the ability of meta-analysis
and systems biology approach to help unravel the
complexity of AD. When looking specifically at biological
functions, AD disrupts protein synthesis, cell death/
apoptosis, and gene expression through the repression
of RNA. These processes are essential for the health
of neurons. A recent meta-analysis study for AD was
conducting using 100 publically available microarray
datasets from hippocampus brain samples [23]. While
this paper focused more on AD progression, similar
changes were identified in the cellular functions of protein
and gene expression regulations. Taken together with our
study this suggests that AD affects very important yet basic
cellular, homeostatic processes such as the ones identified
here: transcription, translation, and cell death/apoptosis.
rs, with AR present in Cluster A and ESR1 in Cluster D. Clusters B and C
t proteins, indicated by their symbols, and interconnections by black edges.



Table 3 Biologic functional analysis of highly central genes

Bioinformatics Platform Disease p-value

IPA Alzheimer's Disease 4.40E-08

Parkinson's Disease 2.88E-04

Huntington's Disease 1.28E-03

MetaCore Neurodegenerative Diseases 4.20E-25

Dementia 5.98E-24

Alzheimer's Disease 3.30E-23

Parkinson's Disease 2.15E-13

DAVID Alzheimer's Disease 1.40E-03

Parkinson's Disease 1.10E-02

IPA, MetaCore, and DAVID analysis of neurological disease enrichment. The
diseases identified were based on the 73 genes that are highly central in the
PPI network.
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While men and women express both AR and ESR1
receptors, the levels of their ligands, testosterone and
estrogen, separate the sexes. ESR1 and estrogen work to
promote female characteristics and reproductive
maintenance. Besides these huge defining attributes,
estrogen works in a variety of genomic and non-genomic
ways. AR and testosterone are important in male develop-
ment and like estrogens work outside of a sexual role. Both
estrogen and testosterone demonstrate neuroprotective
qualities and have been implicated in AD development and
progression. Aging causes a decrease in testosterone and
estrogen levels, which several studies have linked to
an increase incidences of AD.
Many studies focusing on the relationship between

estrogen, AD and the female brain have found that the
increase in AD in women is not due to their increased
lifespan [24-33]; the female brain appears to be more
vulnerable to AD pathology. This is also found in the
Tg2576, APPswexPS1 and 3xTg-AD triple AD mouse
models when females are age-matched to males. Females
of all three models display higher Aβ load burden and
plaque quantity as compare to the male counterparts.
[34-36] Neuroprotective properties come from estrogen’s
connection with the Bcl2 family in apoptotic pathways
[37-41], involved in excitotoxcity [42-47], inflammation
[48,49], and oxidative stress [50,51].
The role of menopause and subsequent Hormone or

Estrogen Replacement therapy (HRT or ERT) in AD has
been part of the experimental discussion. The decreased
level of estrogen resulting from menopause is thought to
cause a woman’s increased vulnerability to AD. Many
female AD patients due indeed have lower than usual
estrogen levels and studies have shown that low estrogen
increases incidence of AD. Despite these links between
estrogen and AD, the results are mixed on the benefits
of HRT/ERT for AD development and progression. Most
studies suggest that HRT/ERT is beneficial if a long-
term regime is adhered to [52-59] and decrease the risk
of cognitive dysfunction [60-63] while the other studies
are inconclusive on overall benefit [64-73]. The time at
which HRT is administered may also affect AD risk.
HRT five or more years after menopause may negate its
protective role in reducing the risk of developing AD
[74]. The truth behind HRT’s role in AD may not be
discovered until HRT/ERT itself is properly understood,
prescribed, and used.
Additional studies linking ESR1 to AD have examined

changes in its nuclear versus cytoplasmic subcellular
distribution in the hippocampus [75-77], as well as
membrane localization leading to estrogen-induced
activation of hippocampal glutamate receptors in the
absence of glutamate [78]. Furthermore differences
between ESR1 alleles correlates with an increased risk for
AD in women with Down syndrome [79]. Finally, in
neural cell lines, ESR1 has been linked to neuroprotection
[80]. Through the ESR1 specific agonist, propylpyrazole,
the receptor’s activity has been shown to protect against
Aβ accumulation [81] and from glutamate excitotoxicity
through ERK signaling and upregulation of Bcl-2 at the
gene level [82,83].
Aging men are not exempt from the connection

between AD and sex hormones. As stated earlier
both ESR1 and AR are both implicated in AD and
it’s progression, but the extent of each receptor’s role
remains unclear [84,85]. A similar increased AD risk
is associated with low testosterone levels in men.
Like estrogen, testosterone has been shown to regulate
levels of Aβ. However, the blocking of testosterone to
estrogen converting enzyme, aromatase, in one study
attributes neuroprotection with estrogen alone [86].
However testosterone and AR play their own role in
neuroprotection from Aβ accumulation. The male
population presents the opposite model as a posed to
the female population; sufferers of prostate cancer
undergo anti-androgen therapy causing a reduction in
testosterone levels. Studies in these patients have
shown increased levels of plasma Aβ [87,88].
AR and ESR1 are known to have functional import-

ance in AD; this was a topic of discussion well before
our study or the studies used within our study were
conceived. Our meta-analysis and systems biology
analyses were capable of identifying these “chains” of
AD changing genes surrounding AR and ESR1. Our
findings integrate well into and help fill current gaps
in our knowledge on AD.
By focusing on differentially expressed genes, their

protein-binding partners of their products, and utilizing
graph theory, we were able to broaden our knowledge of
AD’s pathogenesis. Proteins/genes do not live in a vacuum
and so changes in expression affects the ability of other
proteins/genes to function. Available levels of proteins can
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cause competition between binding partners, which then
can in turn shunt pathways to be activated, inhibited or
perhaps balance out. The clusters for each sub network
are based on highly interconnected areas, which represent
protein complexes. The level and variety of proteins
comprising the complex can give the individual complex a
“fingerprint” that elicits various functions.

Conclusions
Meta-analysis and systems biology approaches allowed
us a unique view of hippocampal neuron-specific
transcriptomic analysis in AD. By using meta-analysis
combining data from independent studies, we were able
to identify deregulation of genes that participate in
transcription, translation, and cell death/apoptosis in
CA1 hippocampal neurons from AD patients. Further
investigation of these genes and their interactions led
to the identification of genes important to the overall
mechanism of the deregulated homeostatic processes.
The two centrally highest genes, AR and ESR1, and
their role in AD pathology are under examination
clinically and in experimental models. Use of a final
method based on cluster density, reduced our focus
to a smaller set of genes. Based on three independent
bioinformatics tools, these genes are enriched for
processes involved in AD pathophysiology. Taken
together with our initial findings these genes play a
role in AD through dysregulation of the basic homeo-
static processes of transcription, translation, and cell
death/apoptosis.

Methods
GEO data retrieval, microarray normalization and
ensemble mapping
The Gene Expression Omnibus (GEO) (http://www.ncbi.
nlm.nih.gov/geo/) is a public repository of various genetic
high through put data sources. Microarray data sets for
different chips types are deposited with extensive
experimental design and information and with normalized
and/or raw data. We set our experimental criteria specific
to postmortem human hippocampal samples analyzed
using an Affymetrix platform. Our search obtained two
GEO data sets, GSE5281 and GSE28146 (we only utilized
the arrays from severe AD patients from this study), which
contained CA1 region specific individual hippocampal
neurons data. The appropriate control and AD raw CEL
files were downloaded from the GEO site. Next the CEL
files were read into the R programming console using
the affy package [89] (this and other R-based tools
were obtained from the open source Bioconductor
bioinformatics software, http://www.bioconductor.org). In
the uploading process CDF files were associated with
the microarrays through the GeneMapper package.
Downloaded from GATExplorer [89-91] GeneMapper
(http://bioinfow.dep.usal.es/xgate/mapping/mapping.php)
includes the sets of unambiguous probes that map to each
specific Ensemble Gene ID (ENSG ID). Also through
affy package, the intensity files were normalized using
Robust Multichip Average, RMA. A three-step
process, RMA performs a background adjustment,
quantile normalization and final summarization [92].

Ethics
The data utilized were obtained from a research repository
databank (GEO), involves decedents, contains no per-
sonal identifiers, and the authors had no role in the
collection or storage of these data.

RankProd
The R RankProd package contains functions for differential
gene expression analysis of microarrays based on a non-
parametric statistic [93]. RankProd identifies genes that are
consistently highly ranked amount a list of genes.
Since the method exploits the rank of genes not the
actual expression value, it can be flexibly applied to
many different questions, such as identifying genes.
It assumes that under the null hypothesis the order of

genes are random and statistically probabilities are
based on the probability of a particular ranking. Rank
product is the multiplication of these probabilities.
RankProd produces a list of up- or down- regulated genes
with false discovery rate (FDR). RankProd also has the
ability to combine data sets from different origins into
a single meta-analysis to increase the power of the
identification [93].

Ingenuity pathway analysis
IPA is commercially available software (Ingenuity Systems,
Inc., Redwood City, CA) for several types of analysis and
is popular in a variety of biological fields/studies. IPA
utilizes a large, well-designed knowledge base and enables
functional, canonical pathway and network analysis. IPA
uses its knowledge base to better understand how the data
fit with the curated functional, canonical pathway,
and interaction network information. We utilized the
Functional Analysis tool to identify the biological
functions and/or diseases that were most significant
to the data set. Molecules from the dataset were associated
with biological functions and/or diseases in the Ingenuity
Knowledge Base were considered for the analysis.
Right-tailed Fisher’s exact test was used to calculate a
p-value determining the probability that each biological
function and/or disease assigned to that data set is due to
chance alone.

Genes2Networks
A publically available bioinformatics database, Genes2
Networks (http://actin.pharm.mssm.edu/genes2networks/)

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/
http://bioinfow.dep.usal.es/xgate/mapping/mapping.php
http://actin.pharm.mssm.edu/genes2networks/
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is hub of databases used to find relationships between
genes and proteins from seed lists [94]. Predictions of
genes or proteins that may play crucial roles in pathways
or protein complexes are supplemented to the seed list.
Gene2Networks calculates a Z statistic using a binomial
proportions test on the significance of a supplemented
protein in the output sub network.
Cytoscape plugins
Cytoscape, a popular publically available bioinformatics
package (http://www.cytoscape.org), represents networks,
with biological entities as nodes and biological inter-
actions as edges between nodes [95]. Plugins are
designed to run several types of analysis. Before plugins
are applied all satellite networks are removed leaving a
single interconnected network of nodes. This study uses
two such plugins, CentiScaPe and MCODE.
CentiScaPe
CentiScaPe is an interface to analyze topology of protein-
protein interaction networks [96]. CentiScaPe uses a
variety of graph theory centrality measurements to
determine and develop sub networks. In this study we
used the following:
Eccentricity
Eccentricity computes the shortest paths between a
single node and all other nodes in the graph. Next
the longest shortest path is chosen and the reciprocal
is taken. Higher value represent nodes that have the
shortest paths, meaning all other nodes are in its
proximity. All other proteins within the network easily
reach proteins with high eccentricity. Thus, a protein with
high eccentricity dictates functional directions, but also is
subjected to functional control by binding partners. On
the opposite end, a low eccentricity suggests a peripheral
functional role.
Closeness
Closeness computes the shortest path between a single
node and all other nodes. The summation is taken of the
shortest paths and the reciprocal is taken. Nodes with
high closeness are in close proximity to all other nodes
in the network. If the closeness measure is low, all
other nodes are distant from this node. Closeness
measurements can also reflect few nodes that are very
close or distant from a specific node. Therefore closeness
is not specific to the nature of the node couples and should
be compared with eccentricity and radiality. In relation
to PPI networks, closeness can represent functionally
and points of competition between proteins.
Radiality
Radiality is calculated similarly to closeness, but sub-
tracts the diameter of the graph from each path. This
value is then summated and finally divided by the
number of nodes minus 1. Short paths have high
radiality values where as long paths have low values.
With respect to the diameter high radiality nodes are
closer to other nodes. In PPI networks radiality can
represent functional relevancy between a single pro-
tein and other proteins and functional directional
control.
MCODE
Another plugin used Molecular Complex Detection,
MCODE, formulates clusters within a network [97].
MCODE, a theoretic clustering algorithm, identifies
densely connected areas in large protein-protein
interaction networks that could suggest protein com-
plexes. MCODE is built on vertex weighting by local
neighborhood density and outward crossing from a
locally dense protein isolating the dense regions according
to user specific parameters. [97] MCODEv1.32 was used
for cluster identification among the proteins with the two
sub networks.
MetaCore
MetaCore is commercially available software (GeneGo,
Thompson Reuters, New York, NY) for functional
analysis of high throughput data. For this study we
focused on using the Disease (by biomarker) analysis.
MetaCore bases disease ontology on classifications in
Medical Subject headings. Each disease has a corre-
sponding biomarker gene or sets of genes and p-value
statistic based on the probability of a random inter-
section of two different gene sets. The p-value of the
intersection between an experimental gene and ontology
is considered as a measure of relevance of said ontology to
the experimental dataset.
The Database for Annotation, Visualization and
Integrated Discovery (DAVID)
DAVID is a publically available database (http://david.
abcc.ncifcrf.gov) that offers a comprehensive set of
functional annotation tools to recognize biological
meaning behind list from high through put experiments.
For this study we focused on using the disease information
in the Genetic Association Database curated within
DAVID’s functional analysis. The statistics used for
predicted disease ontologies are p-values using Fisher’s
exact test.. Each statistical measure corresponds to the
probability of one or more genes overlapping with the
predicted disease ontology.

http://www.cytoscape.org
http://david.abcc.ncifcrf.gov
http://david.abcc.ncifcrf.gov
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