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Abstract

Background: Model selection and parameter inference are complex problems that have yet to be fully addressed in
systems biology. In contrast with parameter optimisation, parameter inference computes both the parameter means
and their standard deviations (or full posterior distributions), thus yielding important information on the extent to
which the data and the model topology constrain the inferred parameter values.

Results: We report on the application of nested sampling, a statistical approach to computing the Bayesian evidence
Z, to the inference of parameters, and the estimation of log Z in an established model of circadian rhythms. A ten-fold
difference in the coefficient of variation between degradation and transcription parameters is demonstrated. We
further show that the uncertainty remaining in the parameter values is reduced by the analysis of increasing numbers
of circadian cycles of data, up to 4 cycles, but is unaffected by sampling the data more frequently. Novel algorithms for
calculating the likelihood of a model, and a characterisation of the performance of the nested sampling algorithm are
also reported. The methods we develop considerably improve the computational efficiency of the likelihood
calculation, and of the exploratory step within nested sampling.

Conclusions: We have demonstrated in an exemplar circadian model that the estimates of posterior parameter
densities (as summarised by parameter means and standard deviations) are influenced predominately by the length
of the time series, becoming more narrowly constrained as the number of circadian cycles considered increases. We
have also shown the utility of the coefficient of variation for discriminating between highly-constrained and less-well
constrained parameters.
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Background
Choosing rationally between alternative models is one of
themost complex and critical problems in systems biology
[1]. Given two or more models, and one or more data
sets, model selection should identify the model topology
and set of kinetic parameters that explains the data
best - while simultaneously penalising overly-complex
models. A combination of experimental and theoretical
arguments can be developed to inform the choice [1].
Calculating the Bayesian evidence (Z) is a quantitative
approach to answering this question [2,3].

*Correspondence: S.Aitken@ed.ac.uk
1MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4
2XU, UK
Full list of author information is available at the end of the article

Here, we report on the application of nested sampling -
a statistical approach to computing the Bayesian evidence-
to the inference of model parameters, and the estimation
of log Z, in a model of circadian rhythms [4]. An extensive
analysis of nested sampling for integration and inference
for multivariate Gaussian distributions identifies suitable
configurations of nested sampling and associated algo-
rithms in an analytically tractable case. The algorithms
employed are generic, simple to configure, or are self-
tuning; hence the computational methods can be easily
applied in other contexts.
Systems biology models are primarily of interest

because they explain data and are capable of making
testable predictions [5]. Parameter estimation is a nec-
essary task when a model has been proposed and the
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parameters that provide the best fit to experimental data
must be identified. Modelling and parameter estimation
are often interleaved: it may emerge that a model does
not have the capability to explain certain features of the
data, and the model may be refined as a result. New data
may be generated in the lab, and the process of modelling
and parameterisation iterates once more. Pokhilko et al.
describe their revision of the circadian clock in exactly this
way [6]. Parameter estimation is central to this process.
Ideally, the representation of the individual reactions

that make up a systems model would be based on the
known chemistry of the enzymes and substrates involved.
However, in practice, there may be uncertainty about the
chemical process and its participants. Some species may
be assumed to be essentially invariant and excluded from
the model, or quantitative values for binding constants
may not be known. Often the system is modelled at a
level of granularity where multiple chemical steps are rep-
resented as a single reaction in order to deal with the
complexity of the cell. For example, transcription and
degradation are complex processes but are typically each
modelled as a single step. As a result, the reactions in a
systems model are open to scrutiny, and a justification for
modelling decisions is necessary [7].
While justifications in terms of the literature are per-

fectly valid, and point estimates of the goodness-of-fit
to experimental data for some specific combination of
parameter values can provide insights and permit model
comparison [8], we propose a quantitative measure of evi-
dence derived from the fit of the model to the data. This
measure, log Z, is the result of an integration (computed as
a summation), over the potential parameter values rather
than the fit of some exemplar combination of parameters.
Evidence calculations can be expected to throw new light
on the structure of models.
Nested sampling has been successfully applied in

astronomy for model selection and parameter infer-
ence [9-11], where cosmological models of up to 42
parameters have been analysed, and techniques for parti-
tioningmulti-modal likelihood functions have been devel-
oped [12,13]. The properties of nested sampling have been
determined for simple models (multivariate Gaussians
and mixtures of Gaussians), and the algorithm has been
compared to alternative techniques including (annealed)
importance sampling [14-16]. Recently, the convergence
of nested sampling, its statistical uncertainty and the
impact of dimensionality have been addressed theoret-
ically [16-18]. Nested sampling is a valid Monte Carlo
technique with convergence rate O(n−1/2) and computa-
tional cost O(d3) (where n is the size of the population of
active points maintained in nested sampling, see below,
and d is the number of dimensions) [16].
Biological systems models are often simulated or

analysed by complex computational procedures. Conse-

quently, the cost of evaluating the likelihood function is
often high, and nested sampling must be configured to
progress through the prior volume as rapidly as possible
without introducing unacceptable errors. We specifically
address the problems of sampling the prior (which arises
in a complex form in nested sampling [16,19]), defin-
ing and exploring the prior volume, and experimentally
quantify the uncertainty in the inferred parameter means
and standard deviations for a circadian model that is
representative of the single feedback loop topology.
In systems biology, an approximate Bayesian comput-

ing approach to selecting between alternative models of
the JAK-STAT pathway demonstrated strong evidence
in favour of one model [1]. Model selection using the
Bayes factor (the ratio of the marginal likelihoods of com-
peting models, P(D|H1)/P(D|H2)) has been shown to
be capable of placing an ordering on alternative signal
transduction models that is decisive [20]. Bayes factors
have been computed for systems models by annealing-
melting integration [20] and by population MCMCmeth-
ods [21,22], techniques which have been made available
in the BioBayes package [23]. Nested sampling has been
used for DNA motif selection [24], and an application
to model selection in systems biology has recently been
reported [25] where the MultiNest package developed for
cosmology [10] was used to compare signal transduction
models of 4, 5 and 6 parameters. We are able to configure
nested sampling to run with 25 active points (compared
with 1000-10,000 in [25]) thus considerably reducing the
number of posterior samples required: For example, on
the circadian models we consider here, log Z can be esti-
mated to an accuracy of ±0.787 with 25 active points
(generating 1200 posterior points and calling the like-
lihood function 65,500 times), while 1000 active points
reduce the variability in log Z to ±0.118 but require 35
times the computational effort (generating 42,477 poste-
rior points and calling the likelihood function 2,286,234
times). We also present novel algorithms for the cru-
cial exploratory sub-step of nested sampling, and for the
calculation of the transitional likelihood of the systems
model.

Approach
The evidence Z (also known as the marginal likelihood)
P(D|Hi) is a quantitative measure based on the over-
all correspondence between the data (D) and the model
(Hi), obtained by integrating the product of the likeli-
hood function and the prior over the space of parame-
ter values [2]. (Recall that the likelihood function L(θ ; y)
specifies the probability model of the data given the
parameters, P( y|θ).) In the inference of the posterior dis-
tributions of parameters (1, 2), the evidence plays the
role of a normalising constant and need not be evalu-
ated [25]. However, the evidence plays a central role in
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model comparison and must be computed. The prior
assigned to parameters enters into the evidence calcula-
tion and can influence the outcome of model comparison
through the evidence (or Bayes factor) [26]. Where pos-
sible, priors should be selected on the basis of physical
considerations [13]: uniform and Jeffreys’ priors have been
adopted in cosmology [10,13]; uniform and gamma pri-
ors have been employed in biological systems modelling
[20-22,25].

posterior = prior ∗ likelihood
evidence

(1)

P(θ |D,Hi) = P(θ |Hi)P(D|θ ,Hi)

P(D|Hi)
(2)

In high dimensions, log Z can be computed effectively by
a nested sampling strategy that exploits statistical proper-
ties of the shrinkage of the prior volume. A set of posterior
samples is produced as a by-product of nested sampling,
and the first and second moments of parameters can be
calculated from these samples. Such an analysis may tell
us that certain parameters are very narrowly constrained,
while others have a broader distribution, thereby identify-
ing the kinetic parameters for which accurate experimen-
tal measurements can validate (or falsify) the model. This
computation can also further inform experimental design
by quantifying how the parameter estimates depend on
the data and experimental protocols used, as well as the
extent to which parameters can be constrained by observ-
ing particular sets of species. Parameter inference is a
challenging problem, and the subject of much on-going
research [27].
After determining the number of samples to use in

nested sampling, and defining the priors for parame-
ters, we use nested sampling to investigate the poste-
rior distributions of a nine parameter model of circadian
rhythms [4]. This analysis is repeated for 1 to 5 cycles of
simulated experimental data to explore the impact of time
series length on these parameter statistics.
We then explore the problem of model selection for

variations of the circadian model with alternative Hill
coefficients (N = 2 − 5), and once more explore the
impact of additional data on model selection.

Nested sampling - an overview
The posterior distribution P(θ |D,Hi) of the parameters
θ , and the evidence P(D|Hi), that is, the support for the
data D under hypothesis Hi, are the two central results
of Bayesian inference [3]. Two models H0 and H1 can
be compared through the ratio of their posterior prob-
abilities (3), a calculation that can be decomposed into
the Bayesian evidence (Z) and the prior probability of
the respective hypotheses which may favour one model
over another.

Occam’s razor is implemented as the evidence is pro-
portional to the volume occupied by the posterior relative
to the volume occupied by the prior, and hence additional
parameters expand the number of dimensions that the
evidence must be computed over [11]. The evidence (4) is
a scalar quantity that can be viewed as an integral over the
elements of mass (dX) associated with the prior density
π(θ).

P(H1|D)

P(H0|D)
= P(D|H1)P(H1)

P(D|H0)P(H0)
= Z1P(H1)

Z0P(H0)
(3)

Z =
∫
L(θ)π(θ) dθ =

∫
L(X) dX (4)

dX = π(θ)dθ

The prior mass can be accumulated from its elements
(dX) in any order. Following [3], the cumulantmass of like-
lihood> λ can be defined (5), and this allows the evidence
to be written as a one-dimensional integral of the (inverse)
likelihood L(X) over the unit range (taking the enclosed
prior mass X to be the primary variable) (6).

X(λ) =
∫
L(θ)>λ

π(θ) dθ (5)

Z =
∫ 1

0
L(X) dX (6)

L(X(λ)) ≡ λ

Given a sequence of decreasing values 0 < Xm <

. . .X2 < X1 < 1 where the likelihood Li = L(Xi) can be
evaluated, the evidence can be approximated numerically
as a weighted sum (7).

Z =
m∑
i=1

Liwi (7)

wi = �Xi

To obtain the sequence X1 . . .Xm, the nested sampling
algorithm maintains a set S of n active points, each con-
taining a vector of parameter values. On each iteration,
the worst point, x, is identified (x = argminiL(θi) : i ∈
S; L* = L(θx)) and replaced by a new point, z, drawn
uniformly from the prior and subject to the constraint
L(θz) > L*. (The worst point contributes a new value Xi
to the sequence.) The new point can be found by ran-
domly selecting one of the existing active points ( y) as a
starting point. This procedure shrinks the prior mass geo-
metrically (by the ratio ti = Xi/Xi−1) according to the
beta distribution: P(ti) = Beta(n, 1) = ntn−1

i for n active
points [12,14]. The uncertainty in the shrinkage ratio
gives rise to an error in Z which scales approximately as
n−1/2 [2] (the error estimate is refined in [18]). The shrink-
age of the prior for a sequence of points from a two-
dimensional parameter space is illustrated in Figure 1.
Inferences about the posterior can be obtained from the

sequence of m discarded points, P. Each point is assigned
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Figure 1 Nested sampling. Nested sampling: On each iteration, the worst sample (likelihood = L*) in the set of n active points is replaced by a new
sample chosen uniformly at random within the likelihood contour defined by L*. For n = 2, the enclosed prior mass X shrinks by a factor of 2 on
average as illustrated. The evidence integral is computed from the resulting estimates of�Xi and the likelihood of each eliminated sample. Note that
the likelihood contours in parameter space (left) are shown schematically and are not assumed to be uni-modal or aligned to the parameter axes.

the weight pi = L(θi)wi/Z, and the first and second
moments of the jth parameter in the vector θ can be
estimated by (8) and (9) respectively.

〈θj〉 =
m∑
i=1

piθij (8)

var θj =
( m∑

i=1
pi(θij)2

)
− 〈θj〉2 (9)

Obtaining new samples θz from the truncated prior
(that is, uniformly within the specified lower and upper
parameter bounds and subject to L(θz) > L*) is a major
challenge [19]. Random walk MCMC [2] and rejection
sampling within an n-dimensional ellipsoid [11,12] can
be used, and these techniques can be coupled to sam-
ple multi-modal likelihoods [19]. We explore the use
of the stepping out procedure of slice sampling [28] as
a simple method of obtaining new points [14]. In the
Methods section, we evaluate its use as an exploration
method within nested sampling, showing that a single
slice sampling step applied in each dimension is sufficient
to obtain correct results in up to 30 dimensions using
n = 25 active points. As the prior volume shrinks more
rapidly for lower values of n, and the number of likeli-
hood evaluations reduces accordingly, it is important to
establish this feature of nested sampling’s configuration
for practical applications. Adaptively tuning the step size
used in stepping out increases computational efficiency
significantly and can be done automatically.

A transitional likelihood function for sparse data
In order for the evidence integral to be computed, a likeli-
hood function L(θ ; y)must be defined. For simple stochas-
tic models, such functions may be available in analytic
form through solution of the chemical master equation.

More generally, systems models will require simulation to
obtain a trace of behaviour which can then be compared
with the data, or we can approximate the likelihood of the
model connecting one observed data point with the next,
as we now discuss.
It is shown by [29] that the change �Y (t) in a birth-

death process Y (t) is normally-distributed for short time
periods �T over which the rates do not change (and dur-
ing whichmany birth and death events take place). Denot-
ing the birth and death rates by β(t) and δ(t), respectively,
�Y (t) is given by (10).

�Y (t) = Y (t + �T) − Y (t) ∼ N (μ, σ) (10)
μ = (β(t) − δ(t))�T
σ = √

(β(t) + δ(t))�T

This result motivates the use of stochastic differential
equations to model the system dynamics: β(t) and δ(t) are
derived from the propensities of Y in a straightforward
manner.
Turning to parameter inference, given a discretely-

sampled time series, the likelihood of observing Y1, . . . ,Yn
is the product N (Yi+1 − Yi;μ, σ) for i = 1, . . . , n − 1
where μ and σ are derived from the birth and death rates
as in (10). The likelihood of the model is the product
of the likelihood of observing each species. This transi-
tional likelihood function requires the data to be sampled
at short time intervals. When the data is sparsely sam-
pled, as is often the case, additional data points can be
imputed to bridge the gap between observations. Adopt-
ing a Markov Chain Monte Carlo approach, Heron et al.
alternate between sampling from the parameter space and
sampling from the imputed data space [29]. This strategy
is not readily applicable here as the bridge points would
need to be included alongside the parameters, thus con-
siderably increasing the dimensionality of the problem,
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with no obvious way to specialise the treatment of the
imputed data.
Noting that the expected change �Y (t) is (β(t) − δ(t))

�T and that repeated applications of this estimate yield a
good predictor of Y over time spans many times greater
than�T , we generate the most likely time evolution of the
model from the known data vector at ti, impose the con-
dition that the bridge must end at the known data vector
at ti+1, and approximate the likelihood of Y (ti+1) − Y (ti)
as the product of the probabilities of the �Y s between
the bridge points. This procedure is presented in detail in
Methods. The likelihood of each�Y is computed from the
cumulative density of the Normal distribution 	 (11).

L(�Y ) = 	(�Y + ε;μ, σ) − 	(�Y − ε;μ, σ) (11)

Results and discussion
After a brief introduction to circadian models, we present
the results of parameter inference and model selection
obtained using the transitional likelihood function with
nested sampling.

A simple model for circadian rhythms
Circadian clocks are gene networks found widely amongst
organisms, controlling biological processes ranging from
cyanobacterial cell division to human sleep-wake cycles
[30]. These networks function by generating endogenous
∼24 hour oscillations in gene expression that can syn-
chronise to the external light-dark cycle. This process,
known as entrainment, enables organisms to optimally
time biochemical processes relative to dawn and dusk,
providing an adaptive advantage [31,32]. The clocks of
different organisms appear to have a similar structure
based on interlocked sets of negative gene-protein feed-
back loops augmented by additional positive loops [33].
Computational models of these feedback structures based
on ordinary differential equations (ODEs) have become
useful tools for quantifying the biochemical mechanisms
underlying circadian dynamics [33,34]. Figure 2 shows a
minimal ODE model of the clock in the fungus N. crassa.
This is based on a single negative feedback loop in which
the gene FREQUENCY (FRQ) is repressed by its protein
product. FRQ transcription is upregulated by light, pro-
viding a mechanism for light entrainment [4]. The model
comprises 3 differential equations describing the dynam-
ics of FRQmRNA and the cytoplasmic and nuclear forms
of FRQ protein:

Ṁ = (vs + θ(t))
kNI

kNI + PNn
− vm

M
km + M

(12)

Ṗc = ksM − vd
Pc

kd + Pc
− k1Pc + k2Pn (13)

Ṗn = k1Pc − k2Pn (14)

A

B

Figure 2Model for the circadian clock of N. crassa.Model for the
circadian clock of N. crassa. A. FRQmRNA (M) is translated into protein
(Pc) in the cytoplasm and then transported into the nucleus (Pn)
where it represses the transcription of FRQ. Light entrains the model
by increasing the transcription rate. B. Simulated time series showing
sparse samples as symbols: M (circles), Pc (squares), and Pn (triangles)
and the finely-sampled stochastic simulation from which they are
selected.

As is common for models of this type, Hill and
Michaelis-Menten kinetics are assumed for transcrip-
tion and degradation respectively, while translation and
nuclear transport are modelled as first order reactions.
Collectively, the reactions are parameterised by 10 kinetic
constants: vs, the maximum FRQ transcription rate; kI , the
Michaelis constant for FRQ repression; vm, the maximum
FRQ degradation rate; km, the Michaelis constant for FRQ
degradation; ks, the FRQ translation rate; vd, the maxi-
mum FRQ degradation rate; kd, the Michaelis constant
for FRQ degradation; k1, the rate at which cytoplasmic
FRQ enters the nucleus; k2, the rate at which nuclear FRQ
enters the cytoplasm; and N, the Hill coefficient. N quan-
tifies the binding cooperativity of FRQ repression; i.e. the
number of sites on the FRQ promoter that can be bound
by FRQmolecules to prevent transcription. Consequently,
it is assumed to be a positive integer [4].
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The models and parameter values used in this study
are listed in the Additional file 1 (Sections 6 and 7). In
equation (12), the forcing term θ(t) models the effect of
light. Setting θ = 0 simulates constant darkness (DD),
yielding free-running oscillations with a period of around
21.5hrs [4]. Entrainment to light-dark (LD) cycles is mod-
elled by switching θ between 0 and a maximum value θM
at lights-on (tDAWN ), and then switching θ back to 0 at
lights-off (tDUSK ):

θ (t) =
{

θM if tDAWN ≤ mod (t, 24) ≤ tDUSK ,
0 otherwise. (15)

Birth and death rates for all model species are obtained
from the reaction propensities, and are used in the likeli-
hood calculation as described above (10, 11). For example,
cytoplasmic protein Pc is produced or consumed in the
following four reactions (expressed in the reaction syntax
of [35]):

M -> M + Pc, ks;

Pc -> Pn, k1;

Pn -> Pc, k2;

Pc -> , [vd*(Pc/(kd+(Pc/omega)))];

The birth and death rates (16, 17) for Pc follow directly.

β(t) = ksM(t) + k2Pn(t) (16)
δ(t) = vd(Pc(t)/(kd + (Pc(t)/�))) + k1Pc(t) (17)

The system size coefficient (�) is introduced to account
for the averaging of stochastic fluctuations that occurs in
population-derived data. The likelihood function must be
modified as a result.

L(�Y ) = 	(�Y + ε;μ, σ) − 	(�Y − ε;μ, σ)

	(μ + ε;μ, σ) − 	(μ − ε;μ, σ)
(18)

When (β(t) − δ(t)) approximates the observed �Y , the
likelihood in (11) can bemaximised byminimising (β(t)+
δ(t)), as reducing the standard deviation increases the
density. Ordinarily this is necessary [36,37]; however, cor-
relations between samples generated from realisations of
the circadian model result in the minimisation of (β(t) +
δ(t)) dominating the fit to the observed �Y to such an
extent that the inferred parameter means do not approx-
imate the true values. The normalisation term on the
denominator of (18) alters the trade-off between fitting
(β(t) − δ(t)) to the observed �Y and minimising (β(t) +
δ(t)), reducing the effect of this bias. ε was set to 0.1, and
computational explorations showed that the precise value
used was not critical to the results obtained.

Application of nested sampling to the circadian model
Synthetic data ranging from 1 to 5 24 hr circadian cycles
was generated using the variant of Gillespie’s stochastic
simulation algorithm introduced in [38]. Five time series
were generated for each time span in both DD and LD

conditions. LD cycles with different daylengths were sim-
ulated using equation (15) by setting θM equal to 0.8 and
varying the size of (tDUSK − tDAWN ). All time series were
sparsely sampled at 2hr intervals to correspond to typical
experimental protocols. Nine of the eleven model param-
eters were integrated by nested sampling. The Hill coeffi-
cient (N) and system size (� = 500) were kept constant.
For all rate parameters and constants, a uniform proba-

bility density function between positive (non-zero) limits
was used as the prior since rates cannot take negative val-
ues (without reversing their meaning in the model), and
zero values would eliminate the reaction from the model.
The circadian model does not contain scale parameters
(where relative changes are important) for which the
Jeffreys’ prior might be appropriate [2]. The same priors
were used for the inference of parameters of the DDmodel
from all realisations of the model, and, similarly, a fixed
prior was used for the LD model and in the analysis of
alternative values for N. As each of the time series gener-
ated for each condition is an independent stochastic real-
isation of the model, the inferred parameter distributions
can be expected to include the generating parameters, but
this cannot be guaranteed.
The mean, standard deviation (sd) and coefficient of

variation (cv = sd/mean) for parameters kI and km are
shown in Figure 3 for the free-running (DD) system (see
Section 2 of the Additional file 1 for the full results).
Estimates of the mean are broad when inferred from

a single cycle of data. These estimates are more precise
for 2 or more cycles, with the inferred standard deviation
decreasing towards a constant value for 4 or more cycles
of data. For kI , the value used to generate the data (1.0)
is close to the inferred value for 2 or more cycles of data,
whereas for km the inferred values are generally higher
than the value used in the generating model (0.5). To
validate the results, parameter inference was performed
on one of the data sets using a standard implementation
of MCMC [39] and using nested sampling (see Section
3 of the Additional file 1 and Figure S8). The MCMC
simulations confirm that all parameters have a unimodal
distribution within the specified priors (see Additional
file 1: Figure S8 for parameter distributions), fromwhich it
follows that the mean and standard deviations computed
by (8) and (9) are meaningful summary statistics. (Poste-
rior samples obtained frommulti-modal posteriors can be
clustered and analysed separately using the heuristics in
MultiNest [10].)
Scaling the standard deviation by the mean shows a

10-fold difference between kI and kd, indicating that the
transcription threshold kI is significantly more tightly
constrained (by the model and the data combined) than
the protein degradation threshold kd. The cvs for the
nine parameters integrated span a wide range as shown
in Figure 4A for 1 and 3 circadian cycles, where the

http://www.biomedcentral.com/content/supplementary/1752-0509-7-72-S0.0.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-7-72-S0.0.pdf
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Figure 3 Parameter inference. Parameter inference for kI and km . Estimates of the mean, standard deviation (sd) and coefficient of variation (cv)
for model parameters are plotted for 1–5 circadian cycles (24 hrs–120 hrs). Box plots are the result of applying nested sampling to five synthetic data
sets generated in simulated DD conditions. The parameter values used to generate the synthetic data were kI = 1 and km = 0.5.

parameters are ordered from most to least constrained.
The cvs for all parameters and all cycle lengths are plotted
as a heatmap in Figure 4B. The highly-constrained param-
eters include k1 and k2 – the rates for protein transport to
and from the nucleus.
The reduction and convergence of the parameter stan-

dard deviations with increasing circadian cycles is not due
to the increase in the number of data points (recall that
the data is sampled at 2 hr intervals). The total entropy in
the data, which is defined as the sum of p log( p) for all
bridge points ( p is calculated by (18)), increases with the
increasing number of data points that result from sam-
pling at uniform intervals over a successively larger num-
ber of circadian cycles. Keeping the data set size constant
approximately equalises the entropy of the data given the
generating model as illustrated in Additional file 1: Figure
S9. It can be seen that repeating the parameter inference
using a fixed number of 49 samples over 1–3 cycles by
varying the sampling interval gives essentially the same
results as obtained with varying numbers of data points
(Sections 2 and 4 of the Additional file 1 present the
results of these two analyses in detail). We conclude that
the entropy in the data does not determine the constraints
on parameter values for this circadian model.
These results are remarkably consistent given the two

sources of variability. Firstly, each of the 25 data series
analysed is an independent realisation of the model.
Secondly, nested sampling is itself a stochastic procedure.

Despite this variation, the analysis is able to quantify the
extent to which parameters are constrained, and, further,
demonstrates that these constraints vary from parameter
to parameter.
Figure 4C (and Additional file 1: Figure S11) show how

the parameter distributions are affected by the incor-
poration of light-dark cycles. The parameter estimation
procedure was repeated for the entrained model under
the standard protocols of 6L:18D (6 hours in light fol-
lowed by 18 hours in dark), 12L:12D and 18L:6D. The
results indicate that the mRNA degradation parame-
ters km and vm are more tightly constrained under the
light-dark cycle protocols, whereas the mRNA transcrip-
tion rate vs and Pc degradation threshold kd are less
constrained under light-dark cycles, in comparison with
DD conditions (see Figure 4C and Additional file 1:
Figures S11G and S11I). The remaining parameters show
no systematic differences between protocols. All param-
eters are better constrained by additional cycles of data,
consistent with the pattern observed for the free-running
system.
Finally, the calculation of log Z is proposed as a model

selection criterion. Setting the Hill coefficient (N) to inte-
ger values from 2–5 can be considered to specify different
models. As previously, DD data was generated for 1–5
circadian cycles using N = 4, and nested sampling was
applied to these four variations of the circadian model.
Figure 4D shows that the Hill coefficient used to generate

http://www.biomedcentral.com/content/supplementary/1752-0509-7-72-S0.0.pdf
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Figure 4 Coefficients of variation. A. The cvs for nine model parameters inferred from one cycle (red) and three cycles (white) of DD data. B. A
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1–5 cycles of DD data. The maximum log Z in each series (cycle length) is set to 0 to facilitate comparison.

the data is correctly recovered for 3, 4 and 5 cycles of data.
When one or two cycles of data are analysed, the value
of log Z for the best-fitting model is within one standard
deviation of the second best model (that is, we cannot dis-
tinguish between N = 4 and N = 5 for this particular
realisation of the model). For 3 or more cycles, the best
model is at least 2.9 log units greater than the second best
(N = 5 in all cases).
Taken together, our results imply that measuring gene

expression levels over multiple circadian periods is a more
efficient strategy for facilitating robust parameter infer-
ence than recording data at high temporal resolutions. For
the model considered here, good estimates of parameter

means require 2 or more cycles of data, whereas accurate
estimates of standard deviations require four or five cycles
of data. Reliably determining the Hill coefficient requires
at least 3 cycles of data.
The choice of which kinetic constants to measure inde-

pendently depends on our aims and the specific exper-
imental system of interest. Our results on LD cycles
show that this choice may also be partially determined
by the experimental protocols used. Here, a true in vivo
value for the highly-constrained parameter ks that was
substantially different from the inferred value would inval-
idate the model. However, should we wish to improve
the inferred parameter estimates, we should measure the
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degradation thresholds kd and km as these are more
loosely constrained.

Conclusions
Nested sampling generates a sequence of posterior sam-
ples from the parameter space as a by-product of comput-
ing the evidence integral. Weighting the parameter values
in these samples (points) by the probability of the sample
gives estimates of the mean and standard deviation for all
model parameters.
The nested sampling algorithm has only one variable,

the number of active points n. Analysis of Gaussian likeli-
hood functions indicates that 25 active points is sufficient
to compute the evidence integral in up to 30 dimensions.
The inferred means and standard deviations of parame-
ters are relatively insensitive to the width of the uniform
prior we adopt. In contrast, the value of the evidence has
some sensitivity to the prior as a narrow prior may omit
significant regions of the likelihood integral, whereas the
exploration procedure for finding new points may fail to
locate all such regions if the prior is too broad. The use
of slice sampling permits an automated self-tuning of the
exploration procedure that reduces computation signifi-
cantly. In contrast with Gibbs sampling where 3 or more
steps are required [16], we show that a single slice step is
sufficient as an exploration procedure.
We have demonstrated in an exemplar circadian model

that the estimates of posterior densities (as summarised
by parameter means and standard deviations) are influ-
enced predominately by the length of the time series,
becoming more narrowly constrained as the number of
circadian cycles considered increases.We have also shown
the utility of the coefficient of variation for discriminat-
ing between highly-constrained and less-well constrained
parameters.
In contrast with MCMC approaches, nested sampling

has no burn-in period, and does not require complex
annealing schedules or output analysis [14]. Nested sam-
pling is therefore well-suited for integration into model
analysis software as a robust technique for calculating
parameter moments.

Methods
The R code provided in Additional file 2 implements the
nested sampling algorithm and the following refinements:

Exploration of the prior by slice sampling
The stepping-out procedure of slice sampling [28] is an
effective way to explore a uniform prior for a new sam-
ple while respecting the constraint L > L*, as the step-size
can be tuned to increase computational efficiency. Slice
sampling is a general-purpose technique: letting f ( y) be
a function proportional to the density of the variable y,
an auxiliary variable z is introduced to define a joint

distribution over y and z that is uniform over 0 < z < f ( y)
and 0 elsewhere. After sampling jointly for y and z, z can
be ignored and the marginal density p( y) obtained [28].
Univariate slice sampling takes an initial point as a seed for
the generation of a new point that varies from the original
in one dimension. After sampling for z, the stepping-out
algorithm identifies the slice from which y is sampled: { y :
z < f ( y)}. This procedure leaves the uniform distribution
over the slice invariant [28].
When slice sampling is used within nested sampling, a

randomly-selected active point y (see main text) is used as
the seed. The height of the horizontal slice (the auxiliary
variable z) is defined by L*. The stepping-out procedure of
slice sampling is used to create an interval around y, and
a new point y′ is found by selecting a point uniformly at
random within the slice { y : L∗ < L( y)} (following the
univariate sampling algorithm in [28]). This procedure is
applied in each dimension (selected in a random order) to
compute a new sample. The use of slice sampling within
nested sampling is discussed further in [14].
A novel version of the univariate stepping-out proce-

dure was incorporated into nested sampling. This algo-
rithm included a heuristic to shrink or grow the initial step
size as a function of the number of expansion and shrink-
age steps made during stepping-out in each dimension in
each active point (in addition to the n parameter values,
each active point object records the slice sample step size
to be used in each dimension). The step size associated
with the selected dimension is halved when the number
of expansion steps is greater than a threshold, or doubled
when the number of shrinkage steps is greater than the
threshold. In each active point, the slice sample step sizes
persist from iteration to iteration of nested sampling, and
are copied when a new active point is created from an
existing point. The step sizes are tuned for the local region
of n-dimensional parameter space. Should the step size be
inappropriate - as may occur after the point moves in one
of the other dimensions - the efficiency of stepping out
may be reduced, but its correctness should not be com-
promised and the heuristic ensures that a more suitable
step size will be used in subsequent iterations. This proce-
dure is effective as new active points take existing samples
and their step sizes as the seed, and the step sizes of
existing samples are appropriate for the newly-generated
sample. This heuristic results in comparable estimates for
the evidence (see Figure S1 in the Additional file 1) and
reduces the number of likelihood calls to 54–82% of the
evaluations required for a fixed step size in tests on 5,
10, 20 and 30 dimensional Gaussian likelihood functions
(standard problems for which the solutions are known), as
can be seen in Additional file 1: Figure S2.
Next, we determined whether one application of uni-

variate slice sampling produces a new sample sufficiently
independent of the seed, or whether a succession of
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new samples is required. As shown in Figure S3 in the
Additional file 1, there is no systematic difference between
using one slice step and a series of ten slice steps to calcu-
late log Z provided the prior widths are sufficiently large
(greater than 6 times the known standard deviation). The
integral is underestimated when the prior width is too
small, as would be expected. As the prior widths increase,
the number of posterior points increases and additional
computations of the likelihood are necessary. Computa-
tional efficiency is also reduced when the prior widths
increase to 40 times the true standard deviation in high
dimensions due to the cost of locating the regions of the
prior where the likelihood is non-zero.
The combination of nested and slice sampling also

correctly estimates the parameter means and standard
deviations (see Figure S4 in the Additional file 1). Our
investigations into Gaussian likelihoods lead us to con-
clude that 20–30 active points are sufficient to obtain
accurate results in up to 30 dimensions, with the qualifi-
cation that the width of the uniform prior must be within
the identified bounds.

A stopping criterion for nested sampling
On each iteration of nested sampling, the fraction of
the enclosed prior mass (logWidth; (19)) and the log of
the weight (logWt) of the active point with the low-
est log likelihood (ith posterior point - denoted by the
superscript i) are calculated (20); and the current esti-
mate of logZ updated (21). Finally, the value of log L∗
is also updated (22). As the nested sampling algorithm
progresses through the prior volume, the logL of each
posterior point is guaranteed to increase on each itera-
tion, and logWidth reduces. The weight given to a pos-
terior point initially increases as logL increases, then this
weight begins to decrease as the reduction in logWidth
outweights the increase in logL [2].

logWidth = log((e−(i−1)/n − e−(i+1)/n)/2) (19)
logWti = logWidth + logLi (20)
logZ = log.plus(logZ, logWti) (21)
logL∗ = logLi (22)

The stopping criterion requires the current logWt values
to be compared with those of the posterior point identi-
fied 50 iterations earlier. At any iteration i, the difference
in log width is -50/n (23). Should the change in logWt
be primarily due to the reduction in log width, with little
or no contribution from increased logL, the informative
region of the prior must have been explored and nested
sampling can terminate. Comparing logWt values 50 iter-
ations apart is more robust than comparing values at
successive iterations as logWt is not guaranteed to change

monotonically and often exhibits a noisy characteristic
from iteration to iteration.

log((e−(i+50−1)/n − e−(i+50+1)/n)/2) =
log((e−(i−1)/n − e−(i+1)/n)/2) − 50/n (23)

Nested sampling can be terminated when the differ-
ence between log weights assigned to posterior points
obtained 50 iterations apart tends to: 50/n (logL∗ must
also be significantly greater than logWti to prevent early
termination). The maximum number of posterior points
can also be specified in order to bound the computation.
The change in the log likelihood assigned to posterior
points obtained 50 iterations apart can also be tested.
All runs of nested sampling on the DD model terminate
by the test on logWt. For example, one run terminates
with a change in logWt < 1.996 (and logL∗ − logWti =
56.5), whereas the change in logL∗ over those iterations
is 0.00396 which, by itself, does not necessarily indicate
termination.

Bridging sparsely-sampled data
The experimental data is assumed to be sampled at inter-
vals that are many times longer than that at which the
transitional likelihood can be applied directly (10). Noting
that the expected change �Y (t) is (β(t) − δ(t))�T over
short intervals, and that repeated applications of this esti-
mate yield a good predictor of the deterministic trajectory
of Y over time spans many times greater than�T , we gen-
erate the most likely time evolution of the model over a
sequence of short time intervals starting from the known
data vector at ti, then impose the condition that this bridge
must end at the known data vector at ti+1, and approxi-
mate the likelihood of Y (ti+1)−Y (ti) as the product of the
probabilities of the �Y s between the bridge points. The
likelihood of each �Y is computed from the cumulative
density of the Normal distribution 	.
To illustrate the method, two observed data points are

represented by the black crosses at 1h (B1) and 4h (B4) in
Additional file 1 : Figure S5A. The bridge points B2, B3 and
B end are generated in sequence from B1 by (10). Where
the expected value of B end does not correspond to the
known value B4, the bridge points are scaled to new values
B2′ and B3′. The likelihood of �B2′ is assessed using the
prediction made from B1 (μ = �B2 by construction). The
likelihood of �B3′ is assessed using the prediction made
from B2′, a scaled point.
A bridge of l steps requires l − 1 bridge points. Let B

be an array of l + 1 n-dimensional points such that B[1]=
D[ti] and B[l + 1]= D[ti+1]. Bridge points B[2] , . . . ,B[l]
are generated by (10) from the previous point in the
sequence, and the projected end point Bend correspond-
ing to ti+1 is generated from B[l]. In each dimension d,
the error at the bridge end rd = Bend[d] /B[l + 1] [d],
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is used to correct the trajectory by assigning the error
to B[2] [d] , . . . ,B[l] [d] proportionally as illustrated in
Additional file 1: Figure S5A. Bridge points B[i] [d] are
multiplied by (1 + (i − 1)(rd − 1)/l) for i = 2, . . . , l.
For parameter values yielding birth and death rates that
bridge the data perfectly, r = 1 and the correction has no
effect on the bridge. Otherwise, the correction constructs
a plausible path between the known end points that is
scaled from the expected, but ill-fitting, path originating at
D[ti]. Additional file 1: Figure S5B shows a typical result of
bridging data sampled at 2 hour intervals with a bridge of
length 20 computed using the heuristic described above.
The proposed bridging technique was evaluated by

comparison with simulated annealing on the task of com-
puting the log likelihood of a bridge between two data
points 〈M1, Pc1, Pn1〉, 〈M2, Pc2, Pn2〉 for a specified set
of model parameters. This is the elementary problem
that must be solved m − 1 times for m sparsely-sampled
data points. A simulated annealing algorithm was imple-
mented to find the optimal bridge points by search. A
bridge length of 10 was found to be practical (generating a
30 dimensional search problem). The end data point 〈M2,
Pc2, Pn2〉 was moved in all three dimensions to generate a
space of likelihood values. The log likelihood values cal-
culated by bridging are compared with those obtained by
simulated annealing in Additional file 1: Figure S6. The left
panel of Additional file 1: Figure S6 shows the correlation
between the likelihood values computed by the alterna-
tive methods, and the 95% confidence interval around
the mean obtained for 10 repeats of simulated annealing
(Pearson correlation 0.79). The right panel of Additonal
file 1: Figure S6 shows the relationship between the pre-
dictions for larger displacements of the end data point
(Pearson correlation 0.93). Simulated annealing took an
average of 15s to compute one series of bridge points. The
bridge heuristic took 0.0025s to compute the bridge - 6000
times faster than simulated annealing.

Additional files

Additional file 1: Supplementary Material. Contains: supplementary
figures; full parameter inference results for simulated DD and LD
conditions; comparisons of the nested sampling results with an
MCMC-based method; results demonstrating the effect of varying the
sampling interval; and details of the models and parameter values used to
generate the synthetic data sets.

Additional file 2: R Code for Nested Sampling. R code for nested
sampling, slice sampling and for the transitional likelihood computation
can be found in NestedSamplingRCode.tar.
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