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Abstract

Background: The complexity and multiscale nature of the mammalian immune response provides an excellent test
bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically,
mathematical models of the immune response focused on subsets of the immune system and/or specific aspects
of the response. Mathematical models have been developed for the humoral side of the immune response, or for
the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system
complexity. We propose here a framework for integration of subset models, based on a system biology approach.

Results: A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion
by integrating published subset models and adding novel features. The approach used to build the model includes
the formulation of the network of interacting species and the subsequent introduction of rate laws to describe
each biological process. The resulting model represents a multi-organ structure, comprised of the target organ
where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types
accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell
activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition,
generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment,
differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The
model is a hybrid structure containing information from several mammalian species. The structure of the network
was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth
factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The
results demonstrate how this framework can be used to integrate mathematical models of the immune response
from several published sources and describe qualitative predictions of global immune system response arising from
the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological
findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne
pathogen and the consequences of accounting for regulatory T-cells.
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Conclusions: The final result of this work is a postulated and increasingly comprehensive representation of the
mammalian immune system, based on physiological knowledge and susceptible to further experimental testing
and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses
under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor
formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological
response features as our knowledge of the immune system advances.

Keywords: Biological networks, Immune response, Mathematical modeling, Ordinary differential equation systems,
Systems biology
Background
Mathematical models are a natural approach to improve
our understanding of complex biological systems, and
ultimately enabling us to predict their behavior and con-
trol them [1]. In particular, the intricacies and nonlinear
nature of the mammalian immune response have at-
tracted considerable attention over the years [2], in no
small part due to the role of the immune response in a
variety of relevant human conditions. In addition, the
existence of a mathematical model allows one to explore
the known differences in immunity development be-
tween human and non-human species [3] by altering or
excluding specific pathways, as dictated by experimental
findings. The basic components of interest would in
principle include: cellular or cytotoxic responses (i.e., the
development of cells from the T-lineage that attack anti-
gens directly), humoral responses (i.e. the endogenous
production of antibodies from cells of the B-lineage that
bind to the antigen receptor and hasten its removal) and
signaling features (mainly, but not exclusively, through
the cytokine network) [4].
In general, the development of quantitative models is

often based on the selection of features of interest and
their description in mathematical form, followed by their
functional integration into a model that can be interro-
gated and/or used to predict features of interest. Such
features can then be compared to experimental data. Simi-
lar procedures are followed for immune response models,
but due to the system’s complexity, modeling and simu-
lation efforts have focused on specific subsets of the
system, such as the cellular responses [5-7], humoral
responses [8,9] and/or cytokine networks [10,11], while
sometimes excluding or simplifying other components
from the model. As a general consideration, the develop-
ment of comprehensive models is difficult and has to
contend with the integrated network nature of the sys-
tem, where the addition of one novel component neces-
sarily requires defining the interactions of the new item
with the remainder of the network.
Several modeling formalisms have been used in deve-

loping models of the immune system. Historically, these
have been mostly categorized as differential equation
models or agent-based models. Agent-based models or
cellular automata models of the immune response have
attracted great interest [12] since very early studies [13]
and have been refined and proposed over the years in a
manner that is responsive to new knowledge [14,15].
Their greatest strength is their flexibility and relative
ease of use [16], which makes them suitable to model
very complex systems without having to mechanistically
specify the known component interactions. Instead, the
system is defined in terms of “computer agents”, which
are sets of rules by which individual actors (i.e. popula-
tions of cells, or even individual cells) are created, inter-
act and are destroyed. The modeling effort then focuses on
monitoring the interactions among agents, which gives rise
to complex, sometimes emergent behaviors that, depending
on the rule base, can provide a striking similarity to the tem-
poral evolution of the system being represented. Such
models can then be used to develop answers to complex
problems, including therapy optimization [17,18]. As others
have pointed out [2], despite their power, challenges remain
with agent-based models, including the availability of widely
accepted software and of model checking and goodness of fit
strategies that resemble those commonly used for differential
equation models. Differential equation models have provided
tremendous insight in the dynamics of complex immuno-
logical networks [19,20] and are still widely used, relatively
easier to communicate and more readily shared than agent-
based models. Some of these models can achieve remark-
able degrees of complexity and realism [21]. In addition,
differential equations form the backbone of translational
pharmacokinetic-pharmacodynamic (PK-PD) models [22,23],
the class of models that describe how drug dose influences
response through quantitatively linking the drug dose to ex-
posure (pharmacokinetic [24,25]) and the exposure to response
(pharmacodynamic [26]) in a living system. These historically
are the models of choice in drug research and development.
The integration of multi-scale, realistic models of

physiology with pharmacotherapeutic models is a desi-
rable goal that would allow more mechanistic, predictive and
overall useful models for drug research and development
[27], in addition to enhancing collaborative efforts between
biology and modeling. This effort is receiving renewed
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attention through the area of “systems pharmacology”
[28], as explored in two successful interdisciplinary
workshops hosted by the National Institutes of Health
in 2008 (http://meetings.nigms.nih.gov/?ID=3447) and
2010 (http://meetings.nigms.nih.gov/?ID=8316). Issues re-
lated to efficient model sharing and model construction
are also the purview of the Interagency Modeling and
Analysis Group (IMAG) (http://www.imagwiki.nibib.nih.
gov). Building these models accurately and efficiently repre-
sents a significant challenge. This has prompted the develop-
ment of sophisticated software to facilitate integration of
separate submodels [29] and parallel computation [30].
The recent availability of computational environments

to functionally connect submodels without having to
write ad hoc computer code is well complemented by the
development of approaches to supervised “monolithic”
[30] model integration. In our case, a differential equation
framework was chosen for the development of an inte-
grated immune response simulator, coupled with a useful
framework, found in systems biology, for integrating mul-
tiple subset models into a coherent whole. In this frame-
work, connectivity matrices are built to describe the global
network structure, followed by introduction of rate laws to
seamlessly integrate multiple biological processes [31,32].
The Fully-integrated Immune Response Modeling (FIRM)

simulator is a differential equation based integration of mul-
tiple existing models of the immune system [5,8,10]. It ac-
counts for both the humoral and cellular immune response
systems and attempts to parsimoniously represent the
spatially distributed nature of the system. The goal of this
integrated model is to specify antigen exposure over time
and calculate predicted antibody levels and cell concentra-
tions following biological perturbations such as immunization
or infection. To develop FIRM, we used a pharmacokinetic /
pharmacodynamic modeling approach to combine previously
published individual models of humoral and cellular response
with antigen exposure. FIRM includes both the antigen-
specific antibodies and cell populations, and accounts for
cytokines and adjuvant components as needed. It is a hybrid
construct incorporating structures and parameter values
from published models in multiple mammalian species.
This report outlines the stepwise integration of networks

describing the cellular dynamics for both T and B-cell re-
sponses to bacterial infections and to tumor growth in a
target organ. In addition, to illustrate the incorporation of
novel mechanisms, we propose and integrate within the
framework a new hypothesized model of regulatory T-cell
kinetics accounting for immunoevasion.

Methods
Model formulation and content
The process of building an integrated simulator starts
with the definition of the underlying physiological struc-
ture. This preliminarily defines the existing interrelations
among all the variables of interest as a “superset” of cel-
lular and molecular populations and reactions. Second,
all the cellular and molecular state variables are identified
and the interrelationships (transitions) between them de-
termined. The structure of the networks is thereby speci-
fied. Third, the mathematical forms of the equations that
describe the fluxes are then formulated and their numerical
values determined (from literature or existing data). Usu-
ally, the first two steps involve the determination and selec-
tion of existing relationships that have a physiological
basis. As such, they are somewhat easier than the third
step, where such relationships need to be made specific
and quantitative. The availability of plausible numerical
values is a well-known rate limiting step in the definition
and assembly of kinetic models, and in the rest of this sec-
tion we will outline the approach we followed to inform
FIRM’s parameterization.

Mathematical formalism
All the models we considered for integration obey the
general governing equation to describe dynamics of cell
and mass balance models:

dx=dt ¼ S:v x; kð Þ

where x is the vector of state variables (concentrations
of various cell types and molecules) and v is the vector
of fluxes from one state to the next (i.e. transport pro-
cesses, reaction rates, cellular fate processes, etc., expressed
in concentrations per unit time). S is a matrix that de-
scribes the structure of the network and its topology. Every
column in S represents a flux and every row represents a
state variable. The vector k contains the numerical values
of the kinetic and physical constants (often, but not neces-
sarily, expressed in units of inverse time). In general, the
vector of fluxes v is a function of the state variables and
the kinetic and physical constants characterizing transport
and reaction processes.
Three published models of the immune response, each

highlighting different features of the system [5,8,10],
were identified for inclusion in FIRM. The reconstructed
network for the immune response is shown in Figure 1A
for the cell populations involved in the system and in
Figure 1B for the cytokines relevant to the model. An
explanation of the abbreviations is included in the figure
legends. Volume heterogeneity in the model is accounted
for and described in the next section. In addition, there
were fluxes in the reconstructed network that are inactive
in the final FIRM model’s computational (executable) im-
plementation. The reasons for inactive fluxes vary, inclu-
ding for example: redundancy, namely their function is
accounted for elsewhere in the model; removal or inactiva-
tion of a node; lack of data to properly inform the flux. Full
details of inactive fluxes, and the reasons for deactivation,

http://meetings.nigms.nih.gov/?ID=3447
http://meetings.nigms.nih.gov/?ID=8316
http://www.imagwiki.nibib.nih.gov
http://www.imagwiki.nibib.nih.gov
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 The reconstructed FIRM network. A. The final FIRM formulation includes inactive fluxes and nodes that are included for completeness
in this figure. Symbols are as follows: TUMOR, tumor mass; DEBRIS, tumor cell debris; MAPC, antigen-presenting macrophages; MA, activated
macrophages; MR, resting macrophages; MI, infected macrophages; PI, intracellular bacteria; PE, extracellular bacteria; IDC, immature dendritic cells;
MDC, mature dendritic cells; T, naïve T-cells; TCP, cytotoxic precursor T-cells; TC, cytotoxic T-cells; THP, helper precursor T-calls TH1, T-helper 1 cells;
TH2, T-helper 2 cells; AB, antibody; B, naïve B-cells; BA, activated B-cells; BM, memory B-cells; BP, plasma B-cells; Treg, regulatory T-cells. See the
Supplemental Material for the full details. B. The cytokine activity of the FIRM network. Solid green arrows represent production. Dashed green
arrows represent up-regulation of a flux, and dashed red arrows represent down-regulation of a flux. The graph is a superset of Figure 1A, where
cytokines are superimposed to the previously defined cell populations. Symbols are as follows: I12, interleukin-12; Iγ, interferon-gamma; I10,
interleukin-10; I4, interleukin 4; TGF-β, tumor growth factor beta.
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can be found in the Supplemental Material (Additional
file 1: Table S8). Since some fluxes were inactivated,
not all the nodes we initially considered as part of
FIRM were active in the final structure: specifically, the
function of MAPC (macrophages functioning as antigen
presenting cells) is incorporated in the dendritic cell
population and not explicitly accounted for; and, the
function of TH2 in the humoral response was not in-
cluded due to lack of quantitative information regarding
this component. Consequently, the relevant cytokine
network components are also inactive.
The matrix S, the state variables and the fluxes corre-

sponding to the final structure of the FIRM model are
found in supplemental Additional file 1: Tables S1, S2 and
S3. The mathematical form of all the flux variables are
given in Additional file 1: Table S4, and the numerical
values and their literature sources are found in Additional
file 1: Table S5 and S6.

Spatial distribution features:
To account for known features of the spatial distribution
of the immune response components in our simulations
in a parsimonious manner, the FIRM model has five se-
parate tissue spaces where the cell and cytokine popula-
tions can travel: lung (assumed to have a volume of
1000 mL), blood (4500 mL), lymphoid tissues relevant to
the cellular (10 mL) and humoral response (150 mL)
and the sites of immune recognition (4500 mL). As po-
pulations of cells and molecules travel between biological
spaces, their concentrations are multiplied by the re-
spective volumes of distribution so as to maintain mass
balance. This was particularly important for the popula-
tion of infected macrophages, which changes dynamically
as bacterial infection progresses and turns out to have a
time-dependent variable volume of distribution whose
features needed to be accounted for in the simulation.
Additional file 1: Table S7 in the Supplementary Material
contains the various tissue space volumes.
It is worth noting that this is a parsimonious representa-

tion since, to accurately represent spatially differentiated
behaviors, one would have to define biological spaces for
each spatially (and functionally) separate component of
each organ or tissue that has a distinct pattern or behavior
from other parts of the organ or tissue under consideration.
These spaces would be defined so as to have different vo-
lumes, rate constants for accessibility, etc., to reflect their
heterogeneous physical structure and, given the number of
parameters required, would require detailed experimental
information at the cellular and molecular level. In this
sense, FIRM is a parsimonious model and does not reach
this level of granularity, although the model structure is
amenable to be extended and incorporate such conside-
rations where warranted, required by the purpose of the
modeling exercise and supported by the data.

Simulation platform and integration procedure:
Mathematica (Wolfram Research, Champaign, IL) was
used as the model-building platform. The integrated
model was assembled in a stepwise fashion. Specifically,
the concentration and flux vectors in the model struc-
ture were populated step-by-step with the appropriate
features and components, as illustrated in Figure 2.
FIRM was built in Mathematica 7.0. The Mathematica
workbook that resulted was used to generate all graphs
in this paper from FIRM simulations. The simulator is
portable to other simulation platforms: a Matlab (The
Mathworks, Natick, MA) version of the FIRM simulator
was also generated. Additional file 1: Tables S1 to S6 con-
tain a full specification of the FIRM simulator, suitable
for implementation in other matrix languages.

Results and discussion
(1) Procedure for integrating multiple dynamic models
from different sources
As described in the Methods section, the dynamic simu-
lator is expressed as a series of balance equations.
Mathematically:

dx=dt ¼ S:v x; kð Þ

where x is the vector of state variables (cell types and mo-
lecule concentrations) and v is the vector of fluxes from
one state to the next (i.e., transport processes, reaction
rates, cellular fate processes, etc.). S is a matrix that de-
scribes the structure of the network and its topology. Every
column in S represents a flux and every row represents a
state variable. The vector k contains the numerical values
of the kinetic and physical constants. The contents of all



Figure 2 FIRM integration formalism. This figure summarizes the plan devised for the development of FIRM. The oval at the top represents the
method of building dynamic models that was employed to construct FIRM. At each step, the subset model included can be seen on the left, and
the major cell populations covered in each step is outlined on the right. MK refers the Marino-Kirschner model (including resting macrophages
MR, activated macrophages MA, infected macrophages MI, T-helper 1 cells Th1, T-helper 2 cells Th2, dendritic cells DC and pathogen [10]), DB refers
to the DeBoer et al. model (including resting macrophages MR, activated macrophages MA, T-helper 1 cells Th1, cytotoxic T-cells TC and Tumor [5]),
and BL refers to the Bell model (which includes naïve B-cells B, activated B-cells BA, memory B-cells BM, plasma B-cells BP and Antigen [8]).
“Pathogen” indicates bacterial infection, while “Antigen” refers to viral or other small antigen infection. The partial overlap of the models provides a
roadmap to integration, which however needs to take into account the diversity of formulations used in the models to account for essentially the
same immune response features.
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these mathematical objects are found in Additional file 1:
Tables S1 (Stoichiometric matrix), Additional file 1:
Table S2 (variable list), Additional file 1: Table S3 (flux
list), Additional file 1: Table S4 (rate laws), Additional
file 1: Table S5 (kinetic constant values), and Additional
file 1: Table S6 (miscellaneous parameter values).
The reconstructed network is shown in Figure 1A. It

includes all the major T and B-cell types, the pathogens
(antigens), as well as tumor and its debris. The regula-
tory effects of the major inflammatory growth factors
and cytokines are shown in Figure 1B. These graphs
highlight the boundaries of FIRM. The processes that we
considered for inclusion have been described multiple
times (see e.g. figure in [33] for a description) and relate
to humoral and adaptive immunity. Briefly, the humoral
side of the system describes the activity of B-cells that,
when in contact with an antigen/pathogen, secrete anti-
bodies which are essentially a secreted version of their
receptor compatible with the antigen). The antibodies
bind to the antigens and neutralize them. The link be-
tween the humoral and the cellular components of the
system is provided by helper T-cells, which activate B-cells.
This function is currently not included in the model since
it was not a part of the constituent submodels. The cellular
side starts with naïve T-cells recognizing antigen epitopes
through antigen presentation via dendritic cells and mac-
rophages and subsequently developing a T-cell driven
response to the antigen. This process is particularly
important when the pathogen is a cell, such as in cancer
and bacterial immunity, which are both described in FIRM.
T-cells can also differentiate to regulatory T-cells, which
essentially mute features of the immune response.
The FIRM simulator was built in a step-by-step fashion,

summarized in Figure 2, from both constituent models
that have appeared in the literature [5,8,10] and novel
mechanisms. A summary of those steps is below.
Immune response to tuberculosis (TB) infection [10]:

Cellular response to bacterial challenge. The model inte-
gration in FIRM started with a published model for TB
infection of the lung (by Marino and Kirschner, hereafter
the MK model). This model described the activation of
macrophages, their infection, and the antigen presentation
by dendritic cells that leads to differentiation of T-cells in
lymphoid tissue; these cells then migrate to the lung where
they differentiate into T1 and T2 helper cells. The
scope of this subset model is described in Figure 3. The



Figure 3 The individual areas of influence of the three original models (MK, DB and BL) in relation to the FIRM network structure.
There was overlap in the content of the original models, exemplified here by the overlapping shaded areas of the MK ([10]) and DB ([5]) models
(light green). Nodes not encompassed by a shaded area are inactive in the final FIRM structure but have been identified as connections among
models and are reported for completeness. See the Supplemental Material (Additional file 1) for full details on inactive fluxes and nodes.
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MK model also included a rather detailed representa-
tion of the cytokine signaling network following infec-
tion, which is not shown in Figure 1A for simplicity
(but is shown in Figure 1B).
The MK model state variables and fluxes were intro-

duced into the network and used to specify the x and v
vectors in the overall mass-balance model. This was
done in a step-wise fashion and the process was quality
controlled at each step. Briefly, to ensure quality control
of the implemented model, all fluxes in the network are
turned off except one at a time (the one that needs to be
examined) and conservation of mass is checked for. This
is repeated every time a new population of either cells or
molecules is introduced in the model, thus ensuring that
no arbitrary gains or losses occurred at any step during
model building. A sample QC/QA document is provided
in Additional file 1: Figure S10. There were several is-
sues and simplifications associated with mapping the
MK model onto the unified network structure at the
basis of FIRM. These included changes in basal states
(which are calculated analytically as functions of pa-
rameter values), accounting of cell population dyna-
mics to obey mass balance (specifically, macrophages
and bacteria) and accounting for the variable volume of
distribution of the infected macrophages and for the ap-
propriate volume ratios for cell and molecule migration.
As a final check, the simulations of this initial model
were compared with those available from the original
publication (Additional file 1: Figure S9). While the agree-
ment was not exact, this was to be expected given that
changes were made to the original model formulation.
Details regarding the mapping of the MK model onto
the FIRM framework are provided in the Table 1.
Immune response to tumor formation [5]: Cellular re-

sponse to tumor challenge. The second subset model iden-
tified for inclusion in the integrated model (by DeBoer
et al., hereafter the DB model) described the inflammation
response to the presence of a tumor. Its components were



Table 1 Overall summary of integration issues

Integration issues resolved with the mapping
of the MK model [Ref. 10] onto the FIRM
network structure

Integration issues resolved with the integration
of the DB model [Ref. 5] with the MK model
[Ref. 10]

Integration issues resolved with the integration of the
BL model [Ref. 8] into the FIRM framework comprised
of the DB model [Ref. 5] and the MK model [Ref. 10]

• Added basal state levels of resting macrophages
and IDC using MK latency parameter values:

• Removed “HTL” (TH1) from activation of macrophages. • BM conversion to B cells has the same rate as the death of BM.

- MR[0] = 5 * 108 cells • Using DB value for MA half-life. • Antibody produced by BP, BA in blood, and BA in lymphoid B.

- IDC [0] = 5 * 107 cells - η13 = 1 day-1 • Expansion of the BL model due to the relaxation of
equilibrium assumptions required the creation of variables
x41-x52 and fluxes v87-v100.

• Combined bursting (v3) and natural death
(v14) of infected macrophages into one flux (v3).
The reaction rate will be the summation of the
two individual reaction rates.

• Created constant recruitment of TCP and THP in the lymphoid T,
in fluxes v50 and v21, respectively, analogous to I1 and I2 from the DB model.

• Created “antigen” variable in blood and Site of recognition.

• Introduced MI (Infected Macrophages) as a separate
space with a variable volume:

- I1 → ρ50 , I2 → ρ21 - “Antigen” can be either a tumor debris or a bacteria cell,
they become a part of the “antigen” pool once they enter
the blood

- VolumeMI = 8*10-9 * x3 • Accounted for TCP presence in the blood, created a separate variable x25. - Permeates from lung to blood, and from blood to Site

• Fixed bacteria accounting issues: • Temporarily changed HTL (TH1) in FACTOR to HTLP (THP).

- In the MK model, half of the amount of bacteria
released during bursting was required to infect
one macrophage. These two amounts have been
made independent, but they are currently set to
25 bacteria for infection and 50 bacteria for bursting.
These are the same values used in the MK model,
but they can be changed easily.

• Using DB value for MR half-life. • Created receptor sites on select B cell populations.

- Bursting (v3) is based on the ratio of intracellular
bacteria to infected macrophages (x5/x3). The bursting
will occur at a greater rate as the ratio approaches a
set number (the macrophage’s capacity). This capacity
is currently set to 50.

- η10 = 0.05 day-1 - x16, x17, and x18 have receptor sites

- Bursting (v3) releases x5/x3 extracellular bacteria
into the system, instead of a fixed number.

• Redefined FACTOR with HTL (TH1). - Receptor sites have 2 states: antigen-bound and free

- T-cell induced apoptosis (v4) releases x5/x3 extracellular
bacteria into the system.

• Added TH1 (HTL) proliferation from the DB model as a negative term
to the death flux v28.

• Expanded antigen-B cell interaction to include receptor
sites and binding events.

- It is important to note that x5/x3 is a time-dependent ratio. • Modeled differentiation of naïve T cells to TCP (v50)
to mirror the action of v21 from the MK model.

- All antigen-receptor binding events occur at the same rate

• Combined naïve T cell death and recirculation from the MK
model into one clearance flux (v20). The reaction rate will
be the summation of the two individual reaction rates.

• Modified MAPC from the DB model. MAPC and its
corresponding fluxes (v57, v58) will remain inactive and
undefined. The functionality of MAPC described in
the DB model, using the variable INFLAM, will be
merged with the dendritic cells:

- The receptor-antigen binding event is a reversible reaction

• Added basal state levels of resting macrophages and IDC
using MK latency parameter values but using the new
clearance flux of naïve T cells (v20):

- Added term to recruitment of IDC cells
(v15) using INFLAM as a trigger.

- x20 is assumed to have the same receptor state as x18
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Table 1 Overall summary of integration issues (Continued)

- T[0] = 98,039 cells ■ (ρ21 + ρ50)/2 * INFLAM • Expanded antigen-antibody interactions to include
dynamic single- and double-bound states.

• Modified rate law v22. The MK formulation allowed for
negative proliferation.

- Added term to migration/maturation of IDCs (v17)
using INFLAM as a trigger.

- All antigen-antibody binding events occur
at the same rate

• Accounted for THP presence in the blood, created a separate
variable x13.

■ Used term from MK stimulation, but replaced x4 (PE)
with INFLAM

- All bound antibody states are cleared at the same rate

• Used volume ratios to properly account for cell migrations
across tissue space borders.

• Cut off an INFLAM feedback loop by globally redefining
INFLAM without HTL (TH1) when substituting in FACTOR.
Now, the only variable that determines INFLAM is tumor
burden. The basic premise of the INFLAM loop is an
increase in INFLAM causes dendritic cells to produce
more helper T cells, and the creation of these helper
T cells caused FACTOR to increase, which in turn caused INFLAM to increase.

- Binding events occur in both the blood (with “antigen”)
and the lung (with extracellular bacteria)

• Eliminated flux v30. The migration flux of TH2 to the blood (v31)
that was to be added with the B cell response will take its place.
v31 will take the death rate of v30 (0.3333 day

-1) as its reaction
rate. Having two fluxes drain the TH2 population was leaving the
TH2 levels in the lung much too low and ineffective.

• Added new fluxes to FIRM structure: • Defined initial conditions with analytical solutions
for B cells and B cell free receptors sites.

• Added basal state levels of IL-12 in the lung, produced by
the basal levels of MR.

- v84 → death of THP in the blood • Permeation of tumor debris to blood is turned off.

IL-12[0] = 5*108 (q78a/η79) - v85 → death of TCP in the blood - Tumor-antibody interaction lacks definition at this time

- v86 → proliferation of TH1 in the lung (removed negative
term from v28)

• Defined initial conditions with analytical solutions for:

- MR, IDC, T, THP in the lymphoid T, THP in the blood, TCP in
the lymphoid T, TCP in the blood, IL-12 in the lung

Palsson
et

al.BM
C
System

s
Biology

2013,7:95
Page

9
of

19
http://w

w
w
.biom

edcentral.com
/1752-0509/7/95



Palsson et al. BMC Systems Biology 2013, 7:95 Page 10 of 19
http://www.biomedcentral.com/1752-0509/7/95
the growth of tumor mass, the activation of macrophages
in response to the tumor cells, the proliferation and diffe-
rentiation of cytotoxic and T1 helper cells, and the killing
of tumor cells creating tumor debris. The original formu-
lation of this subset model had all tracked populations in
a single biological space; therefore, the cell populations
described in the model had to be mapped to their ap-
propriate organs. The scope of this model can be seen
in Figure 3, together with its overlap and points of con-
tact with the MK model. Once again, the state variables
and fluxes associated with the content of this subset model
were added to the model network.
The inclusion of the DB model marks the first integra-

tion in the FIRM system of two separately developed
and reported kinetic models (MK and DB). The integra-
tion of two kinetic models resulted in some complex-
ities, reflecting in turn: the state of biological knowledge
revealed by the models, the assumptions made, the
structure of the network, and the detail of the quantita-
tive information. The process of integrating models from
various sources and built for different mammalian spe-
cies requires explicit and sometimes implicit biological
and structural assumptions. We summarized those choices
as “integration issues” and they are reported in detail in the
Table 1. The resolution of integration issues is critical to
the construction of an integrated model such as FIRM. For
example, the DB model included processes and parameters
which tended to be descriptive as opposed to mechanistic,
reflecting the knowledge of immunology at the time.
Therefore, the issues involved with the addition of the DB
model included integrating phenomenological parameters
into the FIRM state variable and rate law structure (and
sometimes modifying them), selecting a value for kinetic
constants that appear in both models, and including new
network fluxes, mostly cellular, as necessary to integrate
the models to ultimately ensure balance of mass.
B-cell response to antigen [8]: Humoral response to

antigen challenge. The third subset model that was in-
cluded in FIRM (by Bell, hereafter the BL model) details
the B-cell and antigen response to the presence of an
antigen in the system. Included in the BL model is the
exposure of naïve B-cells to antigen, the activation of
B-cells that migrate to the lymphoid B via the blood,
the differentiation of activated B-cells to plasma and
memory B-cells, and the production of antibodies by said
B-cells. Lastly, the antibodies work to eliminate the anti-
gen from the blood and the target organ. This model’s
components are again shown in Figure 3, which also
highlights commonalities with the MK and DB models.
Again, the integration of the BL subset model into the

framework of FIRM led to some integration issues. The
BL model had a rich level of molecular detail when de-
scribing the interaction of B-cell receptors, antibodies,
and antigens. These interactions were simplified in the
original model through the use of quasi-equilibrium as-
sumptions. Given the level of granularity in FIRM, these
assumptions could be relaxed and the full details of the
underlying molecular processes are described. Therefore,
the network structure accommodates antigen and anti-
body binding (Figure 4). The inclusion of this subset
model in the network was a major integration issue with
FIRM, since the network had to be substantially expanded
to include all of these detailed processes. Integration issues
are reported in detail in the Table 1. Briefly, antigen-
antibody binding reactions (shown in Figure 4) include: a
free antibody binding to a free antigen creating a single-
bound antibody; a single bound antibody binding to a free
antigen creating a double-bound antibody; the removal/
clearance of a single-bound antibody; and the removal/
clearance of a double-bound antibody.
The incorporation of the BL model essentially completed

the FIRM structure based on published models. Figure 5
shows a simulation of the fully integrated FIRM model at
nominal parameter values (Additional file 1: Tables S5 and
S6). This is a base case simulation with an initial load of
100,000 infecting bacterial cells in the target organ. The
bacteria cells are allowed to migrate into the blood as
well, thus triggering a strong antibody response. The
B-cell receptor density for the bacteria is assumed to
be 103 molecules/mL, in keeping with the BL model.
It should be mentioned at this point that the constituent

models composing FIRM were not necessarily tailored to a
particular animal species. The BL model description men-
tions data being obtained in rabbits, but it also states that
the model recapitulates essential features of the mammalian
immune response. The DB model is based on data in mice,
while the MK model was built to be applicable to humans.
This makes FIRM a hybrid model containing features of a
few mammalian species. That being said, validation of
models against data is a tool of paramount importance in
model development. FIRM provides predictions of timing
and extent of immune respone, which can be compared
against experimental data. While we propose here the FIRM
structure and have strived to maintain consistency of units
across the models, we make no attempt at validation and
later we propose approaches to test this important question.
Addition of Treg and TGF-β: With the integration of

the MK, DB, and BL models, we have created a platform
with which basic immunological simulations can be
performed. The FIRM platform is flexible enough to easily
introduce new information and physiological responses.
This section demonstrates that principle through addition
of regulatory T-cells (Treg). Treg play an important role in
the immune system’s response to a tumor. Treg are a rather
new discovery in the immunological field, and considered
to be of great importance. Therefore, Treg were selected to
be the first addition when expanding the FIRM platform
beyond the original publications.



Figure 4 Scope and details of the BL model in the context of the FIRM network. The model [8] included detailed information on the
interactions of antigens, antibodies, and B-cell receptor sites of the humoral response. Symbols are as follows: B, naïve B-cells; BA, activated B-cells;
BP, plasma B-cells; BM, memory B-cells. Bivalent antibodies are released by BA and BP in the lymphoid B organs and bind antigens both in blood
and lung (target organ) tissues. The antigen binds to naïve and activated B-cells and stimulates the formation of antibody.
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There are two sources of Treg in the body: the first
source is from the lymphoid T and the second source is
a resident population in the target tissue [34]. Treg,
much like the TCP and THP, will also have a constant dif-
ferentiation from the naïve T-cell population in the
lymphoid T that will travel into the blood. Treg account
for 5%-10% of the T-cells in the blood in a normal state
[34]. The differentiation in the lymphoid T was cali-
brated appropriately to reflect these levels. Once the Treg

reach the site of the tumor, they produce TGF-β, a cyto-
kine that has a down-regulatory effect on the prolifera-
tion of cytotoxic T-cells. Cytotoxic T-cells assist in killing
tumor cells, so it stands to reason that tumor cells play a
role in the proliferation of Treg in the target tissue. A visual
representation of the Treg addition can be seen in Figure 6.
Treg exist in the lymphoid B, the blood and the target
organ. Naïve T-cells differentiate to Treg in the lymphoid T;
they migrate to the blood where they are subject to re-
moval or recruitment to the target organ; they can also
proliferate in the target organ. TGF-β is produced and
decays in the target organ, where it exerts its effect on
T-cell kinetics. The majority of rates and parameters
used in the rate laws were assigned values based on ap-
proximations. These approximations were picked to be
similar to the values of the rates associated with other
T-cell lineages and cytokines in FIRM. The exact nu-
merical values of the rates and parameters are still a
subject of evaluation and examination of relevant litera-
ture and future experimentation.
The basal state: As with all kinetic models, FIRM has

a basal (unperturbed) state. In this particular case, the
basal state represents the immune system components’
baselines when there is no antigen present. Such a basal
state reflects steady state homeostasis and was calculated
using the nominal parameters and running the model to
stable steady state conditions. Calculated basal state cell
populations include: 108 resting macrophages in the target
organ, 5 × 107 dendritic cells in the target organ, ~8 × 104



Figure 5 Cellular and Humoral Response to Antigen Presentation. The cellular (upper panel) and humoral (lower panel) response of the
fully-integrated FIRM simulator with nominal parameter values and an initial load of 100,000 antigen molecules in the target organ, which are
allowed to infect macrophages and migrate into the blood. While the cellular response is small and has little to no effect on the infection, the
humoral response is strong and effectively eliminates the infection.
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naïve T-cells in the lymphoid T, ~103 T helper precursor
cells in the lymphoid T, 3 × 103 T helper precursor t cells
in the blood, ~2 × 104 naïve B-cells in the site of recogni-
tion, ~103 cytotoxic T precursors in the lymphoid T, 5 ×
104 cytotoxic T precursors in the blood, ~3 × 102 mole-
cules of IL-12 and ~3 × 102 of TGF-Beta in the target
organ, 104 Treg in the blood, 2 × 102 in the lymphoid T and
106 in the target organ, and ~2 × 107 free receptor sites on
the naïve B-cells in the site of recognition. The Treg in the
blood account for about 9.1% of all T cells circulating in
the blood [34]. In the basal state, the system is free of anti-
gens, and, therefore, antibodies. This basal state can then
be perturbed by exposure to antigen reflecting various
stimuli or pathological situations. The response to one or
many antigens can be simulated.
The final version of the FIRM simulator has 55 nodes

(cells and antibodies), 107 distinct processes and 171 pa-
rameters. As defined and with the postulated interac-
tions and parameter values described above, the FIRM
simulator is an initial step towards a simulator of the im-
mune response capable of representing a variety of puta-
tive challenges. To demonstrate the use of FIRM we
present four case studies that illustrate its different fea-
tures and capabilities.



Figure 6 The Treg kinetic model incorporated in FIRM. The model accounts for Treg presence in the lymphoid T (where they differentiate from
naïve T-cells), the blood (where they migrate and are subject to removal or recruitment to the target organ) and the target organ (where they
proliferate). The kinetics of TGF-β are similarly accounted for. Treg, regulatory T-cells; TGF-β, tumor growth factor beta; other abbreviations as in
Figure 1A and Figure 1B. See text for details.

Figure 7 TB infection simulation. A simulation of an intracellular bacterial infection with an initial condition of 100,000 bacteria in the target
organ. See text for details.

Palsson et al. BMC Systems Biology 2013, 7:95 Page 13 of 19
http://www.biomedcentral.com/1752-0509/7/95



Palsson et al. BMC Systems Biology 2013, 7:95 Page 14 of 19
http://www.biomedcentral.com/1752-0509/7/95
(2) Use of the simulator – case studies
Based on the full model, changes in network structure
and parameter values can be defined to mimic known
occurrences in immune response modulation. Within
FIRM, completely different situations involving immune
system cells, and foreign and endogenous molecules, can
be modeled in a few steps. Deactivating one or two
fluxes can drastically change the conditions of a simula-
tion. Among many possible simulations, four cases of
interest are explored:

1. TB infection;
2. Blood borne pathogen infection;
3. Spontaneous tumor rejection;
4. Influence of Treg on tumor rejection.

The first two case studies represent confirmatory sim-
ulations for comparison with the original MK and BL
model results.

TB infection
To simulate a pure TB infection, 100,000 extracellular
bacteria were introduced into the lung (target organ)
and flux v87 was deactivated. Flux v87 represents the per-
meation of extracellular bacteria between the target
organ and the blood (Figure 1A). Flux v87 was thus
deactivated to prevent the bacteria from migrating away
from the lung. The TB infection is known to stay local
in the lung and not permeate into the blood. FIRM was
then simulated with its nominal parameters.
As shown by the MK model, a TB infection is thought

to be dealt with exclusively by the cellular response with
Figure 8 Blood borne pathogen simulation. A simulation using nomin
molecules limited to the bloodstream. This simulation is different from th
See text for details.
no response from the humoral system. A chronic infec-
tion is simulated. The T-cell response that is solicited by
the immune system is enough to prevent runaway
growth by the bacterial population in the lung. Even
though the cellular response prevents runaway growth,
the levels of infected macrophages are rather large and
stay constant. The results can be seen in Figure 7. As
one would expect, the simulation results closely resem-
ble the MK model, which was specifically developed to
represent TB [10]. This simulation illustrates that the in-
tegrated FIRM can still recapitulate the trends initially
found with the MK model.

Blood borne pathogen
In this simulation, a blood borne pathogen originates in
the blood and remains confined within the circulation.
For simplicity, the increase in antigen load prior to the
induction of an immune response is represented as a
spike (pulse) increase. An example of this situation would
be a viral infection. The pathogen does not permeate into
the tissue to infect, for example, resident macrophages. To
simulate a blood borne pathogen in FIRM, fluxes v87 and
v88 were deactivated. These two fluxes model the access of
antigen between the target organ and the blood. This simu-
lation used nominal parameter values and an initial condi-
tion of 100,000 antigen molecules in the blood. The results
of the simulation can be seen in Figure 8.
The humoral (B-cell) response was used by FIRM to

eliminate the infection. In fact, in the case study, as
expected, the cellular response is virtually non-existent.
The antigens never come in contact with the dendritic cells
in the tissue. Therefore, there is little antigen presentation
al parameter values and an initial condition of 100,000 antigen
at in Figure 5, where the antigen appeared in the target organ.
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to the T-cells in the lymphoid T to drive differentiation of
the naïve T-cells. The graphs in Figure 8 show a fast
humoral response flooding the blood vessels with anti-
bodies. The antigens are quickly bound to the antibodies in
the blood and are removed from the system as antibody-
antigen complexes. This simulation resembles the behavior
of the original BL model, confirming the performance of
the integrated FIRM against the individual submodels.

Tumor removal
Since no tumor-antibody interaction is defined in FIRM
at this point (all the individual models, MK, DB or BL,
lacked a mechanistic description of antibody-mediated
cell kill), simulations of tumors will not include migra-
tion of tumor antigens (debris in the DB model) into the
blood from the target organ. Therefore, the flux v88 was
deactivated for this case study. Additionally, we changed
the half-life of all T helper cells to 0.02 day-1 from
0.3333 day-1 (the remaining reaction rates were left at
the nominal parameter values). The updated half-life
was derived from the DB model, while the previous half-
life was derived from the MK model. As a justification,
through successive model runs we observed that an ele-
vated half-life for the T-cells prevented them from
Figure 9 Tumor removal simulation. A simulation of spontaneous tumo
encouraging proliferation of cytotoxic T-cells and there-
fore prevented tumor kill. This shows that tumor re-
moval by the immune system may be influenced by the
kinetics of these cells and also points to features of the
model that greatly influence its predictions.
FIRM was then simulated with one initial tumor cell

in the target organ. This simulation scenario (Figure 9)
highlights the multi-scale temporal characteristics of the
FIRM simulator. Initially, the tumor grows at a rapid
rate, seemingly unchecked. The growth is quickly sup-
pressed by a macrophage response. The activated macro-
phages reach a level at which the tumor cells are no
longer growing, rather settling around a small popula-
tion size. After this initial response by the macrophages,
the presence of the tumor triggers a cellular response.
This T-cell response requires a longer time period in
order to proliferate to a population size capable of elim-
inating tumor cells in the target organ. Once the cyto-
toxic T-cells reach a critical level, the cellular response is
able to eliminate the tumor. Once the tumor has been
eradicated, the cell populations move back to their steady
state levels. This simulation calls into play the features of
the DB model [5], with one important difference. While
the DB model contained phenomenological features, these
r growth and immune-mediated tumor elimination. See text for details.
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have been mostly replaced in the integrated FIRM with
more mechanistic cell populations and fluxes which better
reflect physiology. It is reassuring that the outcome of the
simulation resembles the original model, but it does so
with more mechanistic detail about the cellular popula-
tions involved. Generic inflammatory signals are still used
to represent the kinetics of IL-1 and IL-2. It is worthwhile
to mention that tumor secretion of TGF-β would be
expected to contribute to these processes by promoting
immunoevasion: this is discussed in the next case study,
where regulatory T-cells are integrated in the simulation.
What truly happens in the mammalian immune sys-

tem following challenge with a single proliferating tumor
cell is unknown. However, it has been assumed that the
immune system regularly removes tumor cells that may
arise spontaneously (the concept of immunosurveillance
[35]). If anything, this simulation highlights the role
played by the T helper population interaction with the
tumor. In our hands, a change in this population’s reported
half life to 0.02 day-1 from 0.3333 day-1 was sufficient to
produce a more realistic output; however, the model struc-
ture may also have been incorrectly specified in the original
models. Overall, these considerations point to experimental
and research areas of focus. In addition, other parameters
in the model may have similar strong influences on the
model predictions.

Influence of Treg on tumor rejection
Regulatory T-cells are resident in tissues and can also be
activated through differentiation in lymph nodes through
antigen presentation by dendritic cells, with subsequence
migration to the site of action. Several cytokines are now
Figure 10 Tumor removal with regulatory T-cells. This figure shows a m
in the model. from left to right and top to bottom, the time profiles of reg
text for details.
known to be involved in this process. The introduction
of Treg and TGF-β into the system has a profound effect,
as can be seen in Figure 10. The tumor profiles behave
similarly as to the previous scenario until about day 45.
The tumor experiences growth and is then rejected. The
delay in the rejection of the tumor is due to the ham-
pered proliferation of the T-cell population in the target
organ, caused by having added Treg and TGF-β dynamics
to the model. It essentially takes the T-cell population
over 60 days to reach an effective tumor killing level,
while previously that took only 45 days.
The Treg addition had a profound effect on how the

comprehensive system reacts to the presence of a tumor.
As such, it is a good example of how the FIRM simula-
tor can be expanded to include additional, more realistic
characteristics of immunological responses. This addition
reduces to practice how FIRM could be expanded towards
the ultimate goal of building a more comprehensive
mathematical representation of immune system features.

Conclusions
Inflammation and immune response are thought to be a
common denominator in human disease. A comprehen-
sive simulator of the immune response in human tissues
is thus a needed tool for a variety of applications. FIRM
was undertaken as an initial step towards meeting this
need. The development and use of FIRM showed that:
(1) already developed and proven methods from systems
biology could be used to facilitate the construction of a
platform for the integration of subset models each focusing
on a feature of the immune response; (2) these methods
can be successfully implemented to generate an integrated
odified version of Figure 7 after Treg and TGF-β have been introduced
ulatory T-cells, TGF-β, tumor cells, and cytotoxic T-cells are shown. See
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simulator; and (3) that FIRM can account for a variety of
challenges to the human immune system through its
multi-scale characteristics. A structure such as FIRM can
be used prospectively for iterative model building, as the
scope of the simulator grows and as new discoveries are
made and integrated in the framework; at the same time,
the predictions from FIRM can be compared against ex-
perimental data, to improve the model and, consequently,
mechanistic understanding of its underlying biology.
As molecular systems biology has developed over the

past decade, large-scale and even genome-scale models
have been formulated [36]. These models are formed
from reconstructed networks based on biochemical, ge-
netic and genomic data, and thus have been able to
compute a variety of phenotypic functions. This process
has been particularly successful for metabolic models
[37]. Since such models are mostly based on the univer-
sal principles of flux or mass balance, this process can
be applied to systems analysis of complex dynamic sys-
tems, such as the immune response. We were able to
build FIRM based on a reconstructed network of the
main cellular and molecular components involved in the
immune response. The key challenge over the individual
component models is that FIRM is built on multiple tissue
spaces of different volumes, even varying volumes in some
cases. Additionally, the model equations are formulated in
terms of total counts of each variable in a given tissue
space. This allows for complete and accurate accounting
and balancing of all state variables. Concentrations of cel-
lular and molecular species can then be computed by sim-
ply dividing the total amount at each time point with the
biological volume of the space, thus allowing for direct
comparison to experimental measurements.
The reconstructed network was then populated with

information from published models that describe subsets
of the immune response. These published models con-
tained detailed information about the mathematical form
of the flux equations. In addition, numerical values for
all the parameters are provided in these subset models
that are typically obtained from measurements or the
available experimental literature.
The putative reconstructed network allows the map-

ping of multiple subset models and their ready integra-
tion under a unified format. In principle this is a simple
process, but in practice it has been implemented as a
stepwise procedure that reveals subtle integration chal-
lenges as additional subset cellular and regulatory pro-
cesses are added. One of the major integration problems
arises when discrepancies in the numerical values for the
same parameter appear in different subset models. For
example, in some cases, assumptions about the physio-
logical processes accounted for in a subset model were
not needed in the comprehensive network reconstruction
and thus had to be relaxed or otherwise modified (just as
an example, eliminating “HTL” (TH1) from macrophage
activation in the DB model). This was relatively easy to
accomplish since the network reconstruction has a ma-
nageable amount of biological and biochemical detail.
Integration of three T-cell responses, the full B-cell re-

sponse and the regulatory action of key growth factors
was performed. All these subsets of the immune response
form a postulated, coherent whole as described by FIRM,
which by its integrated nature is more comprehensive than
any of the individual subsets and can be further expanded
for additional realism. FIRM is thus capable of simulating
both tumor and pathogen challenges to the immune sys-
tem, either separately, or simultaneously. When FIRM is
applied to simulate such challenges, it displays appealing
multi-scale (time, cellular events, etc.) characteristics. This
was demonstrated through case studies representing the
formation and eradication of a tumor, and the response to
TB infection. The challenges encountered in integrating
the FIRM network and its component models are actually
representative of the obstacles that can be encountered
when attempting to synthesize published mathematical
models in a cohesive whole. All biological system models
are usually delimited by the boundaries of the system being
studied – they are not comprehensive because they cannot
be. Their scope is usually limited to the original question
they were designed to answer. The biological modeling
community is currently entering a new stage: it already
moved from the development of individual models to the
definition of databases and repositories for these models
to be shared; the next evolution is to provide robust tools
for on-demand component model integration. This task
is addressed in this work. When performing model inte-
gration, care must be taken not to reach over the scope of
the original component models, especially by trying to in-
corporate or match aspects that cannot be generalized. This
is best decided on a case by case basis. FIRM is a starting
point for the modeling community to consider these issues.
Given its current state and the iterative model building

enabled by the systems biology approach used in its de-
velopment, FIRM can and should be expanded to account
for additional components of the immune response as new
knowledge becomes available. An important area where
FIRM could be expanded is the innate response, including
natural killer (NK) cells. Models have been recently devel-
oped [6] to characterize this response component. It would
also be useful to examine the behavior of FIRM in the con-
text of reinfection, through refinement of the memory
B-cell models and kinetics. In addition, a mechanism for
antibody-dependent cellular cytotoxicity (ADCC) would
provide an unambiguous link between the DB and the BL
model and would enrich the FIRM structure. Perhaps the
most important missing feature from FIRM is the activa-
tion of the B-cell cascade by the T-helper 2 cells, which is
a known, essential mechanism for humoral response
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initiation. All these remain important areas for further
development, whose investigation is made somewhat
easier by FIRM’s modular structure.
Since it is possible that a range of parameter values

could provide similar unperturbed state values, another
area of future investigation would involve sensitivity ana-
lysis of the model. To explore this, the model could be
expanded to include stochastic behavior so as to account
for random variation of the state variables around a
physiological set point. Additionally, the model could in-
corporate expected daily fluctuations, such as e.g. circa-
dian changes, to account for the fact that basal states
exhibit a range of behaviors around a baseline. Such ana-
lyses might be best performed when the model is used
in conjunction with experimental studies, such that deve-
lopment of FIRM (or similar models) can be supported by
joint simulations and experimentation.
This work exemplified an approach to constructing

large-scale integrated simulators of complex dynamic
structures such as the immune system. Ours is a hy-
brid approach bringing together conventional differential
equation-based models with methods developed in sys-
tems biology over the past decade. The implementation
of this approach leads to a postulated representation of
the immune system that incorporates the underlying cel-
lular processes and cytokine regulation based on ele-
ments of mammalian physiology. The simulator provided
by FIRM is well suited to go through an integrated and
interactive model building process with experimental va-
lidation to reach an increasing state of completion, simi-
lar to what as has been accomplished for genome-
scale models of metabolism [37-39].
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