
Shin et al. BMC Systems Biology 2013, 7:83
http://www.biomedcentral.com/1752-0509/7/83
RESEARCH ARTICLE Open Access
Post-translational regulation enables robust
p53 regulation
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Abstract

Background: The tumor suppressor protein p53 plays important roles in DNA damage repair, cell cycle arrest
and apoptosis. Due to its critical functions, the level of p53 is tightly regulated by a negative feedback mechanism
to increase its tolerance towards fluctuations and disturbances. Interestingly, the p53 level is controlled by
post-translational regulation rather than transcriptional regulation in this feedback mechanism.

Results: We analyzed the dynamics of this feedback to understand whether post-translational regulation provides
any advantages over transcriptional regulation in regard to disturbance rejection. When a disturbance happens,
even though negative feedback reduces the steady-state error, it can cause a system to become less stable and
transiently overshoots, which may erroneously trigger downstream reactions. Therefore, the system needs to
balance the trade-off between steady-state and transient errors. Feedback control and adaptive estimation theories
revealed that post-translational regulation achieves a better trade-off than transcriptional regulation, contributing to
a more steady level of p53 under the influence of noise and disturbances. Furthermore, post-translational regulation
enables cells to respond more promptly to stress conditions with consistent amplitude. However, for better
disturbance rejection, the p53- Mdm2 negative feedback has to pay a price of higher stochastic noise.

Conclusions: Our analyses suggest that the p53-Mdm2 feedback favors regulatory mechanisms that provide the
optimal trade-offs for dynamic control.
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Background
Gene networks are constantly subject to noise or fluctua-
tions, which originate from variations in transcription,
translation, and environmental conditions. The stochastic
nature of gene networks has been the focus of many studies
(reviewed in [1,2]). There are at least three types of fluctua-
tions that affect gene network dynamics: 1) intrinsic noise
or fast fluctuations, 2) extrinsic noise or slow fluctuations,
and 3) periodic DNA replication-dependent oscillations [3].
Intrinsic noise arises from the inherent randomness during
transcription and translation, key processes for gene expres-
sion [4]. Extrinsic noise arises from the factors that univer-
sally affect the expression of all genes in a given cell, such
as variations in the number of RNA polymerase, ribosome,
etc. [1,2]. The third type of fluctuation is due to periodic
DNA replication in growing and dividing cells [3].
* Correspondence: xs66@cornell.edu
1School of Electrical and Computer Engineering, 402 Phillips Hall, Cornell
University, Ithaca, NY 14853, USA
Full list of author information is available at the end of the article

© 2013 Shin et al.; licensee BioMed Central Lt
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Nevertheless, gene networks are usually able to perform
their regulatory functions under the influence of such dis-
turbances [5], which provokes the question: How do they
manage to achieve this remarkable robustness? In control
theory, it is known that feedback, a situation in which two
(or more) dynamical sub-systems are connected in a way
that their dynamics are coupled, can make a system resili-
ent towards disturbances [6,7]. A well-known example of
feedback in the context of gene networks is negative auto-
regulation, in which a transcription factor represses the
transcription of its own gene and reduces the effects of
noise exerted on the transcription process [8-10].
Another example is the p53-Mdm2 negative feedback,

in which p53 transcriptionally activates Mdm2, an E3
ubiquitin ligase, while Mdm2 targets p53 for degradation
(Figure 1A) [11]. As one of the most studied tumor sup-
pressor proteins [12,13], p53 plays a key role in repairing
DNA damage, arresting cell cycle and, when damage is
beyond repair, activating apoptosis (programmed cell
death) [14,15]. Therefore, it is important for the cell to
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Figure 1 The p53-Mdm2 Feedback Loop. (A) p53 transcriptionally activates Mdm2, while Mdm2 degrades p53. (B) The p53 and Mdm2 levels
oscillate upon DNA damage [21]. (C) Under normal conditions, Mdm2 is not suppressed by ATM and the intact feedback rejects disturbances.
Upon DNA damage when p53 oscillates, the feedback is suppressed to allow p53 oscillation.
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regulate p53 robustly, because disturbances may trigger
unwanted cell cycle arrest or apoptosis. We have previ-
ously shown that the p53-Mdm2 negative feedback can
reject disturbances and improve robustness under nor-
mal (non-stressed) conditions [16]. Intuitively, the nega-
tive feedback tries to compensate for changes in the p53
level, so that the impact of any disturbances is offset or
at least attenuated.
The feedback is suppressed to stop disturbance rejec-

tion during DNA-damage. Within minutes of exposure
to DNA-damaging agents (UV, X-rays, etc.), the p53 pro-
tein level increases rapidly without any significant
change in the p53 mRNA level, for p53 is stabilized and
no longer degraded by Mdm2 at the normal rate [17,18].
The suppression of the feedback and the stoppage of dis-
turbance rejection allow external factors such as ATM
to modulate p53 in response to stress [19,20], which can
result in pulses or sustained oscillation of p53 [21]
(Figure 1B). Therefore, the feedback mechanism is adap-
tive – under normal conditions the feedback rejects
disturbance to maintain a low steady level of p53 whereas
upon DNA damage, the feedback is inactivated to allow
pulses or oscillation [16] (Figure 1C).
Interestingly, even though the negative feedback is

stronger in normal conditions to reject disturbances, it
is well known that feedback can also cause instability,
which leads to transient fluctuation (overshoot) and os-
cillation [7]. Both the strength and the delay of a nega-
tive feedback can contribute to instability. As previous
measurements showed, the transcriptional regulation of
Mdm2 by p53 has a noticeable delay [21] (Figure 1B).
Therefore, to maintain a steady p53 level in normal
conditions, the p53-Mdm2 feedback faces a dilemma:
the stronger the feedback is to reject disturbances at
the steady state, the more likely the feedback will
become unstable and cause transient or sustained
fluctuations. The feedback has to carefully balance the
trade-off between steady-state and transient errors for
disturbance rejection [22].
Does the p53-Mdm2 feedback adopt any strategy to

optimize this trade-off? It is intriguing that in this nega-
tive feedback loop Mdm2 downregulates p53 through a
post-translational mechanism (protein degradation), which
is not as energy efficient as transcriptional repression
because p53 is being produced and actively degraded
simultaneously. However, post-translational regulation has
distinct dynamic properties and is relatively faster than
transcriptional regulation, so it is conceivable that post-
translational regulations provides an advantage over tran-
scriptional regulation in terms of the robustness-stability
trade-off despite its less energy efficiency. To test this hy-
pothesis, we used techniques from feedback control and
adaptive estimation theories to analyze the p53-Mdm2
feedback loop.

Results and Discussion
p53-Mdm2 feedback model
To study the p53-Mdm2 feedback, we started with a
previously published p53-Mdm2 feedback model that
matches experimental measurements [23] and added a term
representing ATM (Eqs. 1–3):

dx tð Þ
dt

¼ 0 ð1Þ

dy tð Þ
dt

¼ pzyz tð Þ−pxyx tð Þ−pyy tð Þ ð2Þ

dz tð Þ
dt

¼ −pyzy tð Þ−pzz tð Þ ð3Þ

where x(t), y(t), and z(t) represent ATM, Mdm2, and p53
levels, respectively. In Eq. 1, since ATM is inactive under
normal conditions, the ATM levels are assumed to be
low and constant and the rate of change is zero. Eq. 2
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is composed of the p53-dependent production of Mdm2
(first term), ATM-dependent suppression of Mdm2 (sec-
ond term), and Mdm2 degradation (third term). Eq. 3 is
composed of the Mdm2-dependent suppression of p53
(first term) and p53 degradation (second term). Note that
all the parameter values are supposed to be positive. Fol-
lowing the practice in the published model [23], Eq. 3 does
not include the constant basal production rate because it
has no effect on the frequency domain and disturbance
rejection analysis we will perform next [23]. A discrete-time
model for the p53-Mdm2 feedback system was also built
for parameter estimation, which will be described in later
sections of the paper.
Feedback reduces steady-state error
Eq. 3 is rather generic and can represent alternative
p53 suppression mechanisms by Mdm2. A transcrip-
tional mechanism would only affect pyz in the first
term because the strength of transcriptional suppres-
sion only depends on the number of Mdm2 mole-
cules (suppressor) but not on the number of p53
protein molecules. In contrast, a post-translational
mechanism would affect both pyz (first term) and pz
(second term), because the degradation rate of p53
depends on both the number of p53 molecules and the
number of Mdm2 molecules. This generic equation
Figure 2 Feedback analysis. (A) Block diagram representation of the feed
y(t), and z(t). GY(s) and GZ(s) are the transfer functions. E(s) is the Laplace tra
the disturbance. (B) Time responses (unit step response) for a second-orde
damping ratio (ζ) increases from 0 to near 1 the %OS decreases from 100%
feedback model. X(z), Y(z), and Z(z) are the z-transforms of x(i), y(i), and z(i).
error e(i) between the input and output. D(z) represents the disturbance.
enables us to derive a common set of equations to
compare the loop dynamics between transcriptional and
translational regulation.
Eqs. 1–3 can be represented as a block diagram using

the Laplace transform [24] (Figure 2A). X(s), Y(s), and Z
(s) denote the Laplace transforms of x(t), y(t), and z(t)
respectively. E(s) is the difference, or error, between the
input, pxyX(s), and the output, pzyZ(s). D(s) represents
any disturbance exerted on p53. GY(s) and GZ(s) are
the transfer functions that represent the Mdm2 and
p53 systems as we showed previously [24]:

GY sð Þ ¼ 1
sþ py

; GZ sð Þ ¼ 1
sþ pz

ð4Þ

From Figure 2A, E(s) can be expressed as [16]:

E sð Þ ¼ Z sð Þpzy−X sð Þpxy→ Z sð Þ ¼ E sð Þ þ X sð Þpxy
pzy

ð5Þ

From the same figure, Z(s) can be expressed as:

Z sð Þ ¼ −E sð ÞGY sð ÞpyzGZ sð Þ þ D sð ÞGZ sð Þ ð6Þ
back in Eqs. 1–3. X(s), Y(s) and Z(s) are the Laplace transforms of x(t),
nsform of the error e(t) between the input and output. D(s) represents
r system with different damping ratios (pz = py = 0.01 min-1). (C) As the
to near 0%. (D) Block diagram representation of the discrete-time

GY(z) and GZ(z) are the transfer functions. E(z) is the transform of the
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Substituting Eq. 6 for Z(s) into Eq. 5, we obtain:

E sð Þ þ X sð Þpxy
pzy

¼ −E sð ÞGY sð ÞpyzGZ sð Þ þ D sð ÞGZ sð Þ

→E sð Þ ¼ −pxy
1þ pyzpzyGY sð ÞGZ sð ÞX sð Þ

þ pzyGZ sð Þ
1þ pyzpzyGY sð ÞGZ sð ÞD sð Þ

ð7Þ
The second term in Eq. 7 represents the contribution

to E(s) from D(s), the Laplace transform of the disturbance
signal. We denote this term as ED(s) and its corresponding
time domain function as eD(t):

ED sð Þ ¼ L eD tð Þf g ¼ pzyGZ sð Þ
1þ pzyGY sð ÞpyzGZ sð ÞD sð Þ ð8Þ

Using the final value theorem and assuming a step
disturbance (D(s) = 1/s), we can determine the steady-
state error due to the disturbance as follows:

lim
t→∞

eD tð Þ ¼ lim
s→0

sED sð Þ ¼ lim
s→0

spzyGZ sð Þ
1þ pzyGY sð ÞpyzGZ sð ÞD sð Þ

¼ pzypy
pypz þ pyzpzy

ð9Þ
According to Eq. 9, increasing either pyz or pz will

reduce the steady-state error, because both terms are
only in the denominator. Therefore, either a stronger
negative feedback through the Mdm2 suppression of p53
(pyz) or less stable p53 (pz) can reduce the steady-state
error. Interestingly, as stated previously, post-translational
degradation of p53 by Mdm2 increases both pyz and
pz (degradation rate), while a hypothetical transcrip-
tional suppression would only increase pyz. Hence post-
translational suppression of p53 may be more efficient at
reducing steady-state error than transcriptional suppression,
even though it is less energy efficient.

Trade-off between steady-state and transient errors
The feedback has to minimize its transient response to
disturbances in addition to steady-state error; otherwise,
a temporary overshoot of the p53 level may trigger
unintended effects. We therefore examine the percent-
age overshoot (%OS), which is the amount that the p53
level transiently overshoots the final steady-state level
(expressed as a percentage of the final value). Because %
OS is a function of the damping ratio (ζ), we derive a
second-order transfer function representative of the block
diagram in Figure 2A to determine its damping ratio (ζ).
Substituting Eq. 5 for E(s) in Eq. 6, the transfer function
G(s), which directly relates the input X(s) to the output
Z(s), can be expressed as:

Z sð Þ ¼ Z sð Þpzy−X sð Þpxy
n o

GY sð ÞpyzGZ sð Þ þ D sð ÞGZ sð Þ

→Z sð Þ ¼ pxyGY sð ÞpyzGZ sð ÞX sð Þ
1þ pzyGY sð ÞpyzGZ sð Þ þ

D sð ÞGZ sð Þ
1þ pzyGY sð ÞpyzGZ sð Þ

→G sð Þ ¼ Z sð Þ
X sð Þ ¼

pxyGY sð ÞpyzGZ sð Þ
1þ pzyGY sð ÞpyzGZ sð Þ

¼ pxypyz

s2 þ py þ pz
� �

sþ pypz þ pyzpzy

ð10Þ
From Eq. 10, the natural frequency and damping ratio

can be expressed as [24]:

ωn natural frequencyð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pypz þ pyzpzy

p ð11Þ

ζ damping ratioð Þ ¼ py þ pz
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pypz þ pyzpzy

p ð12Þ

And the %OS is given by [7]:

%OS ¼ 100⋅e
−ςπffiffiffiffiffiffi
1−ς2

p
� �

ð13Þ
The typical time responses (unit step responses) for a

second-order system with different damping ratios are
shown in Figure 2B (pz = py = 0.01 min-1). The %OS, or
overshoot of the p53 level, decreases when the damping
ratio increases (Figure 2C).
According to Eq. 12, increasing pyz monotonically

reduces the damping ratio and increases %OS, for pyz
only appears in the denominator. Since, transcriptional
suppression can only influence pyz, a transcriptional
negative feedback is limited by the trade-off between
steady-state error and transient overshoot – increasing
the strength of the negative feedback reduces steady-state
error at the expense of increasing transient overshoot.
On the other hand, how does pz affect the overshoot?

If we take the partial derivative of the damping ratio in
regard to pz, we get:

∂ζ
∂pz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pypz þ pyzpzy

p
−

py pyþpzð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pypzþpyzpzy

p

2 pypz þ pyzpzy
� � ð14Þ

∂ζ
∂pz

¼ 0⇒pz ¼ py−
2pyzpzy
py

ð15Þ

The second-order partial derivative of Eq. 14 shows that ζ

reaches the minimum value at pz ¼ py−
2pyzpzy
py

ðpy;pz > 0→
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p2y > 2pzypzyÞ . When pz < py−
2pyzpzy
py

, ζ decreases with pz;

when pz > py−
2pyzpzy
py

, ζ increases with pz. This suggests

that when pz > py−
2pyzpzy
py

, increasing pz can decrease both

the steady-state error and overshoot (which is inverse to
the damping ratio). This insight potentially explains why
cells choose to spend extra energy producing and then ac-
tively degrading p53 under normal conditions – it rejects
disturbances by reducing both the steady-state error and
the transient overshoot. Furthermore, post-translational
suppression influences both pyz and pz, because the
Mdm2-mediated degradation rate of p53 depends on both
Mdm2 and p53 concentrations. This suggests that post-
translational suppression can achieve a better trade-off than
transcriptional suppression, which can only influence pyz.
To quantitatively verify these analytical insights, we

calculated the steady-state error, damping ratio, and %
OS using published, experimentally measured parameter
values (pyz = 0.8 h-1 [23], pzy = 0.8 h-1 [23], py = 2.0 h-1

(half-life ≈ 20 min) [25], pz = 2.0 h-1 (half-life ≈ 20 min)
[26]). As pyz increases from 0.5 to 3.0, the steady-state
error decreases while the %OS increases (the damping
ratio decreases) (Figure 3A, left panel). Hence there is a
Figure 3 Trade-off between steady-state error and transient overshoo
(right panel) when pyz is increased from 0.5 to 3.0. The orange cross denot
(left panel) and the trade-off curve (right panel) when pz is increased from
(C) Increasing pyz or pz can reduce the steady-state error. (D) Increasing pyz
simultaneously increasing pz.
trade-off between steady-state error and transient over-
shoot (Figure 3A, right panel), consistent with the previous
analysis. Any further decrease of the steady-state error
from the system operating point (pyz = 0.8) will have to pay
a hefty penalty for transient overshoot. On the other hand,
as pz is increased from 0.5 to 3.0, the %OS initially
increases but then decreases (Figure 3B, left panel), exactly
as Eqs. 14 and 15 have indicated. The system operates at a

point (py = 2.0, pz = 2.0) where pz≥py−
2pyzpzy
py

, which allows

the system to reduce both the steady-state error and %OS
through pz (Figure 3B, right panel). The combined effect of
pyz and pz is shown in Figure 3C and D. The steady-state
error can be decreased by either increasing pyz or pz
(Figure 3C), but increasing pyz can increase %OS (Figure 3D),
as shown by the arrows in the figures. Therefore, by modu-
lating both pyz and pz, post-translational suppression can
achieve better steady-state error and %OS than transcrip-
tional suppression, which only modulates pyz.
Interestingly, the fact that pz can improve both steady-

state error and %OS seems to suggest that cells should
keep increasing pz to achieve ever better robustness.
However, it is worth noting that there is another trade-
off factor that ultimately comes into the picture, which
t. (A) Steady-state error and %OS (left panel) and the trade-off curve
es the operating point (pyz = 0.8). (B) Steady-state error and %OS
0.5 to 3.0. The orange cross denotes the operating point (pz = 2.0).
can increase %OS. A better operating point can be achieved by
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is the energy cost. Higher pz means that the cells have to
spend more resources to rapidly produce and then
degrade p53 in a “futile” cycle, so the degradation rate
cannot be increased indefinitely. The cell has to balance
between robustness and energy spending to achieve the
optimal operating point.
Altogether, our analytical and quantitative analyses sug-

gest that cells spend extra energy to produce and degrade
p53 simultaneously under normal conditions in order to
maintain a more robust p53 level. By modulating both pyz
and pz, post-translational suppression of p53 enables the
p53-Mdm2 feedback to achieve a better trade-off by redu-
cing both steady-state errors and transient overshoots. On
the contrary, transcriptional suppression only modulates
pyz, which does not improve the overall trade-off.

Robustness analyses with pole plots
As mentioned at the beginning of the paper, gene networks
fluctuate over time under the influence of extrinsic and
intrinsic noise. The range of pyz and pz in Figure 3 demon-
strated the robustness trade-off between steady-state and
transient disturbance rejection, but it will be useful to
examine the trade-off within the range of parameter
fluctuation that a realistic cell has to experience. To
estimate the time-varying parameter values from
time-series data of the p53-Mdm2 network [21], we
constructed a corresponding discrete-time model, which
can be described by Eqs. 16–18:

x ið Þ ¼ x i−1ð Þ ð16Þ
y ið Þ ¼ wzyz i−1ð Þ−wxyx i−1ð Þ þ wyy i−1ð Þ ð17Þ

z ið Þ ¼ −wyzy i−1ð Þ þ wzz i−1ð Þ ð18Þ
where x(i), y(i), and z(i) represent ATM, Mdm2, and p53
levels respectively. As before, the ATM level is assumed to
be low and constant under normal conditions. wxy repre-
sents the suppression of Mdm2 by ATM, wyz represents
the suppression of p53 by Mdm2, wzy represents the tran-
scriptional activation of Mdm2 by p53, wy represents the
stability of Mdm2 (1-wy represents Mdm2 degradation),
and wz represents the stability of p53 (1-wz represents p53
degradation). Note that wy and wz represent stability
rather than degradation, opposite to py and pz. Block
diagram representation of the discrete-time feedback
model is shown in Figure 2D. Consistent with the continu-
ous model, the discrete-time model confirms that the
steady-state error can be decreased by increasing wyz or
decreasing wz (Eq. 19, also see Eq. S11 in Additional file 1).
Note that decreasing wz means increasing p53 degradation
and corresponds to increasing pyz.

lim
i→∞

eD ið Þ ¼¼ wzy 1−wy
� �

1−wy
� �

1−wzð Þ þ wyzwzy
ð19Þ
We used the time-series experimental data [21] and an
NLMS adaptive filter [27,28] to track the time-varying
parameters of the p53-Mdm2 model (see Additional file 1)
(Figure 4A). The published experimental data [21] and
MATLAB code used to estimate the parameter ranges
are included in Additional files 2, 3, 4 and 5. Based on the
estimates, we examined how wyz and wz affect %OS.
Using Z-transform [29], we first derived a transfer func-

tion, G(z), which represents the feedback system shown as
the block diagram in Figure 2D (see Additional file 1):

G zð Þ ¼ Z zð Þ
X zð Þ ¼

wxyGY zð ÞwyzGZ zð Þ
1þ wzyGY zð ÞwyzGZ zð Þ

¼ wxywyz

z2− wy þ wz
� �

z þ wywz þ wyzwzy
ð20Þ

To investigate the transient behavior and stability of G
(z), we plotted its poles using the MATLAB Robust
Control Toolbox (Figure 4B-D), which can be reproduced
using the supplementary MATLAB file (Additional file 6).
For each map, 100 points were calculated based on Monte
Carlo sampling of the estimated parameter range in
Figure 4A. We first plotted the poles for the DNA damage
condition, under which the Mdm2 suppression of p53
(the negative feedback) is weakened to stop disturbance
rejection (Figure 4B). Consistent with the weakening of
the feedback, the plot shows that the poles are mostly real
and the system is stable, with damping ratios ranging
from 0.8 to 1.0.
Western blot measurements of the total and ubiquitinated

p53 levels showed that the suppression of p53 is 3.67 fold
higher under the normal condition compared to the DNA
damage condition [30]. We first increased wyz by 3.67 fold
(from 0.1656±0.1169 to 0.6708±0.1169) to evaluate how
transcriptional suppression will affect transient overshoot
and stability. The increased wyz values shifted poles higher
on the map compared to the DNA damage condition
(Figure 4C). The bigger imaginary components of the
poles indicate that the damping ratios are lower (0.4 – 0.8)
and the corresponding %OS values are higher for the
system, therefore confirming our previous conclusion that
transcriptional suppression reduces the steady-state error
at the expense of transient overshoot and stability.
However, if the increase of wyz is accompanied by a de-

crease of wz (stability of p53) by 3.67 fold (0.3627±0.0825
to 0.0998±0.0825), which approximates post-translational
suppression, the poles are located closer to the real axis.
The smaller imaginary components of the poles indicate
that the damping ratios are greater (the %OS values
are smaller). Therefore, post-translational suppression
can reduce the steady-state error without a hefty
penalty of transient overshoot (%OS) and stability, unlike
transcriptional suppression.



Figure 4 Stability analysis. (A) Mean and standard deviation of each parameter identified by the adaptive filter algorithm: wy: 0.8737±0.0830,
wz: 0.3627±0.0825, wzy: 0.2662±0.0343, wyz: 0.1656±0.1169. (B) Pole map under the DNA damage condition when the feedback is weakened. The
poles are close to the real axis and the corresponding damping ratios range mostly from 0.8 to 1.0. (C) Poles are located higher with bigger
imaginary components and lower damping ratios (0.4 – 0.8) when wyz is increased. (D) Poles are closer to the real axis with bigger damping
ratios compared to (C) when wz is decreased proportionally. T in the figure denotes the sampling period (0.11 hr). The numbers next to the
arrow indicate the corresponding damping ratios.
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Post-translational regulation enables faster responses
with predictable level shifts
Post-translational regulation has another benefit over
transcriptional regulation – it enables faster responses
with more consistent amplitude. This is biologically
significant, as cells must react quickly to external
modulators (e.g. ATM) and stress conditions with a
predictable shift of p53 levels. From Eq. 3, the step
response of the p53-Mdm2 feedback can be shown as

z tð Þ ¼ ‐pyz⋅Y

pz
1−e−pztð Þ ð21Þ

with the assumption that y(t) has a constant value of
Y. Eq. 21 suggests that pz but not pyz determines the
response time (the time needed for z(t) to reach the
half steady-state value) (Figure 5A and B). However,
the increase in speed comes at a cost; it decreases the
response amplitude as shown in Figure 5B. Interestingly,
increasing both pyz and pz allows the system to achieve a
faster response time with constant steady-state amplitude
(Figure 5C), because the respective increases of pyz and pz
offset each other at the steady level (Eq. 21). Therefore, by
modulating both pyz and pz, post-translational suppression
can generate more prompt and consistent p53 response to
stress conditions. Indeed, cells respond to DNA damage
by modulating the post-translational degradation of p53.

Validation by a non-linear, mechanistic model
So far, our analyses have been performed using the
linear p53-MDM2 feedback model (Eq. 1–3) modified
from Geva-Zatorsky et al. [23]. Even though this
model matches experimental measurements [23], it
does not capture the non-linear aspects of the nega-
tive feedback loop. Therefore, the linear model, and
hereby its analyses, can only be applied to the first
order approximation.



Figure 5 Step responses of p53. (A) pyz does not influence the response time. (B) pz decreases the response time but also the amplitude of
the response. (C) Increasing pyz while decreasing pz enables faster response time with constant amplitude.
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To test whether our findings are still valid when
non-linear effects are taken into consideration, we
built a mechanistic model of the p53-MDM2 feedback
[Eqs. 22–25]:

d Mdm2mRNA½ �
dt

¼ β1
P53½ �n

K 1
n þ P53½ �n −α1 mdm2mRNA½ �

ð22Þ
d Mdm2½ �

dt
¼ β2 mdm2mRNA½ �−α2 Mdm2½ � ð23Þ

d p53mRNA½ �
dt

¼ β3−α3 p53mRNA½ � ð24Þ

d P53½ �
dt

¼ β4 p53mRNA½ �−α4 P53½ �−γ P53½ �
K2 þ P53½ � Mdm2½ �

ð25Þ
where, [mdm2mRNA], [Mdm2], [p53mRNA], and [P53]
denote the mRNA and protein levels of p53 and
Mdm2. β1 and β3 denotes transcription rates, and β2
and β4 denote translation rates of Mdm2 and p53. αs
(s = 1,2,3,4) denote mRNA and protein degradation
rates. Transcriptional activation of Mdm2 by p53 is
modeled by a Hill function, where n is the hill coeffi-
cient and K1 is the dissociation constant. Mdm2-
mediated p53 ubiquitination and degradation are
modeled by a Michaelis-Menten (MM) function as
described by Xu et al. [31]. γ is the reaction rate of
p53 ubiquitination by Mdm2, and K2 is the saturation
constant.
To measure disturbance rejection, p53 production was

increased by 1% from its steady-state level (simulated by
a step function). Steady-state error and %OS were then
calculated based on the following equations:

Steady−state error ¼ SSold−SSnewj j
SSold

ð26Þ

%OS ¼ OS−SSnewj j
SSnew

ð27Þ

where OS is the overshoot level, SSold is the p53 steady-
state level before perturbation, and SSnew is the p53
steady-state level after perturbation (Figure 6A).
When γ, the degradation rate of p53 by Mdm2-mediated

ubiquitination, increases, the %OS initially increases but
then decreases, which allows the system to reduce both the
steady-state error and %OS through gamma (Figure 6B).
This plot is similar to the previous analysis with the linear
model when pz is increased (Figure 3B). Therefore, the
mechanistic model confirmed the insight from the linear
model that post-translational suppression enables the
p53-Mdm2 negative feedback to reduce both steady-state
error and %OS.
We explored the parameter space to examine the

different operating regions of the non-linear model, and
found that the above tradeoff trend is generally pre-
served even though the absolute values of steady-state
error and %OS vary (Figure 6C). This is probably due to
the fact that the model is roughly piece-wise linear at
each operating point when given a modest disturbance,
so that higher-order effects do not dominate the first-order
behavior predicted by the linear model.
Besides non-linearity, the linear model is also overly

simplistic in terms of another critical aspect of the
p53-Mdm2negative feedback, which is time delay. Time



Figure 6 Disturbance rejection simulation of a mechanistic model. (A) Simulation of a step function disturbance to p53 production. The
equations illustrate how the steady-state error and %OS are calculated. (B) Steady-state error and %OS (top panel) and the trade-off curve
(bottom panel) when γ increases. (C) Plots of %OS and steady-state error vs. γ with varying Mdm2 levels. (D) Plots of %OS vs. γ with varying time
delay. (E) Time delay can cause sustained oscillation (β1=1, β2=1, β3=1, β4=1, α1 =1, α2 =0.01, α3 =1, α4 =0.01, n =2, K1 =10, K2 =100, γ=10-2 - 102).
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delay in a negative feedback loop can decrease stability,
increase %OS and cause sustained oscillation. To examine
how time delay affects disturbance rejection, we added
explicit delay terms between transcription and translation
[Eqs. 28–31]:

d mdm2mRNA½ �
dt

¼ β1
P53½ �n

K1
n þ P53½ �n −α1 mdm2mRNA½ �

ð28Þ
d Mdm2½ �

dt
¼ β2 mdm2mRNA½ � t−τð Þ−α2 Mdm2½ � ð29Þ

d p53mRNA½ �
dt

¼ β3−α3 p53mRNA½ � ð30Þ

d P53½ �
dt

¼ β4 p53mRNA½ �

� t−τð Þ−α4 P53½ �−γ P53½ �
K2 þ P53½ � Mdm2½ �

ð31Þ
where τ denotes the time delay between transcription and
translation.
Simulations with varying time delay reveal that delay

does not affect steady-state error but increases %OS,
which is consistent with the proposition that time delay
decreases stability of negative feedback loops (Figure 6D).
A longer delay also increases the likelihood of sustained
oscillation (Figure 6E).

Stochastic simulation
So far, the deterministic p53-Mdm2 models have
shown how the negative feedback helps reject external
disturbances. However, how does the feedback affect
intrinsic, stochastic noise? To understand this issue,
we constructed a mechanistic, kinetic model and performed
stochastic simulations using the MATLAB SimBiology
Toolbox (see Additional file 1) (Figure 7A). The mean
and standard deviation of the steady-state p53 levels
are calculated based on stochastic runs (Figure 7B).
We varied γ, the degradation rate of Mdm2-ubiquitinated
p53, while keeping the p53 level constant, to investi-
gate how the negative feedback affects p53 variance
(Figure 7C). The stochastic noise was then calculated
as the variance normalized by the mean (Figure 7D).
These stochastic simulations reveal that stochastic noise
on p53 increases when γ increases. This suggests that
while Mdm2-mediated p53 degradation improves disturb-
ance rejection, it pays the price of amplifying stochastic
noise. Hence, the p53-Mdm2 negative feedback loop has
to balance the trade-off between disturbance rejection and
stochastic noise.



Figure 7 Stochastic simulation of the feedback loop. (A) p53 levels during repeated stochastic runs. (B) Mean and standard deviation of the
steady-state p53 levels calculated from stochastic runs. (C) Mean and standard deviation of p53 with varying γ. We maintained a relatively
constant p53 level by adjusting its natural degradation rate accordingly. (D) Variance normalized by mean increases with γ.
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Conclusions
In summary, our analyses indicate that cells maintain robust
p53 levels and reject disturbances by simultaneously produ-
cing and degrading p53, even though this process is more
energy intensive. Within the p53-Mdm2 negative feedback
loop, post-translational suppression of p53 by Mdm2
achieves a better trade-off between steady-state and transi-
ent errors than transcriptional suppression, which poten-
tially explains why the former has been experimentally
observed in the cell. Furthermore, post-translational sup-
pression enables p53 to respond faster to stress conditions
with a more predictable level shift. Understanding these nu-
ances allows us to appreciate the complexity of regulatory
networks, which will potentially lead to better therapeutics.
Besides ubiquitination, p53 activity is also heavily regulated

by phosphorylation and nucleocytoplasmic shuttling [32-35].
Interestingly, these post-translational processes provide simi-
lar beneficial tradeoff between steady-state errors and over-
shoot, while being faster and less energy intensive than
protein degradation. It is probably not a coincidence then
that p53 has multiple phosphorylation sites and is shuttled
alongside Mdm2 between nucleus and cytoplasm. Therefore,
protein degradation is only one of several post-translational
mechanisms that enhance the robustness of the system.
Increasing degradation rather than reducing production
might be a common strategy evolved by biological systems
for robustness. For example, hematopoietic stem cells con-
tinuously go through apoptosis [36], which seems energy-
inefficient and futile as the protein degradation we
discussed. However, our analysis would suggest that regulat-
ing apoptosis rather than cell division may enable the stem
cell population to become more robust to disturbances and
respond faster to changes. The fact that biological systems
employ mechanisms for robustness at many different levels
raises an interesting question - how does robustness at each
level contribute to the overall robustness of the whole sys-
tem? Undoubtedly challenging, attempts to answer this
question will help unravel the underlying design principles
of complex biological systems.

Methods
Computational methods
Ordinary differential and difference equations were used for
physics-based modeling of the p53-Mdm2 feedback loop
(see Additional file 1 for the derivation of the p53-Mdm2
discrete-time model from underlying physics). Parameter
ranges of the discrete-time model were estimated using the
Normalized Least Mean Squares (NLMS) method
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detailed in Additional file 1. The experimental data [21]
and MATLAB (Mathworks, USA) codes are provided
as (Additional files 1, 2, 3, 4 and 5). Steady-state and
transient error analysis was performed using Laplace
and Z-domain analysis (see Additional file 1 for steady-
state error analysis using the discrete-time model).
The Monte Carlo method and MATLAB Robust Control
Toolbox (Mathworks, USA) were used for the estimation-
based robustness analysis (see Additional file 6).

Image extraction and fluorescence quantification
285 Image frames were extracted from the video file [21]
and the fluorescence quantification of p53 and Mdm2
was carried out using the LabVIEW Vision Assistant
2010 (National Instruments, USA). We manually marked
the location of each cell nucleus in each frame and 285
data points were obtained for each protein.

Additional files

Additional file 1: Supplementary document.

Additional file 2: p53 data.

Additional file 3: Mdm2 data.

Additional file 4: p53-Mdm2 parameter tracking using NLMS
(Mdm2 estimation).

Additional file 5: p53-Mdm2 parameter tracking using NLMS
(p53 estimation).

Additional file 6: p53-Mdm2 discrete uncertain model: stability
analysis.
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