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Abstract

Background: The data-driven inference of intracellular networks is one of the key challenges of computational and
systems biology. As suggested by recent works, a simple yet effective approach for reconstructing regulatory networks
comprises the following two steps. First, the observed effects induced by directed perturbations are collected in a
signed and directed perturbation graph (PG). In a second step, Transitive Reduction (TR) is used to identify and
eliminate those edges in the PG that can be explained by paths and are therefore likely to reflect indirect effects.

Results: In this work we introduce novel variants for PG generation and TR, leading to significantly improved
performances. The key modifications concern: (i) use of novel statistical criteria for deriving a high-quality PG from
experimental data; (ii) the application of local TR which allows only short paths to explain (and remove) a given edge;
and (iii) a novel strategy to rank the edges with respect to their confidence. To compare the new methods with
existing ones we not only apply them to a recent DREAM network inference challenge but also to a novel and
unprecedented synthetic compendium consisting of 30 5000-gene networks simulated with varying biological and
measurement error variances resulting in a total of 270 datasets. The benchmarks clearly demonstrate the superior
reconstruction performance of the novel PG and TR variants compared to existing approaches. Moreover, the
benchmark enabled us to draw some general conclusions. For example, it turns out that local TR restricted to paths
with a length of only two is often sufficient or even favorable. We also demonstrate that considering edge weights is
highly beneficial for TR whereas consideration of edge signs is of minor importance. We explain these observations
from a graph-theoretical perspective and discuss the consequences with respect to a greatly reduced computational
demand to conduct TR. Finally, as a realistic application scenario, we use our framework for inferring gene interactions
in yeast based on a library of gene expression data measured in mutants with single knockouts of transcription factors.
The reconstructed network shows a significant enrichment of known interactions, especially within the 100 most
confident (and for experimental validation most relevant) edges.

Conclusions: This paper presents several major achievements. The novel methods introduced herein can be seen as
state of the art for inference techniques relying on perturbation graphs and transitive reduction. Another key result of
the study is the generation of a new and unprecedented large-scale in silico benchmark dataset accounting for
different noise levels and providing a solid basis for unbiased testing of network inference methodologies. Finally,
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applying our approach to Saccharomyces cerevisiae suggested several new gene interactions with high confidence
awaiting experimental validation.
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Background
Data-driven inference of intracellular regulatory net-
works, in particular of those involved in gene regulation,
remains to be one key challenge of computational and
systems biology.
Many methods for this daunting task have been pro-

posed and newmethods are appearing at a high rate [1-6].
The different inference methodologies can be categorized
based on the model formalism and the principle used
for deriving interactions in a regulatory network: sparse
regression [7], correlation-based approaches [8], z-score
[9], mutual information [10,11], ANOVA-based analysis
[12], Bayesian networks [13], Gaussian graphical models
[14], random forest [15], differential equations [16], reac-
tion networks [17] and Boolean networks [18,19]. One
final output of all these approaches is the reconstructed
network topology, typically given as a (signed or unsigned,
directed or undirected) graph. Recent efforts have shown
that combining several of the aforementioned methods
often outperform all single approaches [6].
It is of utmost importance to rigorously evaluate and

compare the large number of methods before one can
put confidence in the results of their application. The
need for the verification of computational systems biol-
ogy methods is now recognized worldwide. Notably, the
Dialogue on Reverse Engineering Assessment and Meth-
ods (DREAM) project organizes international gene reg-
ulatory network inference challenges and evaluates the
solutions submitted by participating research groups in a
transparent manner [6,20,21]. This way a “collaborative-
competition” is established in which complicated prob-
lems are addressed as a community rather than individual
laboratories [22]. Recently, it was demonstrated that such
community effort was fruitful for the inference of an
improved gene regulatory network of Escherichia coli and
the inference of a novel gene regulatory network for the
bacterium Staphylococcus aureus [6].
Verification of inference methods requires benchmark

datasets [22]. Benchmarking on real biological data
is challenging as true biological networks are largely
unknown [23]. The availability of realistically simulated
datasets is therefore of utmost importance for the verifi-
cation of these methods. Only for simulated data can we
be certain about the true complex system underlying the
data. Simulated data has been used to validate methods,
but typically the data was generated with small networks

(containing 10–100 genes) [24,25] and with the same
models as used by the inference [26,27]. A step to more
realistic benchmark data was made in 2003 [28], generat-
ing simulated gene expression data using equations based
on enzyme kinetics (for use of these data in method eval-
uations, see e.g. [8,29]). As regulatory network inference
methods are typically applied to genome-wide data, a
necessary next step is to perform evaluations also on
genome-scale.
In this paper we revisit two related gene network

inference methods: down-ranking of feed-forward loops
(DR-FFL [30]) and TRANSitive reduction for WEighted
Signed Digraphs (TRANSWESD [31]). Both approaches
were successfully employed (ranked first and third,
respectively) in the DREAM4 In Silico Network 100 nodes
challenge. In this challenge, the task was to reverse engi-
neer gene networks from (simulated) steady-state and
time-series data. DR-FFL and TRANSWESD share a com-
mon core as they both try to infer a minimal regula-
tory graph that can explain the gene expression changes
observed in perturbation experiments. In particular, both
methods apply the principle of Transitive Reduction to
identify and eliminate edges reflecting indirect effects.
Since both DR-FFL and TRANSWESD were ranked high,
their underlying inference strategy could provide a gener-
ally promising approach for gene network inference.
Network reconstruction based on transitive reduction

usually involves three steps of which the last can be seen
as optional:

Step 1 (Generation of a perturbation graph): A
perturbation graph GP is generated from the
perturbation data, i.e., a directed edge from a node i
to a node j (i → j) is included in GP if a perturbation
in i changed the level of j significantly (significance
to be measured by a certain criterion). Sometimes,
the edges are also labeled by a sign and might also get
a weight indicating their confidence or likelihood.

Step 2 (Transitive reduction): As an edge in the
perturbation graph may reflect a direct but also an
indirect effect between two nodes, the goal of the
second step – the transitive reduction – is to identify
and eliminate indirect effects in GP yielding the final
reconstructed graph GT . As a general rule for
transitive reduction, an edge introduced due to
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indirect effects is detected by searching for
alternative paths in GP which could induce the same
net effect as this edge. We say that such a path
explains the edge and the latter is then removed.

Step 3 (Edge sorting): Normally one would consider
all edges contained in GT as the true edges. In an
optional third step, all edges of the reconstructed
graph GT are ranked in a list according to a given
confidence score for each edge. For certain
applications it might be useful to augment this list
also by “edges” (together with their confidence
values) not contained in GT (i.e., edges which were
not contained in GP or which were removed from the
latter when computing the transitive reduction GT ).
In this way we get an ordered list of all potential
pairwise interactions according to their confidence
score.

These three steps are common to all approaches using
transitive reduction (abbreviated by TR in the follow-
ing) but different variants may arise (i) by using different
approaches to derive the perturbation graph (abbreviated
PG) in Step 1 or (ii) by considering different criteria a path
must fulfill in order to explain a given edge in Step 2, or
(iii) by different edge sorting schemes to be used in Step
3. For example, DR-FFL [30] uses a z-score-based strategy
to generate the PG and does not consider edge signs in the
TR step when searching for valid paths that can explain
certain edges. In contrast, TRANSWESD [31] generates
the PG by selecting edges that satisfy two related but dis-
tinct statistical conditions whereas the actual TR proce-
dure accounts for edge signs and also edge weights when
searching for suitable paths that can explain a given edge.
In the present study, we propose and test novel variants

for each of the three steps mentioned above, i.e., for PG
generation, for TR, and for edge sorting. As one major
outcome, we present particular combinations of PG gen-
eration and TR strategies which yielded superior results
in diverse benchmark tests outperforming by far the two
original approaches. As benchmarks we used not only the
DREAM4 In Silico Network challenge but also a novel
and unprecedented synthetic compendium consisting of
several realistic 5000-gene networks simulated with vary-
ing biological and measurement error variances resulting
in a total of 270 datasets. In both benchmarks we focus
on perturbations induced by single gene knockouts. Such
experiments can be carried out at genome-scale at least
in some model organisms (see, for example, [32-35]). As a
realistic application scenario we used our framework for
inferring gene interactions in yeast Saccharomyces cere-
visiae based on a library of gene expression data measured
in mutants with single knockouts of transcription fac-
tors [35]. The reconstructed network shows a significant

enrichment of known interactions, especially within the
(most relevant) edges identified with highest confidence.
The results of the benchmarks demonstrate the rela-

tive performance of the different approaches, moreover,
they also enable us to draw some general conclusions. For
example, it turns out that when pruning the PG by TR, it
is often sufficient or sometimes even favorable to restrict
the search on paths having a length of only two. We
also demonstrate that edge weights are highly beneficial
for TR whereas edge signs are of minor importance (the
latter finding was also reported in [36]). We give an expla-
nation for these observations from a graph-theoretical
perspective.

Methods
We start with a brief description of the original TR
methods DR-FFL and TRANSWESD which inspired the
novel inference algorithms presented herein. Afterwards
we introduce the new variants for PG generation, TR,
and edge sorting. For the PG generation algorithms, we
assume that we are given the following input variables (for
a network of n genes):

• a 1 × n row vector Gwt containing the (possibly
preprocessed) wild-type gene expression data

• the n × nmatrix Gko containing the (possibly
preprocessed) measured steady-state gene expression
levels after perturbing/knocking-out each single gene.
The element Gko

i,j stores the gene expression level of
gene j after perturbing gene i.

These input variables directly correspond to the
datasets provided in the DREAM4 challenge and in our
novel compendium of simulated large-scale networks
(described below).

Down-ranking of feed-forward loops (DR-FFL)
The DR-FFL algorithm described in [30] used the follow-
ing strategies for the three steps:

Step 1 (PG generation)
In a preprocessing step, a confidence weight is assigned to
each possible edge i → j of the network by computing the
absolute value of the standard z-score zij. The latter quan-
tifies the difference between the expression Gko

i,j of gene j
under knockout/perturbation of gene i and its mean μj,
normalized by the standard deviation σj:

zij = Gko
i,j − μj

σj
. (1)

Mean μj and standard deviation σj are computed on all
available expressionmeasurements of gene j, including the
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wild-typeGwt
j . Then, the PG GP is obtained by selecting all

those edges whose |zij| is larger than a given threshold β .
We then denote the PG generated by the original DR-FFL
method by PG1.

Step 2 (TR)
DR-FFL circumvents possible problems arising in TR
of cyclic graphs by allowing only those edges to be
removed that connect nodes from different strongly con-
nected components (a strongly connected component in
a directed graph is a maximal subgraph in which for
each ordered pair of nodes a path exists connecting these
nodes). DR-FFL uses unsigned and unweighted TR, i.e., an
edge i → j is removed from GP if i and j are from different
components and if there is an alternative path connecting
i and j without using edge i → j.

Step 3 (Edge sorting)
The confidence weights |zij| of the remaining edges in the
graph GT obtained after TR are increased by a constant
offset such that all edges in GT are ranked higher than all
other potential edges (not contained in GT ). The latter are
listed below the edges of GT according to their confidence
weight computed in Step 1.

TRANSWESD
TRANSWESD (TRANSitive reduction for WEighted
Signed Digraphs) was introduced in [31] with the goal
to generalize and improve previous TR approaches
[37-39] tomake it amenable for the reconstruction of large
biological networks.

Step 1 (PG generation)
TRANSWESD constructs the PG GP via two thresholds:
an edge i → j is introduced in GP if (i) a measure sim-
ilar to the z-score |zij| used by DR-FFL exceeds a given
threshold β and (ii) if the absolute change of the state of
node j when perturbing i exceeds a certain minimal devi-
ation γ , i.e. if |Gwt

j −Gko
ij | > γ . Each edge i → j gets

a sign sij = sign
(
Gwt
j − Gko

ij

)
indicating whether the

changes in i and j have the same direction (positive sign) or
not (negative sign). In addition, a weight wij is assigned to
each edge i → j quantifying its uncertainty or behavioral
distance (i.e., a large weight indicates a low confidence
of this edge). Accordingly, TRANSWESD uses wij =
1 − |cij| with cij being the conditional correlation coeffi-
cient between genes i and j which is computed from all
experiments except those where gene i was directly per-
turbed. More specifically, herein we define the conditional
correlation coefficient cij as the Pearson correlation coef-
ficient computed from all measurements of nodes i and j
(columns inGwt andGko) except in the experiments where
j was knocked-out. The PG generated by the original
TRANSWESD procedure is denoted by PG2.

Step 2 (TR)
A particular feature of TRANSWESD is that it can deal
with signed and weighted PGs and that cycles are allowed.
The TR rule is as follows: An edge i → j with sign sij
and weight wij is removed if there is an alternative path
Pij (i =⇒ j) which connects i and j and fulfills the follow-
ing requirements: (i) Pij is simple, i.e., it does not contain
a cycle; (ii) Pij does not involve edge i → j; (iii) the over-
all sign of Pij (obtained by multiplying the signs of all its
edges) is the same as sij; and (iv) the maximum weight of
all edges on path Pij (denoted by wmax(Pij)) fulfills

wmax(Pij) < α · wij. (2)

The confidence factor α is typically chosen close to (but
smaller than) unity; the default value used by Klamt et al.
[31] is 0.95. With α < 1 it is ensured that all edges in the
path Pij have a higher confidence than the edge i → j.
However, in some cases it can nevertheless be advanta-
geous to use also α > 1. If a path Pij with the four required
properties exists in the PG, then the observed effect of i
upon j is considered to be explained (induced) by path Pij.
All edges i → j in the PG fulfilling these conditions are
considered to be (potentially) removable and are collected
in a set R. If the graph is acyclic, TR is simple and unique
and all potentially removable edges in R can be deleted
immediately. The situation is more complicated in cyclic
graphs: the result of TR can become non-unique, depend-
ing on the order of edge removals. TRANSWESD uses
a reasonable rule to resolve non-uniqueness: it removes
the edges of R iteratively starting with the highest weight
(lowest association) first. As a second problem in cyclic
graphs, it may then happen that a formerly removable
edge in R becomes non-removable because certain paths
may have been interrupted by preceding deletions of other
removable edges. Even worse, an edge might still poten-
tially be removable but its elimination would lead to the
interruption of a path that was required to explain an edge
already removed in a previous iteration (see the example
below). It is therefore necessary to explicitly test, in each
iteration, whether upon removal of the next edge of R all
edges originally contained in the PG GP are still explain-
able by the remaining graph (otherwise this edge has to
be reinserted). This may require extensive shortest path
calculations.
Therefore, to reduce the computational effort in large-

scale cyclic graphs, TRANSWESD provides two parame-
ters (path_exact and full_check) to allow for the (optional)
use of approximate solutions whichmay drastically reduce
the required computation time. Since computing the
shortest path of a given sign in cyclic signed digraphs
is an NP-complete (and thus delicate) problem, start-
ing TRANSWESD with path_exact=0 enforces the use of
approximate path calculation algorithms which have been
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shown to produce no or only few errors in large-scale bio-
logical networks [31,40]. The full_check=0 option can be
used to suppress recomputation of shortest path lengths
after deleting an edge (thus assuming that the relevant
path lengths will not change). To our experience from
numerous tests, there are usually only minor effects on
the reconstruction quality when using this simplification.
As we deal herein only with large-scale networks, we used
path_exact=full_check=0 in all calculations.
We illustrate the approach with the example shown in

Figure 1. The graph on the left-hand side displays a hypo-
thetical cyclic PG with its edge weights and signs. Using
the standard confidence factor of α = 0.95, in principle,
three edges could be identified as indirect effects as for
each of them a suitable explaining path would exist. This
concerns the edgeA → C (explained by pathA → B → C
and alternatively also by path A → D → B → C both
fulfilling the sign and weight conditions), the edge A → B
(explained by path A → D → B) and the edge D → B
(explainable by the path D � E → C � B). These
three edges form the set R of potentially removable edges.
According to the rules, TRANSWESD removes first edge
A → C as it has the largest weight (lowest confidence). In
the second iteration, A → B can be safely removed. Now
the algorithm has to stop even though the edge D → B
is still explainable by the path given above. If we removed
this edge, no positive path from A to B and from A to
C would remain in the graph, i.e., the originally observed
influence ofA on B andC would not be captured anymore.
This example shows that TRANSWESDmay keep an edge
in the graph, even if there is an explaining path for it. The
resulting graph GT for this example is shown on the right-
hand side of Figure 1. (Note: with full_check=0 the edge
D → B would be (wrongly) removed in addition to the
others whereas path_exact=0 had no effect).

Step 3 (Edge sorting)
TRANSWESD ranks the edges according to their weights
computed in Step 1: edges with highest confidence (low-
est weights) are placed first. Edges retained in GT are put
first followed by edges that were contained in the PG GP

A D
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C E

Reconstructed graph

Transitive Reduction

by TRANSWESD

A
0.35 D

B

C

0.3

E

0.4

0.2
0.250.6

0.5

0.8

Perturbation graph

Figure 1 Example of a perturbation graph and its transitive
reduction computed with TRANSWESD. A given signed and
weighted perturbation graph (left) and its transitive reduction as
computed by TRANSWESD (right).

(but removed during TR). The last group comprises all
other pairwise interactions; their order is also determined
by the conditional correlation coefficient cij.

Novel variants
DR-FFL and TRANSWESD were successfully applied and
highly ranked in the DREAM4 network reconstruction
challenge. However, when we compared and mixed both
methods (e.g., by replacing Step 1 of TRANSWESD with
Step 1 of DR-FFL) we realized that even better approaches,
in particular for Step 1 (PG generation) and Step 2 (TR),
might exist. In the following we describe several new
variants focusing on those which in the benchmarks
performed significantly better than the original DR-FFL
and TRANSWESD versions (see Results and discussion
section).

Perturbation graph
The novel PG generation procedure delivers:

• The signed and directed PG GP itself.
• A matrixWt containing the weights of the edges in

GP to be used by the transitive reduction algorithm.
The elementWt(i, j) contains the weight of the edge
i → j in GP ; it is set to ∞ if the edge was not included
in the PG.

• A matrixWr containing the confidence weights for
all possible interactions (i, j) to be used in the edge
ranking procedure in Step 3. In contrast toWt , this
matrix contains a weight for all pairs (i, j) (except for
i = j as we exclude self-loops), even if i → j is not
contained in GP .

A key difference of the novel PG algorithms compared
to the strategies used by DR-FFL and TRANSWESD
is that different edge weights are used for TR and
for edge sorting. Moreover, the selection of candidate
edges and the calculation of edge weights are based on
(combinations of) correlation and z-score measures. In
detail, the following calculations are performed:

1. Compute the n × n conditional correlation matrix C
from the expression measurements Gwt and Gko.

2. Use Gko to compute the n × n z-score matrix Z
comprising the z-score values of all (potential) edges.

3. Compute the n × nmatrix Zc as the z-score
calculated on the absolute value of the entries of the
conditional correlation matrix C, and add a
(minimal) offset to obtain positive values: Zc > 0.

4. Build the PG by defining the following set of edges:

• S1 comprises all node pairs (i, j) for which
|Zi,j| > β .

• S2 comprises all node pairs (i, j) for which
|Ci,j| > γ .
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• S3 is the set of all node pairs (i, j) whose z-score
and correlation values have opposite sign:
Ci,j · Zi,j < 0.

• B = S1 ∩ S2 ∩ S3 is the set of node pairs (i, j)
satisfying the three previous conditions.

• Zp is the set of node pairs (i, j) with positive
z-score value.

• Zn is the set of node pairs (i, j) with negative
z-score value.

• Ep = Zn ∩ B is the set of positive edges of the
PG.

• En = Zp ∩ B is the set of negative edges of the
PG.

• Gp = Ep ∪ En = B yields the PG.

5. Compute the ranking weight matrix by normalizing
Wr = |Z| + Zc between 0 and 1.

6. Compute the weight matrixWt to be used for
transitive reduction in TRANSWESD as
Wt = 1 − Zc.

Using this scheme, the PG is built by selecting all edges
where (i) the z-score exceeds a given threshold β , (ii) the
conditional correlation exceeds another threshold γ , and
(iii) the signs of z-score and conditional correlation are
opposite. The latter condition is justified because a posi-
tive z-score for the edge (i, j) is computed when the dele-
tion/decrease of i (due to knockout or knockdown) yields
an increase in the activity of j which should corresponds
to a negative correlation between i and j. The same cor-
respondence exists between negative z-score and positive
correlation. Obviously, measurement noise may invalidate
the truth of these statements, thus we only keep edges
that are consistent with respect to this sign rule. With
the rule described above, the positive edges contained in
Ep stem from a negative z-score and the negative edges
contained in En from a positive z-score. In the follow-
ing we denote the PG generated by the above procedure
PGnew.
The weights Wr

i,j used for edge ranking take equally-
weighted into account (i) the absolute value of the stan-
dard z-score (Equation (1)) of the deviations induced by
the perturbation in i and (ii) the z-score of the deviations
of the conditional correlation between i and j relative to
the averaged conditional correlations related to gene j. As
far as we know, a z-score of conditional correlations has
not yet been used in the context of network inference,
however, the ranking weights introduced above proved to
be optimal in the benchmarks delivering an edge sorting
of high quality. Below we show that the new PG genera-
tion approach in combination with the proposed ranking
scheme may already deliver a valuable approximation of
the network itself but can often be further improved by
TR techniques.

Regarding the weights to be used for TR (Wt), bench-
mark tests showed us that it is beneficial to use only the
z-score of the conditional correlation coefficients.

Transitive reduction
Identifying and pruning edges representing the indirect
interactions in GP finally yielding GT is the central goal of
transitive reduction.We here present some novel and gen-
eralized variants of TR inspired from the original versions
of DR-FFL and TRANSWESD.
We observed that the TR used by TRANSWESD

(see Step 2 of TRANSWESD described above) can be
generalized in multiple ways:

• One may consider unweighted TRANSWESD by
setting α = ∞ in the weight rule (2).

• One may consider unsigned TRANSWESD by setting
all edge signs in GP to “+”. In this case, the algorithm
becomes simpler (polynomial instead of
NP-complete) as the calculation of shortest paths
does not need to distinguish between positive and
negative paths. It is then, however, still important to
keep the weights to avoid non-unique results in cyclic
networks.

• When searching for a suitable path Pij that can
explain a certain edge i → j, one may restrict the
search on paths involving not more edges than a
predefined number L. In this way one would manifest
the expectation that observed indirect effects can be
traced back to short paths.

With these generalizations we introduce the notation
TRANSWESDS,W,L to specify the chosen TR variant: S ∈
{u,s} indicates whether the signed (s) or unsigned (u) TR
version is used;W ∈ {u,w} specifies either the unweighted
(u) or weighted (w) version; and L specifies the maximal
path length allowed. Accordingly, the original TRAN-
SWESD version corresponds to TRANSWESDs,w,∞. We
also observe that TRANSWESDu,u,∞ mimics TR used by
DR-FFL when removal of edges within one and the same
component would be blocked.
However, we soon realized that the unweighted variant

of TRANSWESD does not perform very well, in particular
when combined with the full_check=0 option (see above).
We therefore do not analyze the unweighted version in
detail but keep the notation for consistency with respect
to the following variant.
In addition to the modified version of TRANSWESD,

we introduce a related but different strategy which we call
local transitive reduction (LTR). There are two key differ-
ences: only paths of length 2 are considered as possible
explanations for indirect effects and an alternative condi-
tion on the edge weight is introduced replacing rule (2).
The LTR algorithm considers an edge i → j potentially
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removable if three criteria are fulfilled: (i) existence of a
feed-forward loop, i.e. {i → j, i → k, k → j} ∈ GP ; (ii) sign
consistency, i.e. sij = sik · skj; and (iii) the weight condition:

α · Zc
ij ≤ Zc

ik · Zc
kj, (α > 0). (3)

Recall that we introduced Zc as the z-score of the corre-
lation coefficients and that the relation to the edge weight
Wt which we use for modified TRANSWESD is thus sim-
ply Zc = 1−Wt . Therefore, the smaller Zc

ij the higher the
confidence that the path i → k → j can explain the edge
i → j (thus, a large weight is here associated with high
confidence).
Analogously as described for TRANSWESD, to deal

with non-uniqueness, the potentially removable edges
are iteratively deleted according to the edge weights
(lowest confidence first) and for each edge to be removed
it is checked, whether all edges originally contained in GP

are still explainable by a 2-path in the remaining graph
(otherwise this edge is kept).
Although LTR is also a weighted and signed TR vari-

ant, it is considerably simpler than TRANSWESD as it
uses a simple triangle rule which is much easier to check
than searching for suitable paths. For this reason, in con-
trast to TRANSWESD, we can easily use the exact variant
with path_exact=full_check=1 in large-scale networks. As
will be shown in the Results section, despite its simplic-
ity, LTR yielded excellent performance in the benchmarks.
For LTR we also tested different variants, including the
unweighted (condition (3) is dropped by setting α = 0),
the unsigned and the unsigned/unweighted version (in
the latter, only the 2-path i → k → j must exist
to render edge i → j removable, irrespective of edge
signs and weights). We introduce a similar notation as for
TRANSWESD: LTRS,W indicates whether edge signs (S ∈
{u,s}) and weights (W ∈ {u,w}) are considered or not; the
length parameter L becomes obsolete as it is fixed to 2.

Edge sorting
We use a simple edge ranking procedure which is
similar to the strategy used by DR-FFL and (original)
TRANSWESD. Note that all n(n − 1) potential edges
(except self-loops) are included into this list, also those
that were not contained in the PG GP or that were
removed during TR. The position of each edge is deter-
mined by the ranking weights stored in Wr (see above):
edges with highest ranking weights are put first. To ensure
that edges contained in the final graph GT are really
ranked higher than all other edges, an offset is added to
the weight of all edges in GT .

Results and discussion
In the following we present performance results of the
new PG generation algorithm in combination with the
modified TRANSWESD and the new LTR technique for

subsequent transitive reduction. We used two different
case studies for benchmarking: (i) the datasets of the
DREAM4 InSilico_Size100 network inference challenge,
and (ii) a novel large-scale synthetic compendium con-
sisting of 30 5000-gene networks simulated by SysGen-
SIM [41] with different connectivities and noise levels.
The DREAM4 benchmark also enables a comparison
of the performances of the new approaches with its
inspiring original techniques DR-FFL and (old) TRAN-
SWESD. Generally, in the case of in silico datasets (with
known gold standard), the goodness of the predictions
is evaluated based on the established Area Under the
Curve (AUC) measures of ROC (Receiver Operating
Characteristic) and PR (Precision-Recall) curves. The
AUPR is the most informative (and the only shown) per-
formance measure for the case studies in this paper due to
the sparsity of gene networks implying large AUROC val-
ues differing only insignificantly for the different methods.
In addition to the two in silico studies where the recon-

struction results can be evaluated by a perfect gold stan-
dard, we used our framework in a realistic application
scenario to infer gene interactions in yeast Saccharomyces
cerevisiae based on a library of gene expression data mea-
sured in mutants with single knockouts of transcription
factors.

Performance on DREAM4 networks
In the DREAM4 InSilico_Size100 network reconstruction
challenge [21,42], simulated steady-statemeasurements of
the expression of each gene in the wild-type as well as
in the single-gene knockout and single-gene knockdown
mutant were provided for 5 different in silico networks
(100 nodes each) from which the networks had to be
reconstructed. We only make use of wildtype and knock-
out data as they directly support the generation of the
PG (knockdown data can, in principle, further improve
the results; see below). For assessing the quality of recon-
structed networks, an evaluation script is available at the
DREAM website [43] which computes an overall score
obtained from the geometric mean of p-values calcu-
lated for the AUPR and the AUROC measures from all 5
reconstructed networks.
We considered predictions by several combinations of

the original as well as of the new PG generation and
TR methods. The methods’ parameters were chosen
according to previously used values (e.g., α) or accord-
ing to preliminary tests. Importantly, one and the same
parameter set was used for all five networks, i.e., no
optimization was conducted for every single network.
The DREAM4 evaluation script was used to compute
the respective overall scores which are summarized in
Table 1.
We recall that the combined use of the unsigned and z-

score-based PG1 with DR-FFL [30] originally obtained the
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Table 1 Performance of the inference algorithms on the DREAM4 networks (100 nodes)

DREAM4 best performers Score

Team 395 (PG1 + DR-FFL) 71.5889

Team 296 71.2970

Team 515 (PG2∗ + TRANSWESDs,w,∞) 64.7150

Team 466 63.4060

Team 549 63.1050

Inference algorithm β γ α Score Edges TPs FPs FNs TP100

PG1 2.00 - - 70.3495 349.4 103.4 246.0 101.4 58.0

PG1 + DR-FFL - - - 71.5889 267.4 83.6 183.8 121.2 62.4

PG1 + TRANSWESDu,w,∞ - - 0.95 73.0444 225.0 97.4 127.6 107.4 60.8

PG1 + TRANSWESDu,w,2 - - 1.50 79.6644 153.8 83.0 70.8 121.8 70.4

PG1 + LTRu,u - - - 79.7428 261.2 92.4 168.8 112.4 72.2

PG1 + LTRu,w - - 0.15 79.1609 262.0 92.8 169.2 112.0 72.2

PG2 2.60 0.05 - 65.8012 398.2 98.0 300.2 106.8 58.2

PG2 + DR-FFL - - - 64.2614 372.8 94.4 278.4 110.4 58.0

PG2 + TRANSWESDu,w,∞ - - 0.95 65.6504 256.6 86.0 170.6 118.8 64.4

PG2 + TRANSWESDs,w,∞ - - 0.95 66.0970 260.8 86.8 174.0 118.0 66.6

PG2 + TRANSWESDu,w,2 - - 1.50 66.5562 224.0 81.0 143.0 123.8 64.2

PG2 + TRANSWESDs,w,2 - - 1.50 68.1534 249.2 84.4 164.8 120.4 67.0

PG2 + LTRu,u - - - 65.4214 253.0 82.2 170.8 122.6 64.6

PG2 + LTRs,u - - - 67.7407 274.0 86.4 187.6 118.4 66.6

PG2 + LTRu,w - - 0.15 67.2567 271.4 85.6 185.8 119.2 66.0

PG2 + LTRs,w - - 0.15 68.5959 288.2 88.4 199.8 116.4 67.2

PGnew 2.00 0.00 - 81.7594 250.2 99.6 150.6 105.2 66.6

PGnew + DR-FFL - - - 80.3085 179.8 82.0 97.8 122.8 66.2

PGnew + TRANSWESDu,w,∞ - - 0.95 85.3288 179.2 90.2 89.0 114.6 72.0

PGnew + TRANSWESDs,w,∞ - - 0.95 85.7898 183.0 92.0 91.0 112.8 72.8

PGnew + TRANSWESDu,w,2 - - 1.50 88.0570 147.6 86.0 61.6 118.8 72.6

PGnew + TRANSWESDs,w,2 - - 1.50 88.5728 150.4 87.8 62.6 117.0 72.8

PGnew + LTRu,u - - - 88.2217 166.8 91.8 75.0 113.0 74.2

PGnew + LTRs,u - - - 88.6350 169.4 93.4 76.0 111.4 75.2

PGnew + LTRu,w - - 0.15 88.5203 168.4 92.8 75.6 112.0 75.0

PGnew + LTRs,w - - 0.15 88.8005 169.8 93.8 76.0 111.0 75.8

The table summarizes the performance (overall score, true positives (TPs), false positives (FPs) and false negatives (FNs)) of the different PG generation and TR
algorithms when applied to the DREAM4 networks together with the displayed (optimal) parameters. The last column TP100 shows the average number of TPs within
the first 100 top-ranked (reconstructed) edges. As a comparison, the scores of the 5 best-performing algorithms within the challenge are shown. PG2∗ denotes PG2

computed with a minor bug in the original implementation.

best score (71.59) for the DREAM4 challenge, while the
coupling of PG2 and (original) TRANSWESD was ranked
third with a score of 64.71 (see [31]). Although we used
here only the knockout data (in [31] both knockout and
knockdown data were used for computing the correlation
coefficents) the results presented in Table 1 are slightly
better (66.10) by fixing a small bug in the computation
of PG2.

The DREAM4 best overall score of 71.59 is already
exceeded by just applying unsigned TRANSWESDu,w,∞
or unsigned and unweighted LTRu,u to the unsigned per-
turbation graph PG1. This supports the statement in
[44] about the weakness of the original DR-FFL algo-
rithm, where transitive reduction is applied only to edges
between but not within strongly connected components
of the PG. In fact, TRANSWESDu,w,∞ and especially
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TRANSWESDu,w,2 and LTRu,u/w improve the score of PG1

significantly up to 79.74.
Regarding the results for PG2 originally used by the

TRANSWESD method in [31] we observe that the qual-
ity (score) of the PG is lower than for the simple z-score
PG1. Although all tested TR techniques (except DR-FFL)
can improve the score, it remains below the performance
results obtained for the z-score approach PG1.
Next we tested the performance results of the TR tech-

niques in PGnew where we also applied the new edge
sorting scheme and sorting weights. As a first observation,
a notable quality improvement is obtained by the novel
PGnew alone achieving a score of 81.76 which is markedly
higher than the scores obtained by PG1 and PG2, even
after TR. A somewhat unexpected result was that the γ

threshold for the conditional correlation coefficients was
virtually not required as its optimal value turned out to be
0. However, in other tests described below, using a non-
zero value for this threshold in combinationwith β (for the
z-score) turns out to be beneficial. We also analyzed the
robustness of the quality of PGnew and its edge ordering
with respect to the chosen threshold parameters β and γ :
Figure 2 displays the overall score of PGnew when varying
the threshold parameters showing that it is (i) higher than
the previous winning score (71.59), (ii) higher than PG1,
and (iii) higher than PG2 – even for the complete space of
meaningful parameter values scanned. Hence, a reason-
able robustness of the quality of PGnew with respect to the
two threshold parameters can be concluded.
We then applied the TR techniques to PGnew which

increase the scores up to 88.80, thus well above the
best score recorded at the DREAM4 challenge. Regarding

the different TRANSWESD variants, we see that the
signed version (85.79) is only slightly better than the
unsigned variant (85.33) whereas “local” TRANSWESD,
which takes only paths of length 2 into account, results
in a further significant improvement of the score (88.57).
In line with these observations, unsigned and signed
LTR differ only marginally whereas signed and weighted
LTRs,w produces the best overall results, not far from the
unweighted variant. Recall that TRANSWESDs,w,2 and
LTRs,w differ essentially only by condition (2) vs. (3).
Although the results of both local variants are compa-
rable, it seems that the rule used by LTR can better
predict true indirect effects. Generally, Table 1 shows that
all TR techniques work well by strongly decreasing the
number of false positive edges (FPs) with only a slight
decrease in number of true positives (TPs). Apparently,
the best ratio is obtained by local TR variants (i.e., by LTR
and TRANSWESDs,w,2). We also noticed that the (aver-
age) enrichment of TPs under the first 100 reconstructed
edges in the sorted edge list (column TP100 in Table 1)
is especially large confirming the potential of our meth-
ods: it reaches 66.6 for PGnew, 72.8 for TRANSWESDs,w,2

and even 75.8 for LTRs,w. Hence, there is a high proba-
bility that top-ranked edges correspond to true interac-
tions – a desirable property when validating the edges
experimentally.
Figure 3 demonstrates that TRANSWESD (left) and

LTR (right) are also fairly robust with respect to the confi-
dence factor, as the score of the perturbation graph PGnew

is highly improved by both methods for a broad range of
meaningful values of α. In this context it is also of inter-
est that unweighted LTR yielded very good predictions
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Figure 2 Performance of the novel perturbation graph PGnew in DREAM4 networks (100 nodes). The overall score of PGnew is consistently
higher than the scores achieved by the DREAM4 winning submission (71.59, not shown), by PG1 (70.35; does not depend on any parameter), and by
PG2 for the complete space of meaningful parameter values (β , γ ).
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even without the need to specify any further parameter
(as necessary for weighted LTR and TRANSWESD).
We summarize that the best-ranked algorithms of the

DREAM4 competition are significantly outperformed
by our new methods for PG generation, TR, and edge
sorting. We noticed that also other recently published
network inference techniques applied to the DREAM4
networks [36,45] reported lower predictions. For exam-
ple, the highest overall score in [45] is 81.10 obtained by
using both knockout and knockdown datasets whereas
a score of 73.33 was achieved in [36] by CUTTER-W,
an approach similar to unsigned (and weighted)
TRANSWESD. Moreover, if we also include knockdown
data in our analysis (for calculating the conditional cor-
relation coefficients), the scores in Table 1 grow up by
approximately 3–4 points each, reaching a top of 92.03
with PGnew + LTRs,w. As expected, this confirms that an
increase of the number of measurements corresponds
to an improvement of the prediction. However, most
of the information is already provided by the knockout
experiments.

Performance on SysGenSIM datasets
In order to provide an even more exhausting and more
realistic test scenario for the developed inference algo-
rithms, the software SysGenSIM [41] was used to create
a new collection of synthetic gene networks and to sim-
ulate knockout experiments under different connectivi-
ties and noise conditions. SysGenSIM is able to generate
large networks with a topology similar to those observed
in real organisms, i.e., with a modular structure fea-
turing exponential and power-law behavior for the in-
and out-degree distributions of nodes [46]. The gener-
ated 30 in silico networks have a considerable (close to

genome-scale) size of 5000 nodes each. One third of them
has a low average degree (about 7500 edges, i.e. K � 1.5),
10 networks have an intermediate average degree (about
10000 edges, i.e. K � 2), while the last third of the
networks exhibits the largest average degree (about 12500
edges, i.e. K � 2.5). Finally, using equations of biochemi-
cal kinetics where the degradation rate of gene expression
is represented by a first-order process and where the tran-
scription rate exhibits essential features of cooperativity
and saturation [28], single knockout experiments have
been simulated for all the genes of each network with
SysGenSIM’s default kinetic parameters under 9 differ-
ent combinations of noise conditions (for technical details
see [41]). In fact, SysGenSIM allows for the selection of
the standard deviation σθ of the Gaussian distribution
from which the biological synthesis and degradation vari-
ances are sampled (parameters θ syn and θdeg in Equation
(1) in [41]) as well as the standard deviation σν of the
Gaussian distribution from which the experimental noise
ν is sampled. As possible values for both standard devi-
ations we considered {0.025, 0.05, 0.1}, yielding a total
of 9 combinations summarized in Table 2. Therefore a
grand total of 270 different networks (30 topologies with 9
different noise configurations) with simulations of single-
knockout experiments have been produced, the goal being
the testing of the inference methodologies under differ-
ent conditions of edge density, biological variance, and
multiplicative measurement noise.
Due to the superior performance of PGnew we present

results only for this PG. Figure 4 displays the perfor-
mance of PGnew for the 9 different noise configurations
of network 1 (connectivity K � 1.5) in dependency of
a wide range of (β , γ ) parameters (examples for K �
2 and K � 2.5 are shown in Figures F1 and F2 in
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Table 2 Noise configurations in simulated datasets

Configuration Label σθ σν

1 LL 0.025 0.025

2 LM 0.025 0.050

3 LH 0.025 0.100

4 ML 0.050 0.025

5 MM 0.050 0.050

6 MH 0.050 0.100

7 HL 0.100 0.025

8 HM 0.100 0.050

9 HH 0.100 0.100

Columns σθ and σν show the values of the standard deviations of the Gaussian
distributions with μ = 1 from which the biological variances θ syn and θdeg and
the measurement error ν were sampled in SysGenSIM. Each configuration is also
represented by a 2-character string, indicating the intensity levels (low (L),
medium (M), high (H)) of the biological variance (first letter) and of the
measurement error (second letter), respectively.

Additional file 1). The novel PG generation algorithm
exhibits reasonable robustness with respect to both noise
and threshold parameters. In fact it works decently with
the same β and γ as used for the DREAM4 networks (for
the optimal value, γ needs to be slightly raised from 0.00
to 0.05), while the procedures for PG1 and PG2 would
need a more extensive re-tuning of the parameters to
obtain reasonable results (not shown).
The effect of the TR algorithms applied to PGnew

(Tables 3 and 4, Figure 5) becomes more heterogeneous
and differentiated compared to the DREAM4 networks.
First of all, we observe that the unweighted versions of
LTR decrease in all cases the quality of the perturba-
tion graph PGnew whereas weighted LTR and (non-local
versions of) TRANSWESD improve it – partially signifi-
cantly – in all scenarios (with one minor exception). This
demonstrates that weighted TR can be highly beneficial.
However, local TRANSWESDs,w,2, which was compara-
ble with LTR in the DREAM4 networks, achieves similar
unfavorable results for these large and noisy networks as
unweighted LTR. This confirms again that rule (3) seems
to be better suited for local TR than rule (2). Furthermore,
the quality of the PG as well as the relative improvement
by the (weighted) TR techniques depends substantially
on the magnitude of the noise level both with respect to
AUPR and in the number of TPs and FPs. An interesting
observation can be made regarding the effect of biologi-
cal variance on the reconstruction quality: it appears that
moderately increased (medium) biological noise is advan-
tageous in case of high measurement noise for all K ’s
(i.e., networks with noise configuration MH perform bet-
ter than those with LH; see Figure 5 and Table 3 as well as
Tables T1 and T2 and Figure F3 in Additional file 1). Thus,
higher biological noise may help to uncover true pertur-
bation effects under high uncertainty of measurements.

It can also be noticed that, in general, TRANSWESDs,w,∞
and LTRs,w achieve similar superior AUPR performance,
but by different means as manifested in Table 4: the LTR
technique prunes the edges of the PG more generously
than TRANSWESDs,w,∞, resulting in a better reduction of
false positive edges, but at the same time in an undesired
higher decrease of true positives. We can also confirm a
result from the DREAM4 benchmark: signed (weighted)
LTR and TRANSWESD achieved always better AUPR
scores than their unsigned versions (except in one case),
but only to a very small extent. This important observa-
tion is discussed in more detail in the Conclusion section.
Finally, Figure F3 in Additional file 1 shows how the

precision of PGnew and the effectiveness of TR decrease
when the network connectivity (average node degree
K) increases. Moreover, the superiority of weighted vs.
unweighted TR can again clearly be seen.

Application to a realistic yeast knockout dataset
The ultimate test for our reverse-engineering algorithm
would be the application to a genome-scale real-world
dataset of single-gene perturbation experiments (e.g.,
through single gene knockouts). Only few such datasets
are available. The most suitable for our purpose is the S.
cerevisiae transcription factor knockout expression com-
pendium of Hu et al. [34] where the expression of n =
6253 genes was measured after single knockouts (or
knockdowns) of m = 269 transcription factors (TFs)
being the most important regulators in yeast. Herein we
refer to the revised dataset provided by Reimand et al.
[35] where the original raw data of Hu et al. were rean-
alyzed with more sophisticated statistical techniques of
the BioConductor package [47] leading to an increased
informative content of the microarray measurements.
The processed data of Reimand et al. (http://www.ebi.ac.

uk/arrayexpress/experiments/E-MTAB-109) consists of
three matrices of sizem × n:

• L contains the log-fold change values for all genes
across all knockout experiments.

• P includes the p-values for differential expression.
• A is the signed adjacency matrix of the graph

reconstructed by Reimand et al. The entries A(i, j)
correspond to (inferred) edges with a p-value of
P(i, j) < 0.05.

Our goal was to re-process the log-fold change values
in order to apply our network inference algorithm and to
produce a ranked list of edges. For comparing our recon-
structed network with the predicted network of Reimand
et al. we need a gold standard. However, as a reliable
gold standard for gene regulation in S. cerevisiae is still
not available (otherwise we would not need our infer-
ence methods), we made use of four published “silver

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-109
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-109
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Figure 4 Performance and robustness of the perturbation graphmethodology PGnew applied to the 9 noise configurations of network 1
in the SysGenSIM dataset. The AUPR scores of PGnew are fairly robust for a large range of meaningful parameter values β and γ . The picture shows
the performance of the inference of Network 1 (containing about 7500 edges) with respect to the 9 different noise conditions. Similar behaviors can
be seen for the other networks (see Figures F1 and F2 in Additional file 1).
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Table 3 Performance of the inference algorithms on the SysGenSIM networks

Noise configuration

Inference algorithm 1 - LL 2 - LM 3 - LH 4 - ML 5 - MM 6 - MH 7 - HL 8 - HM 9 - HH

PGnew 0.7388 0.6835 0.5159 0.6735 0.6622 0.5850 0.5141 0.5218 0.4835

PGnew + TRANSWESDu,w,∞ 0.7695 0.6906 0.5141 0.6921 0.6778 0.5921 0.5192 0.5269 0.4868

PGnew + TRANSWESDs,w,∞ 0.7702 0.6910 0.5142 0.6923 0.6780 0.5922 0.5192 0.5269 0.4868

PGnew + TRANSWESDu,w,2 0.7335 0.5825 0.5041 0.6471 0.6410 0.5650 0.4963 0.5115 0.4737

PGnew + TRANSWESDs,w,2 0.7354 0.5929 0.5042 0.6478 0.6417 0.5653 0.4965 0.5116 0.4739

PGnew + LTRu,u 0.7561 0.6320 0.5114 0.6701 0.6583 0.5783 0.5093 0.5209 0.4816

PGnew + LTRs,u 0.7570 0.6390 0.5115 0.6705 0.6587 0.5784 0.5094 0.5210 0.4818

PGnew + LTRu,w 0.7737 0.7051 0.5285 0.6898 0.6751 0.5924 0.5196 0.5291 0.4880

PGnew + LTRs,w 0.7742 0.7057 0.5285 0.6900 0.6753 0.5925 0.5196 0.5291 0.4880

Each score is the mean of the AUPR computed for the 10 networks with K � 1.5 simulated according to the same noise configuration. Thresholds used by the
inference algorithms are β = 2.0 and γ = 0.05 for generating PGnew, α = 0.95 for TRANSWESD·,w,∞ , α = 1.50 for TRANSWESD·,w,2 and α = 0.15 for LTR·,w . Analogous
performances for K � 2 and K � 2.5 are shown in Tables T1 and T2 in Additional file 1.

standard” networks containing experimentally validated
interactions (between TFs or from TFs to other genes):

1. SS1: is a collection of found chip-chip results and
motifs from 162 TFs [48] (size of silver standard
network: 162 TFs × 6253 genes).

2. SS2: is a subset of the binding sites from SS1 which
are also in nucleosome-depleted regions [48] (size of
silver standard network: 159 TFs × 6253 genes).

3. SS3: this silver standard network contains known
regulatory interactions between 142 TFs and 3459
targets compiled from the results of genetic,
biochemical and ChIP (chromatin
immunoprecipitation)-chip experiments [49] (size of
silver standard network: 142 TFs × 3459 genes).

4. SS4: contains interactions between 114 TFs and 5667
targets. This network was used as a reference
network for a sub-challenge of the DREAM5
competition [6] (size of silver standard network: 114
TFs × 5667 genes).

In order to obtain a gene expression matrix G
exploitable by our inference algorithm, we “inverted” the
log-fold change values to obtain G(i, j) = 2L(i,j) for all
the possible edges. In this way, expression values larger
than 1 represent an increase of the gene expression of
j after the knockout of i (i.e., i is a inhibitor of j),
and vice versa a positive regulation for values smaller
than 1.
As for the synthetic datasets, the gene expressionmatrix

G served then as input to produce the perturbation
graph PGnew and the weight matrices Wr and Wt . The

Table 4 Statistics on edges from inferred SysGenSIM networks

K � 1.5 K � 2 K � 2.5

Inference algorithm Edges TPs FPs Edges TPs FPs Edges TPs FPs

PGnew 14353 6239 8114 20477 7422 13055 27496 8258 19239

PGnew + TRANSWESDu,w,∞ -15.60% -0.57% -27.16% -15.71% -1.96% -23.52% -14.89% -3.48% -19.79%

PGnew + TRANSWESDs,w,∞ -15.35% -0.40% -26.83% -15.17% -1.60% -22.89% -14.44% -3.04% -19.34%

PGnew + TRANSWESDu,w,2 -37.47% -16.01% -53.97% -42.82% -25.03% -52.93% -46.69% -33.13% -52.51%

PGnew + TRANSWESDs,w,2 -37.24% -15.65% -53.85% -42.38% -24.17% -52.73% -46.09% -31.77% -52.23%

PGnew + LTRu,u -32.06% -9.68% -49.27% -35.28% -15.07% -46.77% -37.67% -19.83% -45.33%

PGnew + LTRs,u -31.93% -9.51% -49.17% -35.03% -14.61% -46.64% -37.36% -19.20% -45.16%

PGnew + LTRu,w -29.74% -5.76% -48.18% -30.64% -7.79% -43.63% -28.62% -8.87% -37.10%

PGnew + LTRs,w -29.64% -5.66% -48.09% -30.49% -7.53% -43.54% -28.45% -8.53% -37.00%

The number of edges in the perturbation graph and the number of FPs and TPs are shown in the table. The relative reduction of these measures (edges, TPs and FPs)
in the graphs obtained after applying the different TR techniques compared to the PG is also displayed. These averaged statistics are computed from the analysis of
the graphs obtained after inferring the 30 SysGenSIM networks simulated according to noise configuration 1 (LL; see Table 2). Thresholds used are β = 2.0 and
γ = 0.05 for generating PGnew, α = 0.95 for TRANSWESD·,w,∞ , α = 1.50 for TRANSWESD·,w,2 and α = 0.15 for LTR·,w . Analogous tables for the other 8 noise
configurations (2, . . . , 9) are shown in Tables T3–T10 in Additional file 1.
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Figure 5 Performance of the new TRANSWESD and LTR variants on the SysGenSIM dataset. Parameters used to obtain the perturbation graph
were β = 2.0 and γ = 0.05, while α = 0.95 and α = 0.15 were selected for the TRANSWESD and LTR variants, respectively. AUPR scores are averaged
across the 30 networks (10 networks for each of the three averaged node degrees considered) simulated with the same noise configuration.

transitive reduction techniques TRANSWESD and LTR
were then applied to PGnew and the resulting edges
for each method were sorted according to our ranking
scheme. This sorted edge list was delivered as output
(prediction) of our procedure. We performed the whole
inference process by employing the same parameters used
for the simulated networks, i.e. β = 2.00, γ = 0.05,
α = 0.95 for TRANSWESD, α = 1.50 for local TRAN-
SWESD, and α = 0.15 for LTR. Note that m = 269 TFs
were perturbed, hence, we can only infer edges that will
start in a TF node and point to TF or non-TF genes.
A (predicted) confidence-sorted edge list was also

obtained for the original dataset of Reimand et al. by re-
sorting the absolute values of the log-fold changes in L
according to the adjacency matrix A, which is then used
as a reference to assess the performance of Reimand’s
reconstructed network.
Afterwards we evaluated all predictions against the 4 sil-

ver standards. To allow for a fair scoring, only common
nodes from silver standard networks and prediction lists
were taken into consideration, i.e. if edge (i, j) is in the pre-
diction list but node i or j is not contained in the silver
standard, then the edge is not scored. On the other hand, if
node k belongs to the silver standard but was not included
in the microarray dataset, then all ingoing and outgoing
edges of k were removed from the silver standard. Accord-
ingly, the size of the silver standard SS3 reduced from
142 × 3459 to 122 × 3444 and of SS4 from 114 × 5667 to
108 × 5469.
For each of the four silver standards, Figure 6 shows

the AUPR and the number of true positive edges (TP)
computed for an increasing number of edges selected

from top of the ordered edge lists as given by (1)
Reimand’s predictions, (2) the perturbation graph PGnew,
(3) TRANSWESDs,w,∞, (4) LTRu,u, and (5) LTRs,w. Gen-
erally, the results of our methods (2)-(5) with respect to
the four different silver standard networks appear to be
satisfactory, though with different measure for the four
silver standard networks. It is apparent that our meth-
ods work especially well within the 100–200 top-ranked
edges where all of the inferred networks (2)-(5) show
better agreement with the silver standards than the inter-
actions found by Reimand. The PG itself performs again
reasonably well and better than Reimand’s network in this
region. All variants of TR show positive effects but not
among the top-ranked edges because these are immune
against pruning (accordingly, for these edges, the results
for PGnew and for the TR methods are identical). We
observe that unweighted and unsigned LTRu,u performed
best for this dataset. However, one should keep in mind
that no tuning or adaptation of the parameters has been
performed which could have prevented a better result for
the weighted versions.
When increasing the number of considered edges to

500, it appears that Reimand’s network becomes better
and better eventually, in some cases, getting higher over-
all agreement with the silver standards than our methods.
However, we argue that for practical applications (e.g. val-
idation of edge candidates) the first ≈ 100 edges are the
most important ones. In this region, given the silver stan-
dards, our approach seems to work most efficient yielding
high statistical significance: for the four silver standard
networks we obtained [42, 27, 31, 20] TPs in the net-
work reconstructed with LTRu,u yielding corresponding
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Figure 6 Performance of the novel inference techniques on the S. cerevisiae dataset validated against four silver standards. The plots
show the AUPR and the number of true positive edges computed for the 500 best-ranked edges against four “silver standard” networks (see text for
explanations). Parameters used to infer the networks are β = 2.0 and γ = 0.05 for the PG, α = 0.95 for TRANSWESD and α = 0.15 for LTR.
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p-values of [6.31 · 10−46, 6.68 · 10−28, 3.93 · 10−33,
6.79 · 10−25], based on the hypergeometric distribution.
These values are very similar for the other four PG/TR-
based methods. It is most likely that the number of
TPs is even larger given the high probability that not
all interactions might be contained in the silver stan-
dards. Our prediction list might thus provide useful tar-
gets for validations. A sorted list of the 300 (identified)
edges with highest confidence and a comparison with the
four silver standards can be found in Table T4 in the
Additional file 2.

Conclusion
We presented novel algorithms for the inference of gene
regulatory networks from systematic perturbation exper-
iments. These algorithms support the reconstruction of
regulatory networks via three steps: (i) PG generation, (ii)
TR to remove edges representing indirect effects in the
PG, and (iii) sorting of edge candidates. We presented
new variants for all of these three steps whose combined
use yielded superior results over previous methods when
tested with standardized benchmark scenarios.
Regarding the PG, it proved advantageous to identify,

weight and sort candidate edges by a mixture of two
measures, one being the standard z-score of deviations,
the other one the z-score of conditional correlation coef-
ficients. In particular, the latter was highly informative
for edge pruning by TR whereas a combined weight of
both z-scores proved beneficial for edge sorting. With the
new candidate edge selection and edge sorting schemes,
we observed that the PG alone (without TR) achieved a
reconstruction quality that is far above the results of pre-
viousmethods after TR. Importantly, the quality of the PG
appeared to be robust against larger variations in the two
required threshold parameters. In this regard, one aspect
for future work is to develop algorithms for automatic
thresholding, that is to estimate the threshold parameters
from the data.
We proposed new variants of TR and, based on unbi-

ased in silico benchmarks, compared them with the orig-
inal versions of the algorithms. Several key observations
could be made:

1. The DR-FFL method [30] was inferior to all other TR
methods tested which led us to the conclusion that
TR should be employed not only between but also
within cyclic structures. The winning performance of
the original DR-FFL in the DREAM challenge can
mainly be attributed to its PG which is in parts
similar to the one used by PGnew.

2. We found that explicitly accounting for edge signs
almost always improves the results in terms of AUPR
but only to a very minor extent. While this is in

agreement with the observations made in [36], we
give here an extended explanation for this
unexpected result. Generally, neglecting the edge
sign can only be “harmful” during TR, if the true
network contains a negative feed-forward loop (FFL).
As an example, Figure 7 (left) shows a hypothetical
interaction graph containing one such negative FFL
between node A and E (consisting of a positive path
and a negative edge from A to E). If we now assume
that all nodes are perturbed in single perturbation
experiments we would get, in the ideal case, a PG as
shown in Figure 7 (right; weights not considered
here). This PG corresponds to the transitive closure
of the original graph, in which each node i induces a
significant effect on another node j if there is an edge
or path from i to j in the true graph. What we can
now see is that each edge contained in the PG but
not in the true graph (reflecting thus an indirect
effect) is part of a positive FFL consisting of this edge
and a path of the same sign. This happens because all
these edges will have the same sign as the path they
were induced from. Hence, if we compute the TR
within the unsigned version of this PG (e.g., by
neglecting the signs in the TR step or by setting all
signs to “+”) all edges that stem from indirect effects
and span one branch of the induced FFLs would still
correctly be removed.
Regarding the original negative FFL included in the
true graph (Figure 7, left), we cannot be sure which
sign it will get in the PG as there is a positive path as
well as a negative edge from A to E and, hence, the
direction of change in E when perturbing A cannot
be predicted uniquely. Only if the overall effect of A
on E measured during perturbation of A is negative
(i.e., the true edge of A to E is dominating over the
positive path from A to E), it may happen that it will

A

B

C

D

E

Single Perturbation

Experiments

(True) Interaction graph

A

B

C

D

E

+/−

Perturbation graph

Figure 7 Example of a (true) graph and its (perfect) perturbation
graph representing the transitive closure. An interaction graph
(left) and its (expected) perturbation graph which forms the transitive
closure of the original graph (right).



Pinna et al. BMC Systems Biology 2013, 7:73 Page 17 of 19
http://www.biomedcentral.com/1752-0509/7/73

be falsely removed during TR if edge signs are
neglected. However, when using edge weights for
(weighted) TR, it is rather unlikely that the path from
A to E fulfills the rule (2) or, for a 2-path used by
LTR, rule (3) since the measured overall effect from
A to E turned out to be negative, hence, the path
seems to have a low potential to transduce an effect
from A to E. Thus, it is unlikely that the true edge
A � E would be falsely removed.
To summarize this aspect, there is a low probability
that (weighted) TR removes a true edge within a
negative feed-forward loop and neglecting edge signs
in TR will therefore have only minor impact on the
reconstruction quality. This has important
consequences since then the computationally
expensive search for the shortest sign-consistent
paths (an NP-complete problem) can be safely
turned into a simple search for a shortest (unsigned)
path connecting a given pair of nodes (a polynomial
problem). Thus, when applying TRANSWESD to the
5000-nodes networks, we may then use an exact
(path_exact=1) instead of an approximate
(path_exact=0) sub-algorithm for computing
shortest signed path. In contrast, full_check=0 is
still required for TRANSWESD in large
networks.

3. With LTR and TRANSWESDs,w,2 we considered
local variants of TR removing an edge only if there is
an explaining path of length 2. Whereas
TRANSWESDs,w,2 performed well for the DREAM
challenge but unfavorable for the SysGenSIM data,
weighted LTR yielded superior performance in
almost all benchmark tests and only (signed or
unsigned) TRANSWESD applied to all paths could
deliver comparable results. We can thus first
conclude that using the multiplicative rule (3) is
better suited than the max rule (2) when focusing on
short paths. However, it remains still paradoxical
why TR restricted to paths of length 2 should be
sufficient. This can once more be illustrated by
Figure 7. If we again assume that the true graph
induces a complete PG (i.e., the transitive closure of
the true graph as shown on the right-hand side of
Figure 7) then we can indeed recognize that there is
always a 2-path that can, in principle, explain an edge
from an indirect effect (e.g., edge A → E is explained
by the 2-path A → B → E). Hence, in principle, all
false positive edges could be identified and removed
explaining why LTR exhibits good behavior.
However, one has to keep in mind that 2-paths may
contain edges that are themselves indirect effects (as
B → E in the example above), hence, the order of
edge removal might then become crucial. Here, the

strategy to cut lowest-confidence-edges first worked
apparently well in the benchmarks.
Again, showing that local TR based on 2-paths does
not lead to lower performance has important
consequences, as we can then restrict the search on
simple triangles whose detection is computationally
easier than detecting paths of arbitrary length. In
fact, unsigned (signed) LTR required in the average
only 8 (9) seconds in networks with 5000 nodes
whereas TRANSWESD (in approximation mode!)
needed 150 (260) seconds.

4. The SysGenSIM benchmark showed that edge
weights really matter to obtain good results with
LTR. Since (signed or unsigned) local LTR and
unsigned TRANSWESD are computationally feasible
in 5000-nodes networks and as they achieved
superior results in all benchmarks (outperforming
the winning methods of the DREAM4 challenge by
far) these techniques appear to be well-suited for the
reconstruction of large-scale regulatory networks
based on systematic perturbation experiments.

5. Applied to a realistic application scenario with gene
expression data from yeast mutants with single
knockouts of transcription factors we could
demonstrate that our approach delivers a high
enrichment of known interactions especially within
the top-ranked edge candidates. With this property,
our method holds great potential to identify true
unknown gene interactions that can subsequently be
validated in experiments.

A potential weakness of our PG- and TR-basedmethods
is the requirement to perturb each node in the network
at least once. At a genome-scale level, such datasets are
currently only available for a small number of organ-
isms. On the other hand, one might focus on smaller
sub-networks where all nodes can be perturbed. Further-
more, if m nodes out of n nodes can be perturbed in a
network, we can use the information of the correspond-
ing m perturbation experiments to (i) infer the complete
sub-network containing only the m perturbed nodes and
(ii) to infer edges leading from the m perturbed nodes
to the n − m unperturbed nodes. In the second of these
sub-networks, TR cannot work effectively (no edge will
be removed since only single edges and no paths between
these nodes exist) meaning that some of the (false posi-
tive) edges in the PG reflecting indirect edges cannot be
identified as such. However, the provided output might
still have its own value and indicate direct or indirect func-
tional relationships. In fact, we employed this approach
for the yeast knockout dataset where “only” the TFs were
knocked-out.
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We also emphasize that perturbation graphs (as a
requirement for applying TR) could also be constructed by
other approaches than systematic knockouts of all genes.
One example are genetical genomics data containing gene
expressions measurements from naturally occurring mul-
tifactorial perturbations (polymorphisms). As an example
for using PG- and TR-based methods based on genetical
genomics data see [50].
We noticed that LTR shares some similarities with

ARACNE presented in [11]. ARACNE also eliminates an
edge in a feed-forward loop consisting of three edges
(so-called triplets) if a certain weight condition is fulfilled.
However, there are several key differences since ARACNE
only operates on undirected and unsigned graphs and uses
different weights based on mutual information.
As an important additional results of our study,

we have generated new and unprecedented large-scale
benchmark datasets that, in contrast to comparable sim-
ulations, account for different noise levels. We think
that these datasets, which can be downloaded from
http://sysgensim.sourceforge.net/datasets.html, are gen-
erally useful for unbiased testing of network inference
methodologies complementing other available in silico
benchmarks.

Availability of supporting data
The presented inference algorithms and the 5000-gene
benchmark (the Pula-Magdeburg single-gene knockout
benchmark dataset) can be downloaded from http://
sysgensim.sourceforge.net/datasets.html.
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Additional file 2: List of the 300most confident edges in the
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most confident edges identified with LTRu,u from the yeast knockout
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