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Abstract

from two other methods for detecting inter-process links.

Markov chain Monte Carlo

Background: Microarray experiments can simultaneously identify thousands of genes that show significant
perturbation in expression between two experimental conditions. Response networks, computed through the
integration of gene interaction networks with expression perturbation data, may themselves contain tens of
thousands of interactions. Gene set enrichment has become standard for summarizing the results of these analyses in
terms functionally coherent collections of genes such as biological processes. However, even these methods can yield
hundreds of enriched functions that may overlap considerably.

Results: We describe a new technique called Markov chain Monte Carlo Biological Process Networks (MCMC-BPN)
capable of reporting a highly non-redundant set of links between processes that describe the molecular interactions
that are perturbed under a specific biological context. Each link in the BPN represents the perturbed interactions that
serve as the interfaces between the two processes connected by the link.

We apply MCMC-BPN to publicly available liver-related datasets to demonstrate that the networks formed by the
most probable inter-process links reported by MCMC-BPN show high relevance to each biological condition. We
show that MCMC-BPN's ability to discern the few key links from in a very large solution space by comparing results

Conclusions: MCMC-BPN is successful in using few inter-process links to explain as many of the perturbed
gene-gene interactions as possible. Thereby, BPNs summarize the important biological trends within a response
network by reporting a digestible number of inter-process links that can be explored in greater detail.

Keywords: Molecular interaction networks, Gene expression data, Networks of biological processes, Data integration,

Background

Motivation

The deluge of publicly available molecular biology data,
including genome-wide gene expression measurements
[1,2] and gene and protein interaction networks [3,4]
has necessitated the development of computational meth-
ods that produce comprehensible views of large numbers
of biological molecules and their connections. Reporting
perturbation in gene expression on the basis of individ-
ual genes [5,6] (of which there may be thousands) has
given way to more holistic techniques—referred to as
functional enrichment—that instead report the signifi-
cance of the collective perturbation of processes—sets of
biologically related genes (e.g., [7-11]. Results from these
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analyses reveal important trends that large lists of genes
can obscure.

Recent work in functional enrichment of gene expres-
sion data [9,11] has emphasized finding concise, non-
redundant sets of processes that account for much of the
overall perturbation among the genes. Methods by Lu
et al. [9] and Bauer, Gagneur, and Robinson [11] assume
that a cell or tissue perturbs certain biological processes
in response to a change internal or external conditions. In
their models, perturbed processes cause the perturbation
of the expression of individual genes belonging to each of
those processes. They consider the actual measurements
of perturbation of the individual genes, as assessed by
DNA microarrays, for example, as noisy observations of
signals generated by perturbation of specific processes by
cells in response to a stimulus. Both methods use gen-
erative models to assess the goodness of fit of a set of
candidate perturbed processes to the observed gene per-
turbations, while differing in their precise formulations.
The two methods use standard algorithms (greedy [9] and

© 2013 Lasher et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Markov chain Monte Carlo (MCMC) [11]) to find the set
of processes with the greatest fit to the observed data.

Products of genes do not act independently but rather
in concert with products of other genes through numer-
ous interactions. In a similar vein, biological processes,
composed of genes, may themselves interact. Accordingly,
researchers have begun developing methods to identify
connections between processes based on the underlying
gene interaction networks. A method by Li et al. [12]
computed the “crosstalk” between processes by count-
ing the number of interactions that occur among the
genes of each process and assessing the significance of
this number against empirical distributions. Dotan-Cohen
et al. published a more direct method [13] which uses
Fisher’s Exact Test to determine if one process is linked
to another, i.e., if genes in the first process have signifi-
cantly more interactions with genes in the second process
than would be expected by chance. Wang et al. [14] pub-
lished a method that calculates what they call “functional
similarity” between two processes using the sum of the
distances between all pairs of genes belonging to those
processes.

While the previous methods represent advances in find-
ing high-level connections between processes, they do
not incorporate information which could lead to discov-
ering which connections have relevance under specific
biological contexts. Motivated by this methodological gap,
in earlier work [15] we extended the method of Dotan-
Cohen et al. [13] by integrating gene expression data with
gene-gene interactions to compute what we termed “Con-
textual Biological Process Linkage Networks” (CBPLNS).
A link in a CBPLN indicates not only that the genes of
two processes have a significant number of interactions
among them, but that genes at the interface exhibit a large
amount of perturbation in expression. Thus, it became
possible to infer the inter-process connections relevant
to a cell or tissue’s response to an internal or external
stimulus.

The CBPLN method has several aspects that need
improvement. First, because it must build empirical dis-
tributions to determine the significance of each link, it
becomes prohibitively computationally expensive as the
number of links to test grows. Second, the method reports
all significant links, Since it makes no distinction among
two or more links that are found to be significant on
account of nearly identical sets of gene-gene interactions,
it may output many redundant significant links. This latter
drawback is universal to all methods that compute inter-
process links, and also to most techniques for functional
enrichment.

Here we present a new method that simultaneously
addresses the shortcomings of earlier methods. Our
method takes inspiration from the methods for functional
enrichment reported by Lu et al. [9] and Bauer et al. [11].
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We assume that links between biological processes
become perturbed during the response of a cell or tissue to
some stimulus, and that this perturbation of inter-process
links propagates via the individual gene-gene interac-
tions between genes belonging to the different processes.
We can not directly observe perturbation of the links
between the processes; instead, our method considers
the perturbation of genes participating in the interfacing
interactions of processes as noisy observations gener-
ated from the perturbed inter-process links. Our method
infers a non-redundant set of processes and their per-
turbed links, which we call a Biological Process Network
(BPN), from the interactions between the observed per-
turbed genes. We compute the likelihood of candidate
BPNs in terms of parameters accounting for the noisi-
ness in the observed states of the gene-gene interactions.
Using Markov chain Monte Carlo (MCMC), we iden-
tify BPNs of high likelihood. We label this new method
“MCMC Biological Process Networks” (MCMC-BPN).
BPNs thus computed summarize the important biologi-
cal trends within a response network by reporting to the
user a digestible number of inter-process links that can be
explored in greater detail.

Overview of the method

MCMC-BPN aims to explain as many interactions
between genes with perturbed expression by as few inter-
process links as possible. By including a link between a
pair of processes in the BPN, we say that link “explains”
the interactions cross-annotated by that pair of terms. Our
objective is to the reward inclusion of links in the BPN
that explain many interactions between perturbed genes
not already explained by other links in the BPN. Simul-
taneously, another objective is to penalize the inclusion
of more links in the BPN than necessary, including links
which mostly explain unperturbed interactions, and miss-
ing a large number of perturbed interactions. To this end,
we define a likelihood function as the product of several
Bernoulli distributions, controlled by three parameters
used to adjust for the amount of “noise” in the observed
perturbation of the cross-annotated links.

The first of these parameters, the link prior A, serves to
reduce the number of links in a BPN, for when A is low,
having few links increases the overall likelihood. A low
value for the second parameter, the false-positive rate «,
encourages BPNs that explain many perturbed interac-
tions. Finally, when the parameter g, which represents
the false-negative rate, has a low value, it encourages
BPNs that explain few unperturbed interactions. Note
that modifying the BPN in such a way that increases the
contribution of one parameter to the likelihood may be
offset, or even outweighed, by a decrease in the contri-
bution to the likelihood by another parameter. For exam-
ple, including every possible link in a BPN will have a



Lasher et al. BMC Systems Biology 2013, 7:68
http://www.biomedcentral.com/1752-0509/7/68

favorable likelihood contribution via «, since it necessar-
ily explains all perturbed interactions. Such an inclusive
BPN will, however, lead to very poor contributions via A
(many links are included in the BPN) and 8 (many unper-
turbed interactions will also be included). Thus, such a
BPN will have a very low overall likelihood. A desir-
able BPN must strike a balance among the tension of all
three parameters—neither including too many links, nor
explaining too few perturbed interactions, nor explaining
too many unperturbed interactions—in order maximize
the overall likelihood.

While the likelihood function provides a means of scor-
ing the quality of a given BPN, for any given data set, there
exist 2/ possible BPNs, where L is the set of all possible
links between pairs of processes. To search this potentially
enormous solution space, we use the Metropolis-Hastings
algorithm for Markov chain Monte Carlo (MCMC) [16].
Each state in the Markov chain represents a particular set
of values for the parameters X, «, and 8, as well as a partic-
ular configuration of inter-process links. The neighbors of
the state are those which have one additional or one less
link, or which have one parameter with a different value.
The parameter values and links which contribute to BPNs
with high likelihoods will tend to remain consistent from
one visited state to the next. Thus, we report the final BPN
as the links that appear most frequently throughout the
states visited during the MCMC.

Application

We applied MCMC-BPN to three treatment-control
experiments relating to the liver and liver disease. In
the first application, we compared gene expression of
rat hepatocytes in two common in vitro culture sys-
tems [17]: hepatocyte monolayer (HM) and collagen
sandwich (CS). The remaining two experiments contrast
gene expression levels from liver tissue samples from
dozens of human patients diagnosed with hepatitis C virus
(HCV)-induced cirrhosis and hepatocellular carcinoma
(HCC) with expression levels of samples from healthy
patients [18]. Approximately 170 million people world-
wide suffer from HCV infection [19]. HCC ranks third
among the deadliest cancers worldwide, of which HCV

Table 1 Data sources for each contrast
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is among the leading causes of incidence [20]. Below,
we present and discuss the BPNs computed to summa-
rize the major trends of differential expression of each
of these three data sets. We found the BPNs contained
links between biological processes that were anticipated,
as well as unexpected connections that suggest further
exploration.

Results

Data sources and contrasts

Table 1 summarizes the data sources for the three con-
trasts we studied. For the “CS vs. HM” contrast, we used
the samples for CS day 8 as the treatment and samples
for HM day 8 as the control. For this contrast, we pruned
the STRING network to include those interactions with
a score of 500 or greater. For the “Cirrhosis” contrast, we
used samples from patients designated to be in the cir-
rhosis category as the treatment; for the “Very Advanced
HCC?” contrast, we used samples from patients designated
as being in the “Very Advanced HCC” category as the
treatment; in both contrasts, we used the samples from
uninfected patients as the control.

We obtained functional annotations for the genes from
the c2 canonical pathways and c¢5 GO gene sets of the
Molecular Signatures Database (MSigDB) version 3.0 [7],
downloaded on February 7, 2011, CORUM complexes
[21] downloaded on February 7, 2011, NetPath signal
transduction pathways [22] downloaded June 6, 2009, and
NCI Pathway Interaction Database’s curated pathways
[23] downloaded February 7, 2011. For the rat data, we
normalized all data into the Ensembl Peptide ID names-
pace through a combination of the Synergizer [24] and
MadGENE [25] mapping services. For the human data,
we used the same services to normalize all the data into
Entrez Gene namespace.

Next, we integrated the annotations with the gene inter-
action networks. We say that a pair of processes “cross-
annotates” interactions in the underlying gene-gene
interaction network if one of the two genes belongs
to one of the processes in the link and the other
gene belongs to the other process. (See the section
titled “The MCMC-BPN algorithm” for details.) For

Interactions GEO
Contrast Organism Sample database series
CSvs. HM[17] Rattus norvegicus Hepatocyte STRING v8.3 [4] GSE20659
Culture
Cirrhosis [18] Homo sapiens Liver MiMI [3] GSE6764
Biopsy
Very Advanced HCC [18] Homo sapiens Liver MiMI [3] GSE67674

Biopsy
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each contrast, Table 2 presents the number of pro-
cesses, the number of cross-annotating pairs among
these processes, the number of interactions which
the process pairs cross-annotate, and the number
of those interactions which we consider “perturbed”
(i.e., both interacting genes exhibit perturbed expression
for that contrast; see the section titled “The MCMC-BPN
algorithm” for details).

For each contrast, we performed a total of five runs of
MCMC-BPN. Each run took between 15 and 30 hours on
a single core of a 2.8GHz AMD Opteron 4184 proces-
sor using our implementation in Python. We first describe
results on the consistency of the BPNs computed by
the different MCMC runs and summarize BPN statis-
tics. Second, we show that the BPNs contain very little
redundancy. Third, for each contrast, we display an exam-
ple BPN and provide detail on several interesting links
in the reported BPNs. Fourth, we demonstrate that the
BPNs produced by MCMC-BPN are more informative
while also being less redundant than those computed by
two previous methods: CBPLN [15] and biological pro-
cess linkage networks (BPLN) [13]. Finally, we describe
some general observations of the behavior of the MCMC
and features which affect the performance of our algo-
rithm. Two additional files accompany these results. The
supplementary information (Additional file 1) contains (a)
details on how we executed the MCMC-BPN software to
obtain and visualize our results and (b) a description of
the files in the supplementary results, which are avail-
able in Additional file 2. This file contains all the five
BPNs for each of the contrasts studied and the parameters
estimated by each run of the software.

Consistency and statistics of BPNs computed by
MCMC-BPN

We measured the consistency between the five BPNs
for each contrast in two ways: how many links (i.e., the
pairs of processes) each pair of BPNs shared, and how
many explained interactions each pair of BPNs had in
common. The average Jaccard Index (JI) for all ten pair-
wise comparisons of the shared links in the CS vs. HM
BPNs was 0.91; in these and subsequent results, we report
averages but not the standard deviations, since they were
one to two orders of magnitude smaller than the averages.
Figure 1 presents, for each of the three contrasts, a pair of

Table 2 Statistics on inputs by contrast
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heatmaps showing the overlap between each pair of BPNs
on the basis of their common perturbed and unperturbed
explained interactions. For the CS vs. HM contrast, the
average Jaccard Index for the common perturbed inter-
actions was 0.92, illustrating the high degree of overlap
between the reported BPNs. The five BPNs for the CS
vs. HM contrast consisted of an average of 27.6 processes
with 20.0 inter-process links explaining 1686.0 interac-
tions, of which 1070.2 interactions were perturbed. The
BPNs explained 27.7% of all perturbed interactions using
0.1% of the possible links.

Unlike the CS vs. HM contrast, the BPNs reported for
the Cirrhosis contrast showed mixed consistency. Figure 1
(center) clearly illustrates the divergence in the BPNs com-
puted for the Cirrhosis contrast in terms of the overlap
of their explained interactions. Three of the five BPNs
(BPNs 1, 3, and 4) were identical, with 18 processes and 14
links between these processes. The two remaining BPNs
had only two processes with one link and four processes
with two links, respectively, none of which were present
in the three identical BPNs. We found that B, the false-
negative rate, took on a very high value (0.95) for these
runs in comparison to the others (0.6). This value of g
indicated that only 5% of the interactions explained by
these BPNs were perturbed. We discarded these two BPNs
from further analyses, reasoning that they represented a
situation where the MCMC could not escape a local min-
imum. We found that the 14 links of the three remaining
BPNs explained 947 interactions, 380 of which were per-
turbed. Thus the BPNs explained 19.5% of all perturbed
interactions using 0.2% of all possible links.

Similar to the Cirrhosis contrast, three of the BPNs com-
puted for the Very Advanced HCC contrast had a high
degree of similarity (BPNs 1, 2, and 4 in Figure 1 (right)).
The remaining two BPNs, which had a modest similar-
ity to each other, showed very little overlap with the first
three BPNs. Unlike the Cirrhosis contrast, the two groups
of BPNs had similar numbers of processes and links; the
three similar BPNs had a mean of 44.0 processes with
36.7 links between them, and the two remaining BPNs
had a mean of 38.5 processes and 41.5 links. They dif-
fered remarkably, however, in the number of interactions
their links explained. The three similar BPNs explained a
mean of 8114.3 interactions, of which 5670.7 were per-
turbed. The remaining two BPNs explained a mean of

Cross-annotating

Cross-annotated Perturbed

Contrast Processes process pairs interactions interactions

CSvs. HM 210 14796 11585 3861
Cirrhosis 148 8714 12913 1954
Very Advanced HCC 345 36460 30201 15400
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CSvs. HM

1 2 3 4 5 1

Perturbed
Interactions

Unperturbed
Interactions

Cirrhosis

Overlap of explained interactions between BPNS

Very Advanced HCC
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Figure 1 Pairwise overlaps of BPNs for the three contrasts. Heatmaps for each contrast, CS vs. HM, Cirrhosis, and Very Advanced HCC, indicate
the pairwise overlap of perturbed interactions (top), and unperturbed interactions (bottom) explained by the BPNs.

3470.5 interactions, of which 890.5 were perturbed. As
in the Cirrhosis contrast, we found that 8 assumed high
values (0.7 and 0.75) in these two runs compared to the
others (0.3). Again reasoning the MCMC may have failed
to escape local minima, we excluded the two dissimilar
BPNs from the remainder of our analyses.

Lack of redundancy in BPNs

We sought to determine whether there was any redun-
dancy within each BPN for each contrast. We used two
measures for this evaluation: (i) the overlap among links in
a BPN in terms of common interactions and (ii) the num-
ber of links in each BPN that explained each interaction.
We define these measures in more detail in the section
titled “ Measuring redundancy within a BPN”

We measured the amount of overlap between every
pair of links within each BPN in terms of the number
of common explained interactions, averaging the results
over the BPNs computed for each contrast. Figure 2 dis-
plays, for each contrast, the distributions of the maxi-
mum observed JIs for each link, divided into perturbed
explained interactions and unperturbed explained inter-
actions. Among the five CS vs. HM BPNs, when con-
sidering perturbed interactions, a mean of 80.0% of links
had a maximum JI between 0 and 0.2. For unperturbed
interactions, this number was 59.9%. Moreover, 80.7%
of perturbed explained interactions and 82.2% of unper-
turbed explained interactions in CS vs. HM had only one
link explaining them on average.

Links in Cirrhosis BPNs also exhibited little overlap (see
Figure 2 (center)), with all links having a maximum ]I

of at most 0.2, both for perturbed and for unperturbed
interactions. At least 85% of the perturbed explained
interactions and the unperturbed explained interactions
were explained by only one link. Links exhibited little
overlap in Very Advanced HCC BPNs as well, as shown
in Figure 2 (right). Nearly 90% of the links had a maxi-
mum JI of at most 0.2 in the case of perturbed explained
interactions, with the number being nearly 70% for unper-
turbed explained interactions. Moreover, about 72% of
both perturbed and unperturbed explained interactions
were explained by only one link.

Overall, the dominance of low JIs for the processes
and links indicated that the BPNs computed by MCMC-
BPN demonstrated very little redundancy. The fact that
most explained interactions had only one explaining link
supported this observation.

Interpretation of the BPNs

CSvs. HM

Figure 3 presents one of the BPNs computed using the
MCMC-BPN method on the data for the CS vs. HM
contrast. The BPN contained up- and down-regulated
processes in different components. Most up-regulated
processes were related to metabolic functions performed
by the liver, including lipid and carbohydrate metabolism,
while most down-regulated processes related to cell repli-
cation and the cytoskeleton. These reflect the greater
retention of physiological function of hepatocytes in CS
culture versus HM culture, and the greater degree of de-
differentiation for cells in HM versus CS, respectively, as
reported by Kim et al. [17].
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Overlap between links based on cross-annotated interactions

CS vs. HM Cirrhosis Very Advanced HCC
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Perturbed %60%- 1 1 T
Interactions § 40%} 1t 1 F
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Jaccard Index
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Figure 2 Redundancy of links within BPNs. In each plot, the x-axis corresponds to the maximum observed JI for a given link, while the y-axis
corresponds to the percentage of links with a maximum observed JI within each corresponding bin on the x-axis. The height of the bar indicates the
average over the BPNs analyzed for each contrast. Error bars represent one standard deviation from the mean. For each contrast, histograms show
the results when considering perturbed interactions (top) and unperturbed interactions (bottom).

Two main components dominate the BPNs. The first
component contained a mix of processes related to
fatty acid metabolism (OXIDOREDUCTASE_ACTIVITY,
KEGG_PPAR_SIGNALING_PATHWAY, REACTOME_
REGULATION_OF_LIPID_METABOLISM_BY_PERO-
XISOME_PROLIFERATOR_ACTIVATED_RECEPTOR _
ALPHA, and KEGG_BIOSYNTHESIS_OF_UNSATU-
RATED_FATTY_ACIDS) and processes related to amino
acid and carbohydrate metabolism (REACTOME_
METABOLISM_OF_CARBOHYDRATES,REACTOME _
METABOLISM_OF_AMINO_ACIDS, and KEGG_AR-
GININE_AND_PROLINE_METABOLISM), all critical
functions carried out by hepatocytes [26]. A link be-
tween OXIDOREDUCTASE_ACTIVITY and REAC-
TOME_METABOLISM_OF_AMINO_ACIDS bridges
these two groups of processes. The second compo-
nent contained down-regulated processes related to the
de-differentiation of the hepatocytes in HMs.

Although the names of some of the processes appear
to be very similar, their actual gene content tended
to overlap very little. For example, the sets of genes
annotated to CELL_CYCLE_GO_0007049 and to
KEGG_CELL_CYCLE had JI of only 0.23. Similarly
KEGG_PPAR_SIGNALING_PATHWAY and REACTOME_
REGULATION_OF_LIPID_METABOLISM_BY_PEROXISO-
ME_PROLIFERATOR_ACTIVATED_RECEPTOR_ALPHA,
which are directly linked in the BPN, had a genes-based JI
of 0.32. Figure 4 shows the dense network of interactions
explained by this link. While genes belonging to both

processes, such as peroxisome proliferator-activated
receptor «(PPARA) and cholesterol 7a-hydroxylase
(CYP7A1), are involved in some interactions, there are
many interactions that involve genes belonging to only
one of the two processes.

Cirrhosis

The three consistent BPNs in the Cirrhosis contrast were
composed entirely of immune response-related processes,
as shown in Figure 5. While we anticipated seeing a
response in terms of liver-related processes as in the
two previous analyses, two factors likely played a large
role in the dominance of the immunity processes. First,
all cirrhosis patients had sustained infection by HCV.
Second, samples in the previous two analyses contained
RNA extracted solely from hepatocytes, the cells respon-
sible for the bulk of metabolic functions of the liver.
The samples in this contrast (as well as Very Advanced
HCC) were from the whole liver. Thus, they contained a
mixture of cell types, which could dilute the signal from
metabolic processes. Our results corroborate those found
by Wurmbach et al. [18], who categorized the bulk of the
differentiated genes as participating in immune response.

Very Advanced HCC

The majority of processes in the three similar BPNs
of the Very Advanced HCC contrast related to cell
replication, owing to the advanced nature of HCC in
the patients from whom the samples were derived.
(See Figure 6.) The largest component of the BPN
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Figure 3 A BPN computed for the CS vs HM contrast. Rectangular nodes represent biological processes. Node color indicates collective
perturbation of the process, as assessed by GSEA, where deep reds signify significant collective up-regulation, and deep greens signify collective
down-regulation. Edges between process nodes represent significant links in the BPN. Dark blue edges indicate highly probable links, while light
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contained 17 processes and 18 links, including both
down- and up-regulated processes, largely including
processes related to cell replication. The BPN contained
a few links related to liver-specific functions, however,
such as that between KEGG_VALINE_LEUCINE_AND
_ISOLEUCINE_DEGRADATION and OXIDOREDUC
TASE_ACTIVITY ACTING ON THE_CH_CH_GROUP
_OF_DONORS, both down-regulated in comparison
to control patients, indicating the progression of liver
damage in the HCC patients. Interestingly, REACTOME

_INNATE_IMMUNITY_SIGNALING was down-regu-
lated in HCC patients compared to controls, suggest-
ing a breakdown in immune response. MCMC-BPN
reported a significant link between this process and
REGULATION_OF_MITOTIC_CELL_CYCLE.

Comparison with CBPLN

We compared performance of MCMC-BPN to the
CBPLN method by running MCMC-BPN over the day 8
CS vs. HM dataset taken directly from the CBPLN study
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Figure 4 Interactions explained by the link between two PPAR-related processes. Pentagonal nodes represent genes belonging to
KEGG_PPAR_SIGNALING_PATHWAY, rectangular nodes represent genes belonging to
REACTOME_REGULATION_OF_LIPID_METABOLISM_BY_PEROXISOME_PROLIFERATOR_ACTIVATED_RECEPTOR_ALPHA, and house-shaped nodes
represent genes belonging to both processes. Red-colored nodes indicate perturbed genes. Edges between nodes represent gene-gene
interactions, with a bold edge representing a perturbed interaction.
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[15], which featured the same gene expression and inter-
action data as the CS vs. HM study presented above, but a
subset of older annotation data from MSigDB. Specifically,
the CBPLN study featured a set of 18 processes signifi-
cantly upregulated in CS in comparison to HM that we
had manually identified and selected.

We performed five independent runs of MCMC-BPN
on the CBPLN day 8 dataset. Two runs had identical sets
of links with values of @ and 8 between 0.30 and 0.35. The
other three runs had high values of 0.60 and 0.65 for both
a and B. We retained only the BPNs in the first group
for further analyses. Both these BPNs contained 14 of the
18 terms and 16 (10.7%) of the 150 possible links, which
explained 1,028 interactions, including 719 (59.7%) of the
1,205 perturbed interactions.

CBPLN produces a BPN with directed links. We ignored
these directions to facilitate comparison to MCMC-BPN.
We considered a link significant in the CBPLN results
if the corrected p-value was at most 0.01, per the origi-
nal CBPLN study [15]. The resulting undirected BPN for
CBPLN contained all 18 processes with 58 links (38.7%
of all possible links). The links explained 2,103 interac-
tions, including 1,125 perturbed interactions (93.4% of all
perturbed interactions).

Compared to the BPN produced by CBPLN, the BPNs
produced by MCMC-BPN explained approximately two-
thirds (63.9%) as many perturbed interactions in the
underlying response network, however, they incorporated
only approximately one-quarter (27.6%) as many links as
the BPN produced by CBPLN. As shown in Figure 7. The
links in BPNs from MCMC-BPN had much less overlap
(81.3% of links with a maximum JI at most 0.2 for all inter-
actions, and 87.5% for perturbed interactions) when com-
pared to the links in the BPN produced by CBPLN (39.7%
for all interactions and 37.9% for perturbed interactions).
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Thus, while MCMC-BPN produced BPNs which
explained somewhat less of the response network than
the BPN produced by CBPLN, it did so using a much
more concise, much less redundant set of links. Fur-
thermore, CBPLN required explicitly defining the set
of links for which to test for significant perturba-
tion, whereas MCMC-BPN did not require any such
specification.

Finally and most importantly, we note that MCMC-BPN
was able to compute all five BPNs in fewer than 40 hours
cumulative runtime on a standard modern desktop PC,
whereas CBPLN required several hundred hours of cumu-
lative runtime on a high-performance computing cluster
on the same dataset, primarily due to its need to build
empirical distributions to determine the statistical signif-
icance of each link. Executing CBPLN becomes nearly
intractable on the full CS vs. HM, Cirrhosis, and Very
Advanced HCC datasets. As stated in the “ Motivation”
section, the computational expense of running CBPLN to
compute links between more than a few dozen processes
served as one of our primary motivations for developing
MCMC-BPN.

Comparison with BPLNs

We also compared MCMC-BPN to the BPLN method
presented by Dotan-Cohen et al. [13]. We computed
BPLN s for the three contrasts using the method of Dotan-
Cohen et al. [13] (see the section titled “Computation
of BPLNs”). We used the same input annotations as for
MCMC-BPN runs, i.e., those processes found significantly
perturbed for the CS vs. HM contrast by GSEA. Since
BPLN does not consider the state of perturbation of genes
in the interaction network, we restricted the interaction
network to all the perturbed interactions. Like CBPLN,
BPLN also produced directed links between processes,
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Figure 5 A BPN computed for the Cirrhosis contrast. Representations by nodes, edges, and colors are as described in Figure 3.
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Figure 6 A BPN computed for the Very Advanced HCC contrast. Representations by nodes, edges, and colors are the same as described in
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_CH_CH_GROUP_OF DONORS

so we considered a significant link in either direction
sufficient to indicate a significant undirected link.

For each contrast and for each of two stringent signif-
icance thresholds, Table 3 lists the number of significant
(undirected) links in the BPLN, the number of processes
connected by these links, and the number of interactions
that these links explain. The first significance threshold
of 0.0001 is an arbitrary albeit reasonable threshold that
an investigator might select when exploring results from
BPLN. The second threshold produces a BPLN with a
number of links as close to, but no fewer than, the num-
ber of average links reported for MCMC-BPN (shown in

the final row for the contrast). We discuss these results
below but only for the second threshold for each contrast,
in order to avoid repetitiousness.

CSvs. HM

The BPLN produced at the cutoff of 1.51 x10~2° gave
the same number of significant links as the MCMC-BPN
runs (20), but the BPLN links explained only 41% of
the perturbed interactions explained by MCMC-BPN (see
Table 3). Further, 45% of the links in the BPLN at this
cutoff had a maximum JI between 0.8 and 1 (see Figure 8
(left)).
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Cirrhosis

A threshold of 9.04 x10~!* gave a number of significant
links for BPLN that matched the reported average for
MCMC-BPN. At this threshold, the links in the BPLN
results explained fewer than half the number of perturbed
gene-gene interactions. Over 65% of links had a maximum
JI of 0.8 or greater (see Figure 8 (center)).

Very Advanced HCC

At the threshold of 2.26 x10731, the BPLN contained 38
significant links, matching as closely as possible to the
reported average of 36.7 for MCMC-BPN. These links
explained less than half the number of perturbed interac-
tions as those explained by the links from MCMC-BPN.
The links from BPLN involved fewer processes overall
compared to MCMC-BPN. The links from the BPLN
at this threshold, however, displayed a large amount of
redundancy, with 88% having a maximum JI of 0.8 or
greater; see Figure 8 (right).

Thus, for all contrasts, the links reported by BPLN
proved less informative and more redundant than those
reported by MCMC-BPN. We concluded that BPLN com-
puted a much poorer summary of the perturbed gene
interaction network in comparison to MCMC-BPN.

Behavior of the MCMC

Since our Markov Chain has the property of irreducibility
(the MCMC can reach all states from any given state
with positive probability) and aperiodicity (the MCMC
will not remain trapped in cycles), we expect that, given
sufficient number of steps, MCMC will visit each state in
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the solution space with a frequency proportional to the
likelihood of the state [27]. To demonstrate that MCMC-
BPN follows this behavior, we performed five additional
runs of MCMC-BPN for the CS vs. HM contrast wherein
we recorded the frequency with which the MCMC vis-
ited each state. In these runs, we fixed the parameters to
the most probable values as determined by the first five
runs (A = 0.01, @ = 0.2, B = 0.35), and permitted only
links-based transitions.

The plot in Figure 9 (left) shows the distribution of the
number of distinct states visited with a given likelihood,
for different values of the likelihood. The plot in Figure 9
(center) shows the distribution of the likelihoods in terms
of the total number of times a state with a given likeli-
hood was visited. Together, these plots indicate that the
MCMC visited the most abundant states the most fre-
quently. When we normalized the total number of visits by
the number of distinct states, however, we observed that
the MCMC visited the most likely states more frequently
than those with lower likelihoods, as shown in Figure 9
(right). We observed very similar behavior in all five runs
for recording the state frequencies. These results suggest
that the stationary distribution of our Markov Chain is
indeed one where the probability of visiting a state is
proportional to its likelihood.

Conclusions

We have presented a method for computing connec-
tions between biological processes specific to a biologi-
cal context corresponding to comparing gene expression
measurements from two conditions (e.g., case-control

Comparison of links overlap
between CBPLN and MCMC-BPN
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Figure 7 Comparison of overlap of links between BPNs produced by CBPLN and MCMC-BPN. Representation by axes and bar heights are as
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Table 3 Statistics on BPLNs computed for the CS vs. HM
contrast

Link Explained Unexplained

significance perturbed perturbed

threshold Processes  Links interactions interactions
CSvs. HM

0.0001 191 1049 3186 675

151 x107% 23 20 698 3163

MCMC-BPN 27.6 20.0 1686.0 2175.0
Cirrhosis

0.0001 99 199 994 960

9.04 x 107" 15 14 176 1778

MCMC-BPN 18.0 14.0 380.0 1574.0

Very Advanced HCC

0.0001 307 7249 13213 2187

226 1078 27 38 2776 12624

MCMC-BPN 440 36.7 5670.7 97293

“Link significance threshold” indicates the threshold value for which a link’s
Benjamini-Hochberg-corrected p-value must be less than or equal to in order to
declare the link significant. “Processes” indicates the number of processes
involved in the BPLN and “links” the number of significant links between those
processes. “Explained perturbed interactions” indicates the number of
perturbed interactions explained by the links in the BPLN. “Unexplained
perturbed interactions” indicates the number of perturbed interactions that are
not explained by any link in the BPLN.

gene expression studies). Our method, which we call
MCMC-BPN, uses MCMC to search a solution space
of possible inter-process links that can explain the per-
turbed interactions between genes of the processes. We
computed BPNs for three liver-related contrasts: (i) rat
hepatocytes in CS compared to those in HM (CS vs. HM),
and samples from livers of human patients with (ii) HCV-
induced cirrhosis (Cirrhosis) or (iii) HCC (Very Advanced
HCC) compared to samples from patients with healthy
livers.

The BPNs varied in size, roughly in proportion to
the number of perturbed interactions for the contrast.
The BPNs explained around 20-40% of the perturbed
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interactions per contrast, using only 0.1% of the possi-
ble links, and exhibited very little redundancy. In con-
trast, BPNs computed by CBPLN and BPLN contained
several more links than MCMC-BPNs. Moreover, these
methods produced BPNs with considerable redundancy.
We demonstrated that the BPNs reported contextually
relevant connections between processes, such as cell-
growth processes related to late-stage cancer in the Very
Advanced HCC contrast, or metabolic pathway processes
related to better retention of physiological function in
CS vs. HM.

In the Cirrhosis and Very Advanced HCC contrasts, we
observed a bifurcation in the BPNs reported by MCMC-
BPN, where one set contained BPNs that explained many
more perturbed interactions than the other. We noticed
that during these runs, the poorer quality BPNs tended
to assume high values for the false-negative rates, sug-
gesting that the MCMC entered a solution space of poor
likelihood that nevertheless was large and distant from
more optimal solution spaces. One possible solution to
alleviating this problem is to monitor the MCMCs as
they progress, terminating or restarting those that diverge
greatly from solutions of high likelihood. A more sim-
ple solution would be to restrict the values which the
parameters can take even further (e.g., allow a maxi-
mum value of 0.7 rather than 0.95 for the false-negative
parameter).

It may be possible to increase both the number of prob-
able links (and thus the connectivity within a BPN), as
well as the probabilities for each link that contributes
strongly to the overall likelihood by calculating the link
probability as the fraction of most likely BPNs (e.g., the
top 100,000) in which the link appears. Strategies to
reduce the required number of MCMC steps, and thus the
running time, include pre-computing the possible contri-
bution of each link to the likelihood before starting the
MCMC, and pruning out the links with low contribution,
thus significantly reducing the search space. We hope to
include these and other improvements in future versions
of MCMC-BPN. Alternatively, state-space-searching algo-
rithms other than MCMC could be applied, such as
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Figure 8 Redundancy of links in BPLNs of similar sizes to BPNs of corresponding contrasts. Representation by axes and bar heights are as
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simulated annealing (SA). We believe that MCMC-BPN
and future extensions will prove useful in revealing the
larger stories hidden within the ever-increasing amounts
of high-throughput life science data.

Methods

Computing gene expression perturbation

For each contrast, we applied Linear Models for
Microarray Data (LIMMA) [6] to the microarray data
to compute p-values indicating the significance of
differential expression of each gene. We declared all genes
with a LIMMA p-value < 0.05 as perturbed.

Selection of processes for computation of BPNs

The number of candidate BPNs is O 2(;)), where 7 is
the number of processes. Thus, the space of candidate
BPNs grows extremely rapidly in comparison to the
number of processes considered. For this reason, prior
to running MCMC-BPN, we screened the processes to
include only those that showed significant perturbation as
determined by GSEA [7]. For each contrast, we retained
any processes with a false discovery rate (q-value) at
or below the threshold value of 0.1. We also excluded
those processes with fewer than 10 genes or more than
300 genes, to remove overly-specific and overly-general
processes, respectively.

The MCMC-BPN algorithm

Identifying perturbed cross-annotated interactions

Let G(V,E) be an undirected graph where V is the set
of genes and E = {(u,v), u,v € V,u # v,} the set of
interactions. Let P be the set of all processes annotating
one or more genes in V. We denote the set of processes
annotating a specific gene v as P, C P. For a pair of
processes p;,pj € P, p; # pj, we define Cy, the set
of interactions cross-annotated by p; and pj, to be those
interactions where one incident gene is annotated by term

pi> the other gene is annotated by term pj, but both genes
are not annotated by both p; and p;. In other words,

Cj= {(u, v) € E | pi € Py, pj € Py, {pispj} & pumpv}.

For example, in Figure 10, C1 3 = {(v2,v3), (v3,v5)}. Note
that it does not include (v3, v4) because both genes belong
to processes p; and p3. We use C to denote the set of all
cross-annotated interactions, i.e.,

c= U ¢

Pi-DjEP, pi#pj

We then define the perturbed cross-annotated interac-
tions D C C as the subset of cross-annotated interac-
tions for which both incident genes are perturbed. Lastly,
we denote the subset of perturbed interactions cross-
annotated by specific terms (p;, pj), where p; # pj, as
D;; = C;j N D. For example, in Figure 10, D13 = {(v2, v3)}.

Calculation of BPN likelihood

Let L be the set of all possible links, comprised of all
unordered pairs of processes (p;, p;)) € P. We say a link
(pi»pj) explains the interactions which its terms cross-
annotate, i.e., Cj;. Our method aims to find the smallest set
X of links that explains as many perturbed interactions in
D as possible, while explaining as few unperturbed inter-
actions in C \ D as possible. To gauge how well X explains
D, we formulate a likelihood function

Pr(X, D) = Pr(X) Pr(D|X)
composed of the following terms:

e Pr(X): the probability of selecting this subset of links
X from among all possible pairs of terms in P

e Pr(D|X): the probability that the links in X explain
the observed perturbed interactions D
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Figure 10 An example interaction network and Bayesian network model. A possible BPN (A) to explain the perturbation in the underlying
gene-gene interaction network (B). In the BPN (A), nodes represent processes, while edges between nodes represent hypothesized perturbed links
between the incident processes. In the interaction network (B), nodes represent genes, where red coloration indicates perturbation, and sub-labels
enclosed in parentheses represent processes to which each gene belongs. Edges represent interactions between those genes, and bold edges
indicate a perturbed interaction. Abbreviations: TP: true positive; FP: false positive; FN: false negative; TN: true negative.
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We explicitly define each of these individual probabili-
ties below.

We calculate the probability Pr(X) as a Bernoulli
distribution:

Pr(X) = A (1 =yt

where 0 < A < 1 represents the prior probability of
selecting a given link from the set of all links.

We introduce additional terminology to define Pr(D|X),
the second probability in the likelihood function. We can
categorize each interaction within C among four classes,
depending on whether or not the interaction is in D (the
set of perturbed interactions), and whether or not the
interaction is explained by a link in X. We define four sets
of edges I,;, € C, where o, € {0, 1}. Here, let 0 = 1 if and
only if the interaction is perturbed (i.e., in D), and & = 1 if
and only if one or more links in X explains the interaction.
We list the four subsets below and list members of each
set in the example given in Figure 10:

(i) I11: perturbed interactions explained by at least one
link in X, i.e., the “true positives”

(I1 = {(v1,v3), (v2,v3)} in the example);

(i) Io: perturbed interactions not explained by any links
in X, i.e, the “false positives” (I19 = {(v1,v2)} in the
example);

(iil) Io;: interactions that are not perturbed, but which
are explained by one or more links in X i.e., the
“false negatives” (Ip; = {(vs3, v5)} in the example);

(iv) Ioo: interactions that are not perturbed and are not
explained by any links in X, i.e., the “true negatives”
(Zoo = {(v5,v6)} in the example).

We briefly note here that the example in Figure 10 con-
tains one additional interaction, (v3,v4), excluded from
consideration in these categories as it does not meet the
definition of a cross-annotated interaction, since both v3
and v4 have identical annotations.

With this notation, we define the probability Pr(D|X) as
the following combination of Bernoulli distributions:

PI'(DlX) = O[|110|(1 — a)|100|ﬂ‘101|(1 _ ﬁ)‘hll

where « represents the false-positive rate (i.e., the prior
probability that a perturbed interaction is not explained
by any link in X), and B represents the false-negative rate
(i.e., the prior probability an unperturbed interaction is
explained by one or more links in X).

Since we do not know a priori which values for the
parameters A, «, and 8 will lead to the greatest likelihood,
we attempt to learn estimates for these parameters as well.
We denote a particular configuration of parameters as
D (A, a, B). We define the likelihood for a configuration of
parameters ® and links X as

Pr(®, X, D) = Pr(®) Pr(X|®) Pr(D|®P, X)
o A a- )L)IL*X\ a\hol(l_ a)\loolﬁ\lml(l_ ﬂ)\lll\,

since we assume that all configurations of parameter val-
ues are equally likely.
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Distributions of the parameters

We restrict the values of the parameters to discrete,
rather than continuous, distributions. We allow A, the
prior probability of selecting a link, to take values
in the set {0.05k | 1 < k < 10,k € N} U
{0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005,0.01}. This
set spans a wide enough range to cover computing BPNs
from many possible links, where only a small fraction may
be included, to few links, where a large fraction of the links
may be included. We restrict the set of values for both
a, the false-positive rate, and S, the false-negative rate, to
{0.05k | 1 < k <20, k e N}.

Design of the Markov chain

We define the set of all possible states in the Markov chain
as M. Each state m(®,X) € M consists of two con-
figurations: a configuration of parameters ® and a set of
explanatory links X. We restrict each state m(®, X) to hav-
ing two types of neighboring states n/(®’, X’): neighbors
with different parameter configurations, i.e., ® # @ but
X' = X, and neighbors with different links configurations,
i.e.,, ® = ® but X’ # X. We restrict the parameters-based
neighbors of m(®, X) to be those with a different value for
only one parameter. We restrict the links-based neighbors
of m(®, X) to be those with a set of links containing one
additional or one fewer link than X’.

Design of the Markov chain Monte Carlo

In order to transition from the current state m(®,X)
to a neighboring state m/(®’,X’), we propose a links-
based neighbor with probability p and a parameters-based
neighbor with probability 1 — p, where p, 0 < p < 1. If
we propose a links-based neighbor, then we draw neigh-
bor m'(®' = &, X’ # X) uniformly at random from the
set of all links-based neighbors of m(®, X). Otherwise,
we draw a neighbor m/(®’ # @, X’ = X) uniformly at ran-
dom from the set of all parameters-based neighbors. In
this study, we set p = 0.9, so that approximately 90% of
proposed transitions were links-based.

Once we select a neighbor for a proposed transition, we
follow the Metropolis-Hastings algorithm for MCMC, i.e.,
we accept the transition from m(®, X) to m'(®’, X’) with
probability

. Pr(®’, X', D)N (m(®, X))
Pyccept = min | 1 ,

" Pr(®, X, D)N (' (', X))

where N(m(®, X)) is the number of neighbors of state
m(®,X) and N(m'(®’,X")) is the number of neighbor-
ing states of state m/'(®’,X’). We note that because
of the design of the Markov chain, N(m(®,X)) and
N(m'(®’,X")) are equal and thus cancel each other out. If
we accept the transition, then m’'(®’, X’) becomes the cur-
rent state; otherwise, m(®, X) remains the current state.
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Note that any time the proposed state has a greater likeli-
hood than the current state, we will accept the transition.
On the other hand, we still accept transitions to proposed
states with poorer likelihoods with probability propor-
tional to the ratio of likelihood of the proposed state to
the likelihood of the current state. By allowing unfavorable
transitions, the MCMC may escape local minima.

At the start of each MCMC run, we begin at a state
which includes no links (i.e.,, X = @) and where each
parameter is set to a value drawn uniformly at random
from its respective set of possible values. We then allow
the MCMC to progress for a designated number of steps,
as described below.

Reporting the BPN

We run the MCMC for a burn-in period of 107 steps. Fol-
lowing the burn-in period, we run the MCMC for 108
steps, recording at each step the value of each parameter
A, a, and B, as well as the links in X. Finally, the proba-
bility of a parameter (X, o, or B) being a particular value
is the fraction of recorded steps in which the parameter
was observed at this value. The probability of a link Pr(/)
is the fraction of recorded steps in which a given link / € L
was observed in X. We reported links with probabilities
meeting or exceeding a user-defined threshold 6 (we used
0 = 0.7) as those comprising the BPN, i.e., the reported
BPN is the set of links {{ € L | Pr(l) > 6}.

Computation of BPLNs

For each experiment, using significantly perturbed pro-
cesses as determined by GSEA and the subnetwork
induced by the set of perturbed interactions D as the
inputs, we computed BPLNs as described by Dotan-
Cohen et al. [13]. Briefly, to test whether a link exists
from one process to another, BPLN counts the number of
genes belonging to the second process that also neighbor
genes in the first process. Using a one-sided Fisher’s Exact
Test, it then determines whether this count is greater
than expected by chance. After applying Benjamini-
Hochberg correction for multiple hypothesis testing [28],
we declared significant and included all links which had a
g-value < 0.05. Since links in BLPN are directed, and links
in BPNs returned by the MCMC method are undirected,
we considered two processes p;,p; € P to be linked in
the BPLN if the g-value for either (p;, pj) or (pj, p;) was
significant.

Measuring redundancy within a BPN

Redundancy of links

To assess the redundancy of links in a BPN, we calculated
the JI of the sets of interactions cross-annotated by every
pair of links in the BPN. We calculated the JI on the
basis of only perturbed interactions and only unperturbed
interactions. For each link, we recorded the maximum
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JI between that link and all other links. We computed
the mean of each of the JIs for each link over the BPNs
computed for a contrast by independent executions of
MCMC.

Explaining links per interaction

For each interaction explained by one or more links in
a BPN, we counted the number of links that explain it.
For every positive integer, k, we recorded the fraction of
interactions which that were explained by k links. We
reported the average fraction over the BPNs computed for
a contrast.

Software availability

Our Python implementations of MCMC-BPN, CBPLN,
and BPLN are available under the Open Source Initiative-
approved MIT License from the Python Package Index at
http://pypi.python.org/pypi/BiologicalProcessNetworks.
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Additional file 1: Supplementary information. A PDF file containing (a)
details on how we executed the MCMC-BPN software to obtain and
visualize our results and (b) a description of the files in the supplementary
results.

Additional file 2: Supplementary results. A zipped file containing all
the five BPNs for each of the contrasts studied and the parameters
estimated by each run of the software.
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