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Abstract

experimental perturbations.

life threatening disease like cancer.

Background: Recent advancements in genetics and proteomics have led to the acquisition of large quantitative data
sets. However, the use of these data to reverse engineer biochemical networks has remained a challenging problem.
Many methods have been proposed to infer biochemical network topologies from different types of biological data.
Here, we focus on unraveling network topologies from steady state responses of biochemical networks to successive

Results: We propose a computational algorithm which combines a deterministic network inference method termed
Modular Response Analysis (MRA) and a statistical model selection algorithm called Bayesian Variable Selection, to
infer functional interactions in cellular signaling pathways and gene regulatory networks. It can be used to identify
interactions among individual molecules involved in a biochemical pathway or reveal how different functional
modules of a biological network interact with each other to exchange information. In cases where not all network
components are known, our method reveals functional interactions which are not direct but correspond to the
interaction routes through unknown elements. Using computer simulated perturbation responses of signaling
pathways and gene regulatory networks from the DREAM challenge, we demonstrate that the proposed method is
robust against noise and scalable to large networks. We also show that our method can infer network topologies
using incomplete perturbation datasets. Consequently, we have used this algorithm to explore the ERBB regulated
G1/S transition pathway in certain breast cancer cells to understand the molecular mechanisms which cause these
cells to become drug resistant. The algorithm successfully inferred many well characterized interactions of this
pathway by analyzing experimentally obtained perturbation data. Additionally, it identified some molecular
interactions which promote drug resistance in breast cancer cells.

Conclusions: The proposed algorithm provides a robust, scalable and cost effective solution for inferring network
topologies from biological data. It can potentially be applied to explore novel pathways which play important roles in

Keywords: Network inference, Bayesian statistics, Modular Response Analysis, Signaling pathways.

Background

We are faced with a fundamental challenge of under-
standing how a cell’s behavior arises from protein and
gene interactions. Yet, the exact map of dynamic inter-
actions between cellular network components is largely
unknown for key cellular networks. Even for perturbations
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confined to single network nodes, mapping the dynamic
topology of protein and gene network interactions is
not straightforward. In fact, a local perturbation that is
initially confined to a node rapidly propagates through
the entire network, causing widespread, global changes
that mask direct connections between nodes. Thus,
the “reverse engineering” approaches where the con-
nection architectures are inferred from the perturbation
response data are becoming increasingly appreciated.
Although reverse engineering methods such as Boolean
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networks [1], Bayesian networks [2,3], dynamic Bayesian
networks [4,5], multivariate regression methods [6-8], lin-
ear programming [9], genetic algorithm [10] and infor-
mation theoretic [11] approaches have been applied
to deduce the circuitry of signaling and gene net-
works, all currently developed methods have significant
limitations. For instance, the Boolean network based
methods are found to be formidably slow, and their per-
formance degrades with increasing network size [12].
Bayesian network methods are unable to account for feed-
back regulation, a hallmark of signaling networks [2].
Information theoretic approaches do not predict the
directions of interactions which are important in under-
standing the signal flow via biological pathways [11]. A
review of the advantages and limitations of most reverse
engineering methods mentioned above can be found
in [13].

We previously developed a method to infer network
interaction maps based on steady-state responses to sys-
tematic perturbations [14,15]. This deterministic method,
termed Modular Response Analysis (MRA) unravels the
direction, strength and type of interactions between indi-
vidual proteins and genes or between network modules
that encompass several proteins or genes in a modular
description. However, noise present in the data and a
requirement to generate as many perturbation responses
as there are nodes in the network constrain the practical
applicability of this method [14]. Consequently, a stochas-
tic equivalent of the MRA algorithm was developed
to account for noise encountered in biological datasets
[16,17]. However, this method is associated with high
computational cost and it also is unable to analyze exper-
imental data when the number of perturbation experi-
ments is smaller than the number of network modules.
More recently, another extension of MRA was reported,
where a Maximum Likelihood approach was used to
infer connection coefficients from noisy perturbation
data [18].

Here, we propose a computationally efficient method
which integrates the theoretical framework of MRA with
a Bayesian Variable Selection Algorithm to infer func-
tional interactions in signaling and gene networks based
on noisy and incomplete perturbation response data.

Results

Fundamentals of the inference framework

Motivation

In general, network interactions can be quantified by ana-
lyzing the direct effect of a small change in one node on
the activity of another node, while keeping the remain-
ing nodes unchanged to prevent the spread of the per-
turbation [19]. A dimensionless quantifier (r;) of this
local response is the ratio of the immediate fractional
change in the activity (x;) of node i to that of node j,
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(all other nodes remain fixed), and it is called the con-
nection coefficient or local response coefficient [14], r;j =
g—ﬁ;, provided that all other nodes x;, k # j are kept
constant.

On the other hand, the global changes (R;) in node
i occur when the other nodes become involved in the
response to the perturbed node j through multiple inter-
actions [14] and can be calculated using the following
formula.

k 0
X: —X:

Ry ~2| —— (1)
x; +X;

12
where x? and xf are the steady-state activities or concen-
trations of node i before and after perturbing parameter
Pk respectively. Let us select node i and consider an
n-dimensional vector r; = (rj1 .. .r;,) that quantifies net-
work connections directed to node i. If parameter py does
not directly influence node i the vector r; is orthogonal
to n — 1 vectors Ry of the global response coefficients
Rikor - - Roup), k # i [14,20], iie.
n
Z riRjx = Rysi #kii,k=1...n (2)
j=1j#i

Eq. 2 presents a precise solution to the problem of
inferring the network topology (determined by connec-
tion coefficients r;;) from the steady-state perturbation
responses [14,16,20]. It requires #n independent pertur-
bations to a network of # nodes since the matrix of
global responses R must have rank » — 1 to pre-
cisely determine connection coefficients rj,...,ry of
network edges directed to each node i. These rela-
tionships (Eq. 2) also assume no noise in the data.
Biochemical measurements are invariably subjected to
biological noise and experimental errors. Therefore, a
statistical approach is more suitable for estimating the
connection coefficients r;; from noise corrupted global
responses [16].

In a previous effort, total least square regression (TLSR)
was exploited as a method for estimating the connection
coefficients r;; from noisy perturbation responses [16].
When the data is noisy, it is necessary to estimate the
uncertainties surrounding the estimated values of r;; to
draw reliable inference about the nature of the corre-
sponding interactions. Therefore, a Monte Carlo method
for estimating the probability distributions of r; was
proposed and successfully used to find out connection
coefficients for a three-level extracellular signal-regulated
kinase (ERK) cascade in a subsequent study [17]. In this
case, 10° sets of random realizations of the perturba-
tion responses were drawn from normal distributions
with means and standard deviations equal to those of
the experimentally measured values [17]. A set of con-
nection coefficients r =[ry,i,j = 1...n,i # j] was
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estimated from each set of perturbation responses using
TLSR [17]. The values of 7;; calculated in this manner were
used to estimate its probability distribution [17] which
provides a quantitative measure of the uncertainty sur-
rounding its estimated values. However, this method is
highly computation intensive. Additionally, the proposed
TLSR method [16] requires large number of perturba-
tion experiments (typically > # for an #n node network)
which are both time consuming and expensive. Therefore,
a computationally efficient method that can infer network
structures using noisy data obtained from small number
of perturbations (typically < # for an # node network) is
required to explore cellular networks in a cost effective
manner.

Objective

To speed up the computation process, we refrained from
inferring the distributions of the connection coefficients
rij. Instead, we chose to infer whether node j directly influ-
ences node i or not, i.e. if there is a network connection
from node j to i. In case of the deterministic MRA (Eq. 2)
[14], this is a straightforward task since, by definition, r;; #
O represents an edge from node j to node i and r;; = 0 indi-
cates that there is no edge from node j to i. In case of the
statistical formulation of MRA [16,17], the above objective
can be achieved by performing a hypothesis test such as
Z-test [21] on the distribution of r;; to determine whether
the mean value of r; is significantly different from zero.
However, this requires estimating the probability distri-
bution of r;; which is computationally expensive. To avoid
the process of estimating the distributions of r;;, we mod-
ified the original MRA equation (Eq. 2) by introducing a
new set of binary variables (A;;) which explicitly represent
presence (A; = 1) or absence (4; = 0) of direct inter-
action between node i and j. Introducing these variables
into Eq. 2 results in the following equation (Eq. 3), which
is fully equivalent to the original MRA equation (Eq. 2),

n
> AgryRig =Rysi=1..mk=1...ni#k (3)
j=1ji
For noisy global responses (R;), the above equality does
not hold exactly. If we account for the difference between

the left and right hand sides of Eq. 3 caused by mea-
surement noise, then the above equation (Eq. 3) becomes,

n
Z AjjriiRig + € = Rigs i = 1...nk= 1...71;,1' *k
J=1j#i

(4)

Here, € is the difference between the left and the right
hand side of Eq. 3 and nlig is the number of performed
experimental perturbations which do not directly affect

node i. Based on the above model (Eq. 4), we propose a
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Bayesian Variable Selection Algorithm (BVSA) that can
infer the probability of node i being directly influenced
by node j (ie. P(A; = 1)), without having to estimate
the probability distributions of the connection coefficients
(). Additionally, in the new formulation, we relax the
restrictions of required number of perturbation experi-
ments (i.e., n;, = n — 1 in case of MRA [14] and né, >n
in case of stochastic MRA [16]) and allow the inference
of network topology from virtually any number of pertur-
bation experiments (i.e., nli, > 0). Below, we outline the
proposed Bayesian algorithm, whereas further details can
be found in ‘Methods’ section and Additional file 1.

The proposed algorithm

Eq. 4 represents a mathematical relationship between the
network topology (A;), the strength of each interaction
(the connection coefficient r;) and the measured noisy
perturbation responses (R;;) of the network components.
Here, the network topology (A;), the interaction strengths
(connection coefficients r;) and the error (ey) caused
by measurement noise are unknown variables and can
be estimated from the perturbation responses (R;) using
statistical inference algorithms. To simplify the estima-
tion process, we first conceptually divided a network of
n nodes (components) into # numbers of smaller sub-
networks, each of which consists of a node i and its
potential regulators. The unknown variables correspond-
ing to each of these subnetworks were then estimated
independently using Bayesian statistics. In Bayesian statis-
tics, it is assumed that our knowledge about the unknown
variables is uncertain and the uncertainties surround-
ing these variables (A;, r; and €;) are expressed in
terms of their respective probability distributions. Prior
to any experimental observation, these distributions are
estimated based solely on our subjective assessments
(assuming that little is known about the network topol-
ogy a priori) and are referred to as prior distributions
(see the ‘Methods’ section for a detailed description of
the prior distributions of the unknown variables A, ry,
€;x)- The prior distributions were then updated based on
experimentally observed data using the Bayes theorem
(see Additional file 1 for details). The updated distribu-
tions are called posterior distributions. In this case, we
are interested in the posterior distribution of the binary
variables A; (see Methods), which represents the pos-
terior probability of the presence (A; = 1) or absence
(A = 0) of a direct network connection from node j to
node i. However, it was not possible to analytically cal-
culate the posterior distribution of A;, since it involves a
normalization constant which requires calculating a very
large integration (see Methods). Therefore, the poste-
rior distributions of A;; were approximated using Markov
Chain Monte Carlo (MCMC) sampling (as detailed in
Methods). Finally, the topology of the network was
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inferred by thresholding the approximate posterior distri-
butions of Aj, i.e. if the posterior probability of A; = 1
is higher than a threshold value (py,), then we assumed
that node j directly influences node i. The work flow of
the proposed algorithm is graphically depicted in Figure 1
(See Methods and Additional file 1 for further details) and
the source codes for a MTALAB implementation of the

algorithm is provided in Additional file 2.
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Performance of the proposed algorithm for simulated and
real biological networks

We studied the performance of BVSA in reconstructing
both simulated and real biological networks. For sim-
ulation, we considered the Mitogen Activated Protein
Kinase (MAPK) Pathway and two gene regulatory net-
works (GRNs) consisting of 10 and 100 genes respectively.
For real biological networks we chose the ERBB signaling
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Figure 1 Work flow of the Bayesian framework. Here, we have illustrated the steps necessary for the reconstruction of a hypothetical toy network
using our Bayesian framework. The toy network consists of three nodes ny, n, and ns3. The experimentally measured global responses of ny, n; and
n3 to external perturbations are denoted by Ry = {R11,R12,...}, Ry = {Ra1, R, ..
developed a set of modified MRA equations by introducing the binary variables A; (which indicates whether n;,j # i influences n;) into the MRA
equations. Then we used the BVSA algorithm to infer the probability of P(A; = 1|R). See Additional file 1 for details of each step of the BVSA algorithm.

.}Yand R3 = {R31,R3y, ...} respectively. For each node n;, we first




Santra et al. BMC Systems Biology 2013, 7:57
http://www.biomedcentral.com/1752-0509/7/57

pathway that regulates the G1/S transition in the cell
cycle of human breast cancer cells [22]. The MAPK path-
way was chosen because it has many negative feedback
loops which enhance robustness against perturbations
[23], and its reconstruction from the steady state pertur-
bation data poses a challenging problem. The GRNs that
were chosen for this study are part of the DREAM ini-
tiative, (http://wiki.c2b2.columbia.edu/dream/index.php/
Challenges, challenge 4, network 1 of size 10 and 100
categories) and are widely used for benchmarking pur-
poses by the network inference community. The ERBB
pathway was chosen due to its significance in life threat-
ening diseases such as cancer. It has multiple feedback
loops which operate via both transcriptional and non-
transcriptional mechanisms and may cause resistance to
anti-cancer drugs. Identifying these feedback mechanisms
may provide valuable insight in developing new therapies.
The above datasets were used not only to evaluate the
performance of BVSA, but also to compare its perfor-
mance with many other algorithms, e.g. stochastic MRA
[16,17], Sparse Bayesian Regression algorithm (SBRA) [7]
and Levenberg Marquardt optimization based maximum
likelihood algorithm (LMML) [18]. In case of the in-silico
GRN data, we also compared the performance of BVSA
with that of the winners of the DREAM challenge. We
chose the above algorithms for comparison due to the
following reasons. Stochastic MRA, LMML and BVSA
are three different statistical formulations of the same
MRA Equations [14]. Therefore, comparing these algo-
rithms may reveal which statistical framework is more
suitable for what kind of experimental data. On the other
hand, SBRA and BVSA are both Bayesian Linear Regres-
sion based algorithms with different prior assumptions
and network search strategies. SBRA adopted a maxi-
mum likelihood approach [7] for inferring the most likely
network, whereas BVSA implements a model averaging
approach which infers ‘expected’ or average networks
based on the posterior probabilities of all possible net-
works. Hence, comparing BVSA with SBRA may also shed
light on how different prior assumptions and different
approaches of search strategies may affect the results.

Simulation study: Mitogen Activated Protein Kinase (MAPK)
Pathway

MAPK pathways encompass central mechanisms of signal
processing in many different eukaryotic species and par-
ticipate in the regulation of a large number of important
physiological processes, such as differentiation, prolifera-
tion, cell cycle and apoptosis [24]. MAPK cascades have
several levels, where the activated kinase of each level
phosphorylates the kinase at the next level down the cas-
cade. The kinase of the topmost level is activated by
still incompletely understood mechanisms which are usu-
ally induced by specific extracellular ligands or unspecific
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stress signals. For our study, we considered the Epi-
dermal Growth Factor (EGF) induced MAPK cascade
(see Figure 2(a)). EGF binds to its receptor EGFR on
the outer surface of the cell membrane, resulting in its
activation by means of autophosphorylation and dimer-
ization [25]. Activated EGFR binds to and phosphorylates
adapter protein Shc (among many other adapter proteins
such as GABI, IRS, Grb2 etc. which were not included
in our analysis) at the cell membrane [25]. Phosphory-
lated Shc forms a complex with Grb2 and SOS proteins
and activates the membrane bound GTPase Ras [25,26].
Activated Ras (RasGTP) triggers a MAPK cascade which
consists of consecutive activation and deactivation of Raf
(MAP3K), MEK (MAP2K) and ERK (MAPK) [14,25,26].
This pathway has many nested feedback loops, three of
which were considered in this study. The first is a nega-
tive feedback from ERK to SOS. Activated ERK (ppERK)
phosphorylates SOS causing its inactivation, which results
in a decline in the activity of Ras and subsequently Raf
[26]. The second is a negative feedback caused by ppERK
mediated inhibition of Raf activation [26,27], and the third
is a negative feedback by ppERK mediated activation of
MAP2K (MEK) phosphatases [26].

The MAPK pathway was conceptually divided into six
modules, where each module is a functional unit which
consists of several biochemical interactions and performs
one or more identifiable tasks [14]. From the top, these
modules are (see Figure 2(a) and 2(b)):

1. the receptor module which consists of the
interactions leading to receptor (EGFR) activation
upon ligand stimulation

2. the adapter module which consists of the
phosphorylation of Shc and its complex formation
with Grb2SOS

3. the initiator module which consists of the activation
and deactivation of RasGDP

4. the MAP3K module which consists of the activation
and deactivation of Raf

5. the MAP2K module which consists of the activation
and deactivation of MEK

6. the MAPK module which consists of the activation
and deactivation of ERK.

Only a single entity of each module serves as its output
(referred to as “ communicating intermediates” in [14])
and carries the signal to the next module in the cas-
cade. For the MAPK pathway, pRD (active EGFR),
pShc-Grb2SOS complex, RasGTP, aaRaf (activated Raf),
ppMEK and ppERK were considered to be the outputs of
their corresponding modules.

We developed a mathematical model to simulate the
responses of different modules of the MAPK pathway to a
series of experimental perturbations.
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Computational simulation of the MAPK pathway:
Our mathematical model consists of a set of ordinary dif-
ferential equations (ODE) which describe the biochemical
reactions of the MAPK pathway (see Additional file 3 for
details of the ODE model). Using this model we simu-
lated different perturbations each affecting a single mod-
ule. The receptor, adapter, initiator, MAP3K, MAP2K and
MAPK modules were perturbed by knocking down EGFR,
Shc, Ras, Raf, MEK and ERK genes respectively. Knock-
down of a gene was simulated by reducing the expression
level of its protein product, which depends on the effi-
ciency of the knockdown. We assumed for illustration
purpose that if a gene is knocked down with 80% efficiency
then the expression level of its product protein is reduced
to 20% of its original level. Each knockdown experiment
was repeated three times with 40%, 60% and 80% knock-
down efficiencies. After each perturbation, the MAPK

pathway was allowed to reach a new steady state and the
steady state responses of the output of each module was
measured.

Network reconstruction from simulated response of
the MAPK pathway: For network reconstruction, we
calculated the global responses of each module to differ-
ent perturbations using Eq. 1. These responses form the
global response matrix R. The rows of this matrix repre-
sent the network modules and the columns represent the
perturbations performed on the MAPK pathway. R was
then row standardized, i.e. each of its row was divided
by its standard deviation. The standardization was per-
formed to ensure equal variability in the responses of
each module. The standardized global response matrix
was then used to reconstruct the modular network of the
MAPK pathway using BVSA. Firstly, the MAPK network
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was conceptually divided into six subnetworks, each of
which corresponds to a certain module and its poten-
tial regulators. The topology of each subnetwork (i) was
inferred separately, by sampling from the posterior dis-
tribution (P(A4;|R)) of the corresponding binary variables
(A;) using five parallel Gibbs samplers. Each of these sam-
plers produced 200 realizations (samples) of A; in as many
iterations. The convergence of these samplers are illus-
trated in Additional file 4: Figure S1. We rejected 20% of
the initial samples drawn by each sampler as burn-ins and
used the rest of the samples to estimate the probabilities
Py =PA;=1).

Evaluating the performance of BVSA: BVSA produces
a probability matrix P with the elements P; representing
the posterior probability that module j directly influences
module i. Using the threshold probability (py,), the perfor-
mance of BVSA was evaluated for a range of py, values,
starting from p;, = 0, gradually incremented by 0.01, up
to a maximum value of py;, = 1. For each value of py,
a network model was generated and compared with the
true network model shown in Figure 2(b). The compar-
isons were performed by calculating the true positive (TP)
rate (also known as ‘recall’), false positive (FP) rate [28]
and precision [29] of the inferred networks. The TP rate
is the ratio of total number of the correctly identified
interactions to the total number of interactions present
in the true (reference) network [28]. The FP rate is the
ratio of the total number of incorrectly identified interac-
tions and the total number of possible interactions which
are absent in the true network [28]. Precision is the ratio
of the total number of correctly identified interactions to
the total number of interactions present in the inferred
network. The curve that depicts TP rate as a function
of FP rate is known as Receiver Operating Characteris-
tics (ROC) curve [28] and the curve that depicts precision
as a function of TP-rate (recall) is known as Precision-
Recall (PR) curve. We calculated the areas under the
ROC and PR curves for each inferred network. These
two quantities, denoted by AUROC and AUPR respec-
tively, give us a quantitative representation of the accuracy
of the inferred networks. Both AUROC and AUPR can
have values between 0 and 1, and the closer these values
are to 1 the better is the accuracy of the inferred net-
works, with AUROC= 1 and AUPR= 1 being the ideal
case.

Since BVSA uses a MCMC method to approximate the
posterior distribution of the network structure its accu-
racy depends on the approximation error. Hence, it is
necessary to evaluate the robustness of BVSA against
MCMC related approximation errors. This was done by
executing BVSA 10000 times on the same dataset. This
resulted in 10000 different probability matrices from each
of which we calculated the AUROCs and AUPRs. Then
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we calculated the mean and standard deviations of the
AUROCs and AUPRs. The mean AUROC and AUPR
represent the average performance of BVSA, and the
standard deviation represents the uncertainty surround-
ing the performance estimate. For BVSA to be robust,
the standard deviations of AUROC and AUPR must be
much smaller than the corresponding means. The mean
AUROC and AUPR were found to be &~ 0.98 and ~ 0.88
and the corresponding standard deviations were ~ 0.02
and &~ 0.016 respectively, suggesting near perfect and
highly robust performance of BVSA on the simulated data.

We compared the performance of BVSA with that of
stochastic MRA [16,17], SBRA [7] and LMML [18]. Since
the simulated perturbation responses are noise free, there
are no uncertainties surrounding these responses. There-
fore, in case of MRA, we did not perform any Monte Carlo
simulation [17] and the connection coefficients were esti-
mated from the global response matrix R using TLSR
[16]. The absolute values of the estimated connection
coefficients represent the topology of the reconstructed
MAPK pathway. Accordingly, the AUROC and AUPR
values (Figure 2(c)) were calculated by thresholding the
absolute values of the connection coefficients using a set
of threshold values ranging from 0 to oc.

Similar to MRA and LMML, SBRA infers the interac-
tion strengths in the form of a weight matrix W [7]. An
element Wj; of this matrix represents the strength with
which node j influences the activity of node i. The sign of
the weights were discarded from our analysis and AUROC
and AUPR values were calculated in the same way as in
the case of MRA and LMML. The uncertainty surround-
ing the AUROC and AUPR values were estimated in the
same way as in the case of BVSA (see Figure 2(c)).

Network reconstruction from noisy datasets: The per-
turbation responses simulated by the ODE model are
noise free. Real biological datasets are usually contam-
inated with biological noises and measurement errors.
We introduced biological noise and measurement errors
in the MAPK pathway simulations and used the result-
ing noisy datasets for network reconstruction. Biological
noise is caused by many factors, such as, random ther-
mal fluctuations, Brownian motion of the biochemical
molecules, genetic variability within a cell population, etc.
We developed a stochastic differential equation (SDE)
model to simulate the effects of some of these factors
[30] (see SI) on the dynamics of the MAPK pathway. The
SDE model was simulated using Stratanovich scheme and
Milstein method [31]. The effect of cell to cell variabil-
ity on the perturbation responses of the MAPK pathway
was ignored [30] to keep the analysis within tractable
conditions.

Furthermore, we added measurement errors to the
stochastically simulated responses. Measurement errors
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in biological datasets depend on many factors rang-
ing from inherent biological variability to sample prepa-
ration and consistent equipment accuracy [32-34]. In
almost all cases, measurement errors at least partly
depend on the intensity of the signal being measured
[32-34]. In many genetic and proteomic measurement
systems this dependence is log-linear, i.e. linear in
log scale. A simple model describing the measurement
error as a function of the signal intensity is shown
below [32-34].

0e® = ap + Bsexp (=) (5)

Here, 02 is the variance of the measurement error in
log scale, «y is the signal independent or background
noise, B is signal dependent noise and Y is the loga-
rithm of the signal intensity. The background noise
and the signal dependent noise S vary among different
measurement systems. However, in most high through-
put proteomic experiments «; < 0.1 and Bz < 1
[32-34]. Network inference was performed for different
levels of signal dependent (B;) and independent (¢;) mea-
surement errors. We started with o, = 0.01,8, = 0.1
and generated 10000 datasets by repeating the stochas-
tic simulations of the perturbation experiments and then
introducing random measurement errors. A network was
inferred from each of these datasets using BVSA. Sim-
ilar to the noise free data, we used five parallel Gibbs
samplers for each module. In this case we used 500 iter-
ations since noisy data may slow down convergence. To
see whether all parallel samplers converge to the same
distribution we plotted (Additional file 5: Figure S2) the
log(P(A;|R)) for a sample dataset. The parallel samplers
generally converged rapidly to the same distribution. As
before, we rejected 20% of the early samples as burn ins
and the rest of the samples were used to calculate the pos-
terior edge probabilities P;. A posterior edge probability
matrix P was inferred from each of the 10000 datasets
using BVSA. A set of AUROC and AUPR values were
calculated from each P. The mean and standard devia-
tion of the resulting 10000 AUROCs and AUPRs were
calculated. o, and Bs; were then gradually increase by
intervals 0.01 and 0.1 respectively up to the maximum val-
ues @ = 0.1 and B; = 1. For each combination of ¢, and
Bs we repeated the above procedure and calculated the
average AUROC and AUPR values and the correspond-
ing standard deviations (see Additional file 6: Table S1
and Additional file 7: Table S2). The average AUROC and
AUPR values were then compared with those calculated
from the networks inferred by stochastic MRA, SBRA
and LMML.

As in the case of BVSA, the performances of stochastic
MRA, SBRA and LMML were also evaluated by gener-
ating 10000 datasets for each noise level (i.e. for each
combination of «; and fB; values) and executing these
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algorithms on each of these data sets. The resulting con-
nection coefficient matrices (in case of stochastic MRA
and LMML) and weight matrices (in case of SBRA) were
then used to calculate the corresponding AUROC and
AUPR values. The resulting AUROC and AUPR values
(see Additional file 6: Table S1 and Additional file 7: Table
S2) were compared with those calculated from the net-
works inferred by BVSA and two best performers, one
with maximum average AUROC and one with maximum
average AUPR, were selected (with p<0.05 !) at each
noise level (Figure 3). Our analysis reveals that, BVSA
has the highest average AUROC in most of the cases,
except a few sporadic cases where the other algorithms
performed better (Figure 3(a)). By contrast, SBRA has the
highest average AUPR in most of the cases (Figure 3(b)).
This suggests that BVSA infers a larger number of inter-
actions with reasonable accuracy, whereas SBRA infers
a smaller number of interactions with relatively higher
precision.

Network reconstruction from incomplete sets of
perturbations: For real biological networks,it often is
impossible to perturb each network module, separately or
in combination. Accordingly, the resulting datasets usually
do not contain complete information for a full reconstruc-
tion of the underlying network. Here we demonstrate that
even in such cases BVSA can reveal salient features of
network structures with better accuracy than its counter-
parts.

Firstly, we simulated steady state responses of the
MAPK pathway after perturbing only five out of six mod-
ules (adapter, initiator, MAP3K, MAP2K and MAPK)
modules by knocking down Shc, Ras, Raf, MEK and
ERK one at a time. We assumed that the knockdowns
were performed with 80% efficiency. The simulations
were performed stochastically to account for biological
noise. Additionally, simulated measurement errors (o =
0.01,8; = 0.1) were added to the perturbation responses.
No repetitions of the knockdown experiments were per-
formed. This yielded noisy steady state responses of the
MAPK modules to five different perturbations. Classical
MRA [19], its stochastic counterpart [16,17] and SBRA
are unable to reconstruct a network from this dataset
due to its rank deficiency . However, BVSA and LMML
are designed to reconstruct networks in situations where
the number of perturbation experiments is less than the
number of network modules. We generated 10000 dat-
sets with five perturbations (as described above) and
inferred network structures from each of these datasets
using BVSA and LMML. We then calculated average
AUROC and AUPR values for each of the inferred net-
works. The AUROCs and AUPR values, calculated from
the networks inferred by BVSA algorithm were then com-
pared with those of the LMML algorithm to determine
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Figure 3 Best performers in reconstructing the the MAPK pathway at different levels of signal dependent and independent noises. The
performances were evaluated for different levels of signal dependent (8;, X-axis) and independent («p, Y-axis) components of the measurement
errors. Bs and ay, were gradually increased from a minimum of 0.1 up to 1 and from 0.01 up to 0.1 respectively. The best performers in terms of
maximum average AUROC(p < 0.05)and maximum average AUPR(p<0.05) are shown in panels (a) and (b) respectively.
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the best performer (see Figure 4). The procedure was
repeated by perturbing only four (RasGDP, Raf, MEK, and
ERK knockdowns) and three (Raf, MEK and ERK knock-
downs) modules out of six. This analysis revealed that
the performance of BVSA was significantly better than
that of the LMML algorithm when faced with incomplete
perturbation data.

In the simulation study of the MAPK pathway we estab-
lished that BVSA can accurately infer network structures
from perturbation data and it is robust against biological
noises, measurement errors, and insufficient perturbation
experiments. However, the above study does not demon-
strate the scalability of BVSA, i.e. whether BVSA can
be efficiently implemented to infer larger networks, e.g.
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Figure 4 Network reconstruction from incomplete perturbation data. X-axis represents the number of perturbations and Y-axis represents
AUROC in panel (@) and AUPR in panel(b). The error-bars indicate the standard deviations of the corresponding AUROCs in panel (a) and AUPRs in
panel (b). The results suggest that the networks reconstructed by BVSA is significantly more accurate than both LMML and random guesses even
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when only half of the MAPK modules were perturbed and no repetitions of the experiments were available.
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GRN's consisting of hundreds or even thousands of genes.
Below, we address this issue by using simulated pertur-
bation responses of a 10 gene and a 100 gene GRN and
compare its performance with that of (stochastic) MRA,
SBRA and LMML.

Simulation study: in-silico GRNs: For this study we
chose two in-silico gene regulatory networks which
were previously provided as a part of the fourth net-
work inference challenge of the DREAM consor-
tium  http://wiki.c2b2.columbia.edu/dream/index.php/
Challenges. The chosen networks are indexed as network
1 in the 10 gene and 100 gene categories, respectively, in
the DREAM-4 data repository (http://wiki.c2b2.columbia.
edu/dream/index.php/Challenges). The networks were
perturbed by knocking out the component genes one by
one. Following each perturbation the responses of the
other genes in the network were measured. The knockout
experiments were simulated using the GeneNetWeaver
[30] software. No biological or technical replicates were
simulated for the perturbation experiments. We used
the normalized perturbation (knock out) responses for
network inference.

We used BVSA, stochastic MRA [16], SBRA [7] and
LMML [18] to infer the topologies of the above networks
from the perturbation data provided by the DREAM
consortium. In case of stochastic MRA, the connection
coefficients were inferred using the TLSR algorithm [16],
but the uncertainties surrounding the estimated values of
the connection coefficients could not be inferred due to
the lack of replicate experiments (see [17]). We executed
each algorithm 50 times ? on the same datasets and cal-
culated: (a) the average AUROC and the corresponding
standard deviation, (b) the average AUPR and the corre-
sponding standard deviation, (c) the average time taken
to finish execution for each of the four algorithms. The
results of this analysis, along with the performances of
the winning algorithms ([35,36]) in the 10 and 100 gene
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categories of the fourth DREAM challenge is shown in
Table 1.

The results (Table 1) suggest that in the 10 genes
category BVSA outperformed most of the other algo-
rithms (stochastic MRA, SBRA, LMML and that proposed
by Pianna et. al. [35]) except that of Kuffner et. al. ([36],
the winner of the DREAM4 in the same category) in terms
of accuracy. A possible reason behind the fact that Kuffner
et. al’s algorithm performed better than BVSA is that their
algorithm uses five different types of data, i.e. knockdown,
time series, multi-factorial and double-knockout data in
addition to the single knockout data for network recon-
struction [36], whereas BVSA uses only single knockout
dataset. The heterogeneous datasets provide a wealth of
additional information about the network topology which
BVSA is currently unable to use and therefore does not
perform as well as Kuffner et. al’s algorithm. In terms of
execution time, BVSA took more time (on an average ~
6 seconds) to finish execution than SBRA (on an average
~ 0.11 seconds) but less time than LMML (on an average
A 27.32 seconds) in the 10 gene category. The execution
time of Kuffner et. al’s algorithm is unavailable.

In the 100 genes category, BVSA outperformed most of
the other algorithms (Stochastic MRA, SBRA and LMML)
except that proposed by Pinna et. al. ([35], winner of
DREAM4 challenge in the same category) in terms of
accuracy. Kuffner et. al. did not participate in the 100
genes category. In terms of execution time, BVSA (on an
average 23 minutes 5 seconds) outperformed both SBRA
(on an average 25 minutes 20 seconds) and LMML (on an
average 11 hours 32 minutes 47 seconds) in the 100 genes
category. The execution time of Pinna et. al’s algorithm
[35] is not available. In both 10 and 100 genes category
stochastic MRA was the fastest with execution time of
(on an average) ~ 0.0008 seconds and ~ 0.64 sec-
onds respectively. This is due to the fact that we could
not perform MCMC simulation for stochastic MRA to
estimate the probability distributions of the connection

Table 1 Performance comparison of BVSA, (stochastic)MRA, SBRA and LMML algorithms along with the winners in the 10

and 100 gene categories ([35,36]) of the DREAM4 challenge

Algorithm 10 Gene network 100 Gene network
AUROC AUPR Time (secs) AUROC AUPR Time (secs)
BVSA 0.9323 £0.0121 0.7311 £ 0011 6.023 £0.119 0.85+0.0101 0.144+0.0108 138492 +£1238
stochastic MRA 0.9231 0.7133 0.0008 0.709 0.037 0.68
SBRA 0.7572£0.019 0.58 &+ 0.02 0.11£0.02 0.65£0.003 0.075 £0.01 1520 £3319
LMML 0.8035 £ 0.06 0.66 &+ 0.07 2732+1.73 0.644+0.02 0.04£0.001 41562 +3722.2
Kuffer et. al.[36] 0972 0916 NA NA NA NA
Pinna et. al. [35] 0.764 0.590 NA 0914 0.536 NA

The results are shown in mean =+ std format. The information regarding the performance of Kuffner et. al.’s algorithm on the 100 gene dataset is not available since
they did not participate in the 100 gene category of the DREAM4 challenge. The execution times of Pinna et. al.’s amd Kuffer et. al.'s algorithms were not published

and therefore not available. Unavailble information is shown by ‘NA’ in the table.
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coefficients. Instead, we calculated point estimates of
the connection coefficients using the TLSR method [16].
However, if a MCMC simulation was performed, then the
performance of the stochastic MCMC algorithm would
have been considerably slower. This is demonstrated in
the next section, where we used real biological data with
multiple biological and technical replicates.

Encouraged by the above results we used BVSA to infer
the topology of the ERBB regulated G1-S transition path-
way in breast cancer cells from real experimental data.

Real datasets: ERBB regulated G1/S transition in
human breast cancer cells: ERBB receptors are a fam-
ily of four structurally related receptor tyrosine kinases
(RTK) which form homodimers, heterodimers, and pos-
sibly higher-order oligomers upon activation by growth
factors such as EGF, TGF-« etc. Activated ERBB dimers
act as docking sites for a myriad of adapter pro-
teins which simultaneously initiate many signaling cas-
cades such as the AKT pathway, MAPK cascades, the
JAK/STAT pathway etc. Many of these pathways tightly
regulate different phases of cell cycle in eukaryotic
cells.

At the end of G1 phase of cell cycle when the cells reach
their final stage of growth they decide whether to divide,
delay division or enter a resting stage. The decision mak-
ing process involves phosphorylation of the retinoblas-
toma protein pRB by different Cyclin/CDK complexes.
Unphosphorylated pRB proteins bind to E2F family of
transcription factors and inhibit its activity. Upon phos-
phorylation, pRB proteins dissociate from E2F resulting
in its activation. A eukaryotic cell commits to divide
and initiates DNA replication (i.e. enter into S phase)
when active E2F triggers transcription of the necessary
genes. The ERBB regulated signaling pathways influ-
ence this mechanism by releasing Cyclin/CDK complexes
from their inhibitor proteins (Cyclin Dependent Kinase
inhibitors) p21 and p27. In 20-30% of breast cancers,
ERBB2, a member of the ERBB family of receptors, is over-
expressed resulting in a malfunction of control points in
the cell division process and unrestricted growth. These
cancers are usually treated with Trastuzumab, a recom-
binant antibody designed to block the ERBB2 activity.
However, about two third of the ERBB2 overexpressing
breast cancer patients are found to be Trastuzumab resis-
tant ab. initio [37]. In these patients, the cancer cells are
able to overcome the cell cycle arrest mechanisms even
though ERBB2 is blocked by Trastuzumab. The mecha-
nisms which allow the breast cancer cells to bypass cell
cycle arrest is not well understood and currently under
intense research.

In a notable effort, Sahin et. al. systematically perturbed
key components of ERBB mediated signaling pathways
and the G1/S transition mechanisms in Trastuzumab
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resistant breast cancer cells to understand how the former
influence the later and vice versa [37]. RNAi was used to
individually knock down the expression of the genes cor-
responding to ERBB1, ERBB2, ERBB3, AKT, MEK, cMyc
ER-o, IGF1R, p21, p27, CDK2, CDK4, Cyclin-D1, Cyclin
El and pRBI1 in HCC1954 cells [37]. The first seven of
these proteins are part of the ERBB mediated signaling
pathways and the rest are part of the G1/S transition
mechanism. After each knockdown, the cells were stim-
ulated with EGF for 12 hours and the expression levels
of ERBB1,ERBB2, p21, p27, CDK2, CDK4, Cyclin-D1 and
phosphorylation levels of ERK, AKT, pRB were measured
using reverse phase protein arrays [37]. We analyzed these
measurements > using BVSA, (stochastici MRA, SBRA
and LMML to unravel the interactions among the above
proteins. To estimate the accuracy of each of these algo-
rithms, we first developed a literature based reference
pathway (Figure 5) which represents our current knowl-
edge about how the above proteins interact with each
other to regulate G1/S transition in an ERBB dependent

Pathway constructed from literature
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Figure 5 A network of ERBB regulated G1/S transition
constructed from the literature. The numbers associated with the
network edges point to corresponding references listed in the
Additional file 8.
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manner. Then we compared the topology of the refer-
ence pathway with those reconstructed by BVSA, MRA,
SBRA and LMML. Below we describe the results of our
analysis.

In case of BVSA, we used five parallel Gibbs samplers
to search for the potential regulators of each protein. Each
sampler was allowed to sample for 2000 iterations. The
entire simulation took ~ 3 minutes to complete on an intel
core i7-820m processor based laptop computer with 12
Giga bytes of RAM. To see whether all parallel samplers
converge to the same distribution we plotted (Additional
file 9: Figure S3) the log-marginal log(P(A4;|R)) of the
samples drawn by the samplers. The parallel samplers
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converged rapidly to the same distribution. As before,
we rejected 20% of the early samples as burn ins and
the rest of the samples were used to calculate the poste-
rior edge probabilities P;;. The posterior edge probabilities
were then thresholded using the thresholding scheme
described above.

The inferred network (Figure 6(a)) reveals many well
known mechanisms by which the ERBB mediated sig-
naling pathways regulates the G1/S transition point of
cell cycle. For example, the regulation of the CDK
inhibitors p21 and p27 by the ERK pathway, the interplay
between Cyclin-CDK complexes, their inhibitors (p21,
p27) and their target protein pRB were identified. Some
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Figure 6 Reconstruction of the ERBB regulated G1/S transition mechanism by BVSA (panel a), stochastic MRA (panel b), SBRA (panel c)
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less recognized mechanisms of cell cycle regulation were
also detected. For instance, p27 and pRB1 were found to
be directly regulated by ERBB. It was previously demon-
strated that Src and the JNK pathway, which are down-
stream to ERBB [38], can regulate the activity of p27 and
pRB1 respectively in an AKT and ERK independent man-
ner [39,40]. Since neither Src nor the components of the
JNK pathway were measured in the perturbation exper-
iments [37], the ERBB mediated regulation of p27 and
pRB1 via these pathways were detected by BVSA as direct
interactions.

Similarly, ERK was also found to directly regulate
the activity of pRB1 (Figure 6(a)). Previous experimen-
tal results indicated that the activity of pRB1 can be
regulated by the p53/MDM2 pathway [41] which itself
is regulated by the ERK pathway [42]. Since p53 and
MDM?2 were not measured in the perturbation exper-
iments [37], the ERK mediated regulation of pRB1
via this pathway was inferred as a direct interaction
(Figure 6(a)).

We also identified a number of potential feedback
mechanisms. For instance, pRB was found to feedback
into its upstream kinases CDK2, CDK4 and even further
upstream, into the kinases AKT and ERK (Figure 6(a)).
Experimental studies by other researchers suggest that
these feedback loops are mediated by the transcription
factor E2F which is activated upon phosphorylation of
pRB. Activated E2F directly binds to the CDK2 [43] pro-
moter and activates its transcription. E2F is also found
to transcriptionally regulate AKT1 [44] resulting in a
feedback regulation of pRB. On the other hand, E2F tran-
scriptionally activates PAC1 which dephosphorylates ERK
[45] thereby completing a negative feedback loop. E2F also
can activate ARF which upregulates the stability of the
p53 protein [41]. p53 inhibits the translation of the CDK4
protein [46] forming a feedback loop.

Some of the feedback mechanisms identified in this
analysis can potentially explain the observed Trastuzumab
resistance in HCC1954 cells. In fact, our reconstructed
model identified two feedback mechanisms which were
experimentally proved by other researchers to cause
Trastuzumab resistance in ERBB2 overexpressing breast
cancer cells. These feedback loops involve AKT and
ERK mediated regulation of ERBB receptors (Figure 6(a)).
Previously, it was demonstrated that AKT, a down-
stream kinase of ERBB, inhibits ADAM17 which acti-
vates TGF-«, a potent ligand for ERBB receptors [47].
Inhibiting ERBB2 using Tratuzumab inhibits AKT and
upregulates ADAM17 [47]. ADAMI17 activates many
ERBB ligands which keeps ERBB pathways activated
[47]. However, the activity of ADAM17 was not mea-
sured in the perturbation experiments [37] which we
considered for our analysis and the feedback regula-
tion of ERBB by AKT via ADAMI17 was inferred by
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BVSA as a direct network connection from AKT to
ERBB.

Additionally, the ERK-ERBB feedback loop which was
also inferred by BVSA as a direct feedback from ERK to
ERBB is in-fact mediated by EGR1 [48], a target gene of
the ERK pathway [49].

We found credible evidence in the literature to support
all but two interactions inferred by BVSA. The litera-
ture references regarding the inferred interactions are
provided in the SI. At the same time, a few known mech-
anisms involving ERBB regulated signaling pathways and
the G1/S checkpoints were not identified by BVSA. In
Figure 6(a), we have shown the identified, unidentified and
falsely identified interactions.

We also used the Median Probability Model, i.e. py, =
0.5 [50], to reconstruct the above pathway from the proba-
bility matrix P which was inferred by BVSA. The resulting
network is shown in Additional file 10: Figure S4. The
inferred network shares a number of interactions with
that derived by the thresholding scheme which was pro-
posed in this paper. However, it fails to identify some
well known interactions which were successfully inferred
by our proposed thresholding scheme, e.g. ERBB medi-
ated regulation of ERK, the roles of Cyclin Dependent
Kinase inhibitors, pRB1 mediated feedback regulations,
the autocrine loops etc.

For further comparisons, we employed MRA [17], SBRA
[7] and LMML [18] to reconstruct the ERBB2 regu-
lated G1/S transition network from the same dataset as
above [37]. In case of MRA, 10° random realizations of
the steady state perturbation responses were drawn from
Gaussian distributions with means and standard devia-
tions obtained from experimental data [17]. The connec-
tion coefficients were calculated from each realization of
the perturbation responses using TLSR [16]. The result-
ing 10° realizations of each connection coefficient rij
were used to infer the structure of the ERBB regulated
G1/S transition mechanism. In most cases, a few realiza-
tions (typically < 1%) of a connection coefficient r;; had
very different values from the bulk of its values. These
“outliers” were discarded by rejecting 1% extreme values
of each r;. The connection coefficients which had high
variances even after rejecting the outliers were assumed
to be unidentifiable and were discarded from the analysis.
The values of the remaining connection coefficients were
then subjected to a Z-test which calculates a p-value to
determine whether its mean is close enough to 0. If the
p-value is less than 0.05 then the mean of the r; is sig-
nificantly different from 0, i.e. in this case, r; represents
a true network connection. We then used the Benjamini-
Hochberg [51] procedure to correct for multiple testing
and eliminate any falsely discovered network connec-
tion. To determine whether r;; represents an activating or
inhibitory interaction we first calculated the histogram of
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each rj. The histograms are shown in Additional file 11:
Figure S5. If the fraction of negative realizations of r;; is
larger than the fraction of positive realizations then r;
is assumed to represent an inhibitory interaction. Oth-
erwise, it represents an activating interaction. The above
procedure took approximately 3 hours and 27 minutes
to complete by the same computer which was used to
implement BVSA on the ERBB2 dataset. The network
which was reconstructed this way is shown in Figure 6(b).
Stochastic MRA inferred many well known interactions
(represented by black lines in Figure 6(b)) which take part
in the ERBB2 mediated G1/S transition control mecha-
nism. However, it also inferred a large number of inter-
actions (represented by red lines in Figure 6(b)) which
could not be supported by evidence from the literature.
These interactions are most probably falsely identified
interactions.

Furthermore, we reconstructed the same pathway using
SBRA. SBRA does not infer connection coefficients.
Instead, it infers a weight matrix W which represents the
strength of the interactions. The sign of the elements of W
represents whether the corresponding interaction is acti-
vating or inhibitory. SBRA took approximately 1 minute
and 20 seconds to execute as opposed to 3 minutes for
BVSA and 3 hours 20 minutes for MRA. The network
structure constructed from the inferred weight matrix is
shown in Figure 6(c). Similar to MRA, SBRA also inferred
a number of well known interactions along with a large
number of interactions which are most likely to be false
positives.

Finally, we reconstructed the ERBB pathway using
LMML [18]. It took approximately 35 minutes and 27
seconds to finish executaion as opposed to 3 minutes
for BVSA, 1 minutes 20 seconds for SBRA and 3 hours
20 minutes for MRA. The network inferred by LMML
is shown in Figure 6(d). LMML also inferred many
known interactions along with a relatively large number
of interactions which could not be supported by literature
evidence.

The above analysis suggests that BVSA provides an
overall faster and more accurate solution to the network
reconstruction problem when compared to other network
inference algorithms such as MRA, SBRA and LMML.
However, our comparison of accuracy depends on the
reference ERBB pathway which was constructed from lit-
erature. We selected only highly cited experimental results
to construct the reference pathway. However, not all of
these experiments were performed on the same cell line
as the one used by Sahin and colleagues [37]. Therefore,
the reference pathway (Figure 5) should only be treated
as a plausible generic mechanism of ERBB mediated G1/S
transition and the result of the comparative analysis pre-
sented in this section should be treated with its fair share
of scepticism.
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Discussion and conclusion
In this paper, we propose a network inference algorithm
which combines modular response analysis with Bayesian
variable selection techniques. This algorithm is capable
of reconstructing network topologies from noisy per-
turbation responses of biochemical systems. It is more
accurate than two previously proposed stochastic formu-
lations of MRA, one based on TLS regression [16] and
the other based on repeated TLS regressions using an
MCMC sampler [17]. The increased accuracy of BVSA
is a result of the fact that BVSA penalizes dense net-
works by implementing appropriate prior distributions
for the unknown variables (e.g. rj;, A;), thereby mini-
mizing the possibilities of false positives, whereas the
stochastic MRA methods lack this capability due to lack
of appropriate regularization techniques. The proposed
BVSA algorithm is also performs better than a recently
proposed Levenberg-Marquardt optimization based Max-
imum Likelihood (LMML) method [18] and a previously
developed sparse Bayesian regression method (SBRA) [7].
This is most likely due to the fact that BVSA imple-
ments a model averaging technique, which determines
the network topology by averaging a set of likely network
models, whereas LMML and SBRA implement two differ-
ent model selection techniques, each of which find a single
network model that maximizes a likelihood function. It
was shown by many researchers [52-54] that model aver-
aging performs better than model selection (for a theoret-
ical explanation see [53,55]) which may explain why BVSA
performs better than LMML and SBRA. We also demon-
strated that BVSA can reconstruct network topologies
even when the number of perturbation experiments are
not sufficient for a full network reconstruction using other
algorithms such as MRA [14] and SBRA [7]. It is com-
putationally less expensive compared to many other sta-
tistical network inference algorithms, e.g. MCMC based
MRA [17], SBRA (for large networks) [7] and LMML [18].
However, the capability of the BVSA algorithm is lim-
ited to inferring binary interactions, whereas MRA, SBRA
and LMML can also infer the connection coefficients
which represent the strength and type (activating or
inhibitory) of each interaction. Such information is nec-
essary to understand the molecular mechanisms by which
a biochemical network operates. Although, BVSA can-
not directly estimate the connection coefficients, these
quantities can be readily estimated using linear regres-
sion, once a binary network topology is inferred using
BVSA algorithm. However, a more systematic approach
in estimating the connection coefficients from perturba-
tion data needs to be developed. Therefore, in our future
research, we plan to extend the BVSA algorithm to infer
the connection coefficients of biochemical networks.
Additionally, BVSA is vulnerable to collinearity in
experimental data [56], i.e. if perturbation responses of
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different network nodes are collinear then BVSA may not
perform to its full potential. Therefore, one must prac-
tice caution in designing the perturbation experiments
and make sure that the perturbation responses of different
network nodes are as orthogonal as possible.

The biggest concern of using statistical network infer-
ence algorithms to analyze biological datasets is the reli-
ability of the predicted networks. One way of increasing
reliability is to make systematic use of all existing infor-
mation regarding the biochemical networks which the
researcher wants to explore [3]. BVSA, at its current
stage, incorporates only subjective knowledge regarding
abstract topological properties of generic biochemical
systems in its inference engine. To improve its accu-
racy and reliability, it should be customized to take
network specific objective knowledge into account. In
our future research, we plan to focus on incorporating
network specific knowledge into the inferential frame-
work of the BVSA algorithm and thereby increasing its
accuracy.

Methods

The prior distributions of the unknown variables

The prior distribution of the binary variables Aj;

Biochemical entities such as genes and proteins interact
with only selective groups of partners, making biochem-
ical networks sparse systems. Network sparsity implies
that for any two arbitrary nodes i and j, A; has a small
probability of being 1, typically P(4; = 1) < 0.5 There-
fore, if we denote P(4; = 1) = 6 then 6 indicates
the sparsity of the network. The degree of sparsity of
a biochemical network is usually unknown beforehand
(a priori), implying that our knowledge surrounding the
probable values of 6 is uncertain. To formulate our uncer-
tainty about 6, we assumed that it has a Beta distribution
with parameters a, b. The choices of the values for a and
b represent our prior knowledge about the sparsity of the
network. If the network is likely to be sparse, which is
a reasonable a priori assumption for biological networks,
then we choose a > b, since, intuitively & and b represent
our prior knowledge about the likely frequencies of 1’s and
0’s occuring in the binary adjacency matrix A. By the same
rationale, we choose b > a when the network is believed
to be dense (P(4; = 1) > 0.5). BVSA algorithms were
shown to perform robustly for different values of 4 and b,
if these values correctly represent the prior knowledge of
model sparsity [57].

Following this notion, we assigned ¢ = 1 and b = 2.
These values imply that the probability of node i being reg-
ulated by an arbitrary node j is most likely but not limited
to be within the range [0.097,0.57], i.e. 0.097 < P(A; =
1) < 0.57 (see Additional file 1 for explanation) which
broadly represents our prior assumption that biochemical
networks are sparse.
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The prior distribution of the connection coefficients rjj

We conceptually divide a # node network into » number
of smaller subnetworks, each of which corresponds to the
interactions between a specific node (i) and its regulators,
whose interactions with nodes other than i are not con-
sidered . Thus, each subnetwork (i) includes only node i
and the nodes that directly affect node i, termed regulators
of this node. These subnetworks can be treated as inde-
pendent networks and their topologies can be inferred
separately [58,59]. In this case, one only needs to account
for the interdependence of the connection coefficients
within each subnetwork. We assigned a ‘spike and slab’
[60] type joint probability distribution for the connection
coefficients of each individual subnetwork. By definition,
the i subnetwork consists of the interactions between
node i and its regulators, and the connection coefficients
corresponding to these interactions are denoted by r; =
{rizj = 1,...,mj # i}. The elements of r; which do not
represent true edges are considered to be 0 with prob-
ability 1 (the spikes) and the elements which represent
true edges (denoted by p;) are assumed to have a mul-
tivariate Gaussian distribution (the slab) with mean 0
and covariance matrix V. Assuming that p; has n}( ele-
ments, V,, is a n}( X nﬁ( matrix which represents our
prior knowledge about the possible range of values of p;
while accounting for the dependencies among different
elements of p;. A commonly used approach is to assume
that the prior covariance matrix V. is proportional to the
posterior covariance matrix, i.e. Vp, ”Z(Rpf(i)R;r(i)rl

[61] where Ry isa nﬁ( X né, matrix whose rows represent
the regulators of node i and the columns represent the
global responses of the regulators to different perturba-
tions. If n; < n}( i.e., the number of perturbations are less
than the number of regulators of node i then the matrix
(Rp,(i)RTr( l.)) is not invertible and therefore, V., becomes
a singulgr matrix. In such scenarios, the posterior distri-
bution of the binary variable A;; does not exist. One way to
ensure positive-definiteness of V, is to introduce a ridge
parameter (1) in its formulation [62]. The resultant Vp, is
shown below.

Vy, = co®Rpry Rl + 2D~ (6)

In Eq. 6, c is the proportionality constant which represents
how much importance is attributed to the prior precision*
V;l_l. The performances of variable selection algorithms
such as ours are sensitive to the value of the parameter
¢ [63]. Several intuitive choices for the values of ¢, their
implications and effects on the performances of these
algorithms are discussed in detail in [63]. Some alterna-
tives to these popular choices had also been proposed
previously. For example, George et. al. [64] and Hansen
et. al. [65] proposed to estimate the likely values of ¢ from
data using empirical Bayes techniques. However, this was
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criticized on the grounds that empirical Bayes methods
do not correspond to solutions based on Bayesian or for-
mal Bayesian procedures. Liang et. al [63] proposed a full
Bayesian solution to the above problem, but this solution
involves calculating hyper-geometric distributions which
becomes computationally highly expensive. Hence, we
assigned a simple, computationally inexpensive value ¢ =
n; drawing on the notion that the amount of information
contained in the prior equalize the amount of informa-
tion in one observation. It was shown that the adopted
value performs well for most scenarios except for cases
where a very large number of replicate datasets are avail-
able [29]. However, such a scenario is unlikely to occur
in biological experiments, where the contrary problem of
having fewer replicates than wanted is more frequently
encountered.

The value of A was arbitrarily chosen to be 0.1 since it
was previously shown that any reasonable value within the
range 0 < A < 1 works equally well[62] in most cases.
The introduction of the ridge parameter in V, ensures
the existence of the posterior distributions of A;; even
when a network has far more nodes than the number of
perturbations performed.

The prior distribution of the error €;;: €; is a linear
combination of the noise present in individual measure-
ments [66]. Therefore, by the central limit theorem, €;
is a Gaussian random variable [66,67]. We assumed that
€ix is equally likely to have positive or negative values
and hence its distribution is centered around O, i.e. has
zero mean. The variance (o-2) of € depends on biological
noises and measurement errors and can vary drastically
depending on the type of network being investigated and
measurement systems used in the investigation. There-
fore, our knowledge about the true nature of the noise
variance o2 is uncertain. To account for the uncertain-
ties in the noise variance o2, we assumed that o2 has an
inverse gamma distribution with scale parameter « and
location parameter 8. The values of @ and 8 are chosen to
incorporate any prior knowledge about the noise variance
into the formulation. In the absence of such knowledge,
one may choose values for « and 8 which yield flat and
non-informative priors for 2. Following this notion, we
selected = 1 and 8 = 1 to ensure that o2 has a flat prior
which implies that it can have a wide range of positive
values.

The posterior distribution of the binary variable Aj;

The posterior distribution of the binary variables corre-
sponding to each subnetwork was calculated separately.
Let us denote by A;, the binary variables correspond-
ing to the subnetwork which consists of the interactions
between node i and its regulators. The joint posterior
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distribution of its elements {4;,j = 1,..
shown below.

L) #£ i} is

i pT %
PAIR) ol T Rpro Rpriiy 2
14
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n —1 . .
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Step by step analytical calculations which lead to the
above expression are illustrated in Figure 1 and described
in detail in the Additional file 1. However, Eq. 7 allows one
to calculate the posterior probability of A; only up to a
constant of proportionality.

To determine the true posterior of A; one needs to
calculate the proportionality constant for Eq. 7 which
requires the calculation of the right hand side of Eq. 7 for
all possible configurations of A;. Since, the elements of
A; can be either 1 or 0, there can be 2”1 possible con-
figurations of A;. For small networks (typically n < 20)
it is possible to exhaustively calculate the proportional-
ity constant. In case of large networks (typically n > 20)
exhaustive enumerations of Eq. 7 for all possible config-
urations of A; are prohibitively time consuming. In such
cases one needs to approximate the posterior of A; using
MCMC sampling.

Approximating the posterior distribution of A;; using Gibbs
sampling

We implemented a Gibbs sampler for approximating the
posterior distribution of A;. The Gibbs sampler starts with
a random realization of A4; (A?) and generates a sequence

of samples A}, A?,.. .A?’TS, where N7, is the number of
samples generated by the sampler. The t# sample Al is
obtained componentwise by sampling consecutively from
the conditional distributions

.At Al‘—l

—1
Al ~ P(A}[{Af, A, .. Hi—1) i(].H),...Afn LR

(8)

for all j # i. Each distribution shown in Eq. 8 is a
Bernoulli with probabilities:

t togt t t—1 t—1 p1
PA = 1[{A}y, Ay, . A1), Al AL R) = P
)
P(AG = Ol{Aly, ALy, ALy, AL AL R = 22
j i(j+1) p1+po
where,p1 = P({Af}, AL, ... A} ), 1,Af.(;i1), L AEHR)
andpy = P({Af, Aly, . Afj_1), 0, Al Ly, AR
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p1 and po in Eq. 9 can be calculated using Eq. 7.

Repeated successive sampling of Eq. 9 for all compo-
nents of A; produces the sequence of samples Al ¢ =
1... N7, which is a homogeneous ergodic Markov chain
that converges to its unique stationary distribution
P(A;|R). A practical consequence of this property is that
as the length of the sequence is increased, the empirical
distribution of the realized values of A; converges to the
actual posterior P(4;|R). In our applications, we were not
concerned about strict convergence of the Gibbs sampler.
Instead, we adopted an approach similar to [68-70]. We
initiated multiple parallel samplers each starting with a
random configuration of A;. Each sampler was allowed to
generate a sequence of length Nr,. We were satisfied if the
parallel samplers showed broadly similar marginal distri-
butions, i.e. they converged on each other. We rejected a
number (N7,) of early samples from each of the sequences
and assumed that the empirical distribution of the rest of
the samples approximates P(A4;|R). We have shown some
illustrations of our approach in the results section.

The samples drawn after the “burn in” period can be
used to calculate the posterior probability of A;; = 1 which
represents an individual edge emanating from node j to
node i. An asymptotically valid estimate of the posterior
probability (P;;) was calculated as shown below:

1 N, Nrg
(tk)
Py = YAl (10)
7 Nex (N7, = Nr,) k=1 t=N7, +1 K
— Ty

Here, N, is the number of Gibbs samplers initiated for
each A;.

Thresholding the posterior probabilities of A;;

The topology of the underlying network can be deter-
mined by thresholding P;; with a threshold probability p,
ie, if P;j > pyy, it can be assumed that node j directly reg-
ulates node i and if P;; < py, then node j does not directly
regulate node i. The value of py, should be chosen care-
fully. During the performance evaluation phase, when the
network topology is known, the standard approach is to
construct a series of networks for different values of py,
in the range [0, 1]. The topology of each network is then
compared with the known topology and the overall per-
formance of the algorithm is determined using Receiver
Operating Characteristics (ROC) curves. This procedure
is discussed in details in the results section.

When the network structure is unknown, determining
the correct py, is crucial. In this case, the most commonly
used approach is the Median Probability Model (MPM)
[50] which simply assumes py, = 0.5. It has been shown
that under certain conditions MPM ensures optimal per-
formance [50]. However, when the data is highly collinear
(which is almost always true in our case) choosing py, =
0.5 no longer yields optimal results [71]. Therefore, we
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propose a simple and intuitive thresholding scheme which
assumes that if an interaction occurs with higher than the
average posterior edge probability then it is likely to be a
true interaction, i.e. py, = ﬁ > i1 2 i1, Py Note
that when Pj; is uniformly distributed within the interval
[0,1], py, =~ 0.5 and our thresholding scheme resem-
bles MPM. However, high level of multicollinearity often
results in P; < 0.5 even when there is a direct influ-
ence from node j to node i [71]. In this case, as shown in
the result section, our thresholding method outperforms
MPM.

Endnotes

! Based on Benjamini-Hochberg corrected t-test
between the AUROCs and AUPRs of the best and second
best performers.

2 All computations were performed in a laptop
computer equipped with core i7-3610Qm processor and
20 Gigabytes of Random access memory.

3 we considered only those perturbations which
directly targeted the measured proteins. Only nine out of
ten measured proteins were targeted by their
corresponding siRNA. pRB was not targeted for siRNA
mediated knockdown.

* Precession is the inverse of variance.

Additional file

Additional file 1: Details of Bayesian formulation. In this file we have
described the mathematical details of the Bayesian formulation presented
in the paper.

Additional file 2: source-code. This file contains the MATLAB source
code for the BVSA algorithm which is described in this paper.

Additional file 3: MAPK model. In this file, we have provided the details
of the ODE and the SDE models which were created to simulate the noise
free and noisy perturbation response of the MAPK pathway respectively.

Additional file 4: Figure S1.In this figure, we have illustrated the
convergence of the Gibbs samplers which were created to reconstruct the
MAPK pathway from noise free simulation data.

Additional file 5: Figure S2. In this figure, we have illustrated the
convergence of the Gibbs samplers which were created to reconstruct the
MAPK pathway from noisy simulation data.

Additional file 6: Supplementary Table S1. In this table we have shown
the AUROCs and their standard deviations calculated from the MAPK
pathway topologies reconstructed by BVSA, stochastic MRA, SBRA and
LMML at different levels of signal dependent and independent noises.

Additional file 7: Supplementary Table S2. In this table we have shown
the AUPRs and their standard deviations calculated from the MAPK
pathway topologies reconstructed by BVSA, stochastic MRA, SBRA and
LMML at different levels of signal dependent and independent noises.

Additional file 8: References for ERBB pathway. In this file we have
provided the references for different interactions of the ERBB pathway.

Additional file 9: Figure S3. In this figure, we have illustrated the
convergence of the Gibbs samplers which were created to reconstruct the
ERBB-G1/S transition pathway from experimentally obtained perturbation
data.
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Additional file 10: Figure S4. In this figure, we have shown the topology
of the ERBB-G1/S transition network as reconstructed by the Median
Probability Model.

Additional file 11: Figure S5. In this figure, we have shown the
histograms of the connection coefficients of the ERBB regulated G1/S
transition pathway as calculated by the stochastic MRA algorithm.
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