BMC

Systems Biology

DHO

Reaction
Module

_______

_______

Identifying reaction modules in metabolic
pathways: bioinformatic deduction and
experimental validation of a new putative route

in purine catabolism

Barba et al.

( ) BiolVled Central

Barba et al. BVMIC Systems Biology 2013, 7:99
http://www.biomedcentral.com/1752-0509/7/99



Barba et al. BMC Systems Biology 2013, 7:99

http://www.biomedcentral.com/1752-0509/7/99 BMC

Systems Biology

RESEARCH ARTICLE Open Access

Identifying reaction modules in metabolic
pathways: bioinformatic deduction and
experimental validation of a new putative route
in purine catabolism

Matthieu Barba', Raphaél Dutoit?, Christianne Legrain® and Bernard Labedan'*"

Abstract

Background: Enzymes belonging to mechanistically diverse superfamilies often display similar catalytic
mechanisms. We previously observed such an association in the case of the cyclic amidohydrolase superfamily
whose members play a role in related steps of purine and pyrimidine metabolic pathways. To establish a possible
link between enzyme homology and chemical similarity, we investigated further the neighbouring steps in the
respective pathways.

Results: We identified that successive reactions of the purine and pyrimidine pathways display similar chemistry.
These mechanistically-related reactions are often catalyzed by homologous enzymes. Detection of series of similar
catalysis made by succeeding enzyme families suggested some modularity in the architecture of the central
metabolism. Accordingly, we introduce the concept of a reaction module to define at least two successive steps
catalyzed by homologous enzymes in pathways alignable by similar chemical reactions. Applying such a concept

allowed us to propose new function for misannotated paralogues. In particular, we discovered a putative
ureidoglycine carbamoyltransferase (UGTCase) activity. Finally, we present experimental data supporting the
conclusion that this UGTCase is likely to be involved in a new route in purine catabolism.

Conclusions: Using the reaction module concept should be of great value. It will help us to trace how the
primordial promiscuous enzymes were assembled progressively in functional modules, as the present pathways
diverged from ancestral pathways to give birth to the present-day mechanistically diversified superfamilies. In
addition, the concept allows the determination of the actual function of misannotated proteins.

Keywords: Dihydroorotase, Cyclic amidohydrolases, Dihydroorotase dehydrogenase, Pyrimidine metabolism, Purine
metabolism, Reaction module, Functional annotation, Rubrobacter xylanophilus

Background

Investigating the evolution of metabolic pathways re-
quires tracing back how the enzymes that catalyze suc-
cessive steps have evolved to perform specific chemical
reactions [1-3]. Enzyme families are grouping all hom-
ologous gene products descending from a common
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ancestor by speciation and/or gene duplication. An in-
creasingly prevailing model [4] postulates that present-
day enzyme families and superfamilies are the result of
the progressive divergence of ancestral proteins endowed
with a promiscuous function. Contrary to the classical
model proposed by Ohno [5], it is anticipated that
innovation (enzyme promiscuity) preceded gene duplica-
tion and functional divergence of the paralogous copies
by descent with modification [6]. To explain the appear-
ance of many closely related families which group into
mechanistically diverse superfamilies, Glasner et al. [7]
have proposed to distinguish two degrees of promiscuity:
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shared chemistry (substrate ambiguity) and substrate
binding (catalytic promiscuity). More and more data
suggest that substrate ambiguity, first defined in the
classical patchwork model of Jensen [8], rather than
catalytic promiscuity [9], is the main road which facili-
tates divergence of most enzyme families [10,11].

In a recent paper [12], we studied the evolutionary
history of dihydroorotase (DHOase), which catalyzes
the third step of pyrimidine biosynthesis, as well as that
of its homologues, all members of the cyclic
amidohydrolase superfamily [13,14]. We found that
hydantoinase/dihydropyrimidinase, involved in degrad-
ation of pyrimidines [15], and allantoinase, a major en-
zyme of purine catabolism [16], are evolutionarily closer
to the ancestral type of DHOase (Type I) than to the
largely derived DHOases belonging to Type II and Type
[II. Thus, although all these homologues perform the
same hydrolytic cleavage of a C-N bond in related
molecules [13,14], there is no direct correlation between
their respective molecular and cellular functions [12].
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However, we observed that the catalyses carried out by
these different homologues, defining related families
which group into mechanistically diverse superfamilies,
are performed on molecules displaying close chemical
similarities (Figure 1, Box 2).

To examine further the observed coupling of enzyme
homology and chemical similarity, we investigated the
neighbouring steps in the respective pathways in purine
and pyrimidine metabolism. In this paper, we identify
that successive reactions display similar chemistry.
These mechanistically-related reactions are often cata-
lyzed by homologous enzymes. These homologues
diverge in their molecular and cellular functions while
maintaining a similar chemical mechanism in their cata-
lytic process. This detection of series of similar catalysis
made by succeeding enzyme families suggested some
modularity [17,18] in the architecture of central
metabolism.

This led us to propose the term reaction module to de-
scribe such related suites of catalyses found in parallel
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Figure 1 lllustrating the respective similarities found in alignable metabolic pathways. The chemical structures of the substrate and
product of each enzyme are aligned to underline their respective similarities in the step catalyzed by the successive set of enzymes located in
boxes numbered 1 to 3. The reaction modules described in the text are framed in light gray arrows labelled A (purine catabolism), B (pyrimidine
catabolism), and C (pyrimidine anabolism). Although many reactions are reversible, the arrow orientation indicates the main direction found

in vivo. The enzymes located in the same coloured box were found to be homologous. See list of abbreviations.
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pathways that are alignable at the level of their chem-
ically similar steps.

We demonstrate further the importance of this con-
cept in the characterization of a new route in purine ca-
tabolism. After a bioinformatic discovery of a putative
ureidoglycine carbamoyltransferase (UGTCase) activity,
we present experimental data supporting the idea that
UGTCase is likely involved in such an alternative meta-
bolic route.

Results and discussion

Comparing dihydroorotate dehydrogenase and
dihydropyrimidine dehydrogenase and finding new
putative dehydrogenase families

Figure 1, Box 2 illustrates that DHOase, involved in pyr-
imidine biosynthesis (Figure 1 arrow C), is homologous
both to hydantoinase/dihydropyrimidinase (HYDase/
DHPase) involved in degradation of pyrimidines (Figure 1
arrow B), and to allantoinase (ALLase) a major enzyme
of purine catabolism (Figure 1 arrow A). Figure 1, Box 2
underlines the similar chemical reactions performed by
these different homologues on similar substrates [12].
For instance, carbamoyl-aspartate (substrate of DHOase)
has a similar structure to N-carbamoyl-beta-aminoiso-
butyrate (the product of thymine degradation) and
N-carbamoyl-beta -alanine (the product of uracil deg-
radation). Interestingly, Figure 1, Box 3 shows further
similarities in the chemical reactions carried out by the
enzymes that are active in the subsequent step of pyr-
imidine metabolism in both anabolic (arrow C) and
catabolic (arrow B) directions. Indeed, the dihydroo
rotate is transformed anabolically into orotate by the
dihydroorotate dehydrogenase (DHODase, EC 1.3.98.1),
in a process similar to the catabolic transformation (EC
1.3.1.1 and EC 1.3.1.2) of uracil or thymine to
dihydrouracil or dihydrothymine by their respective
dihydropyrimidine dehydrogenases (DHPDases). To im-
prove our knowledge of the evolutionary mechanisms
leading to the establishment of such related adjacent re-
actions (arrows B and C, Box 3), we looked further at
the evolutionary relationships between DHODases and
DHPDases.

The methodological approach described previously by
Barba et al. [12] was used to build an accurate MSA that
faithfully reflects the evolutionary relationships between
so many homologues displaying a large structural diver-
sity. Moreover, the deluge of more and more varied pro-
portions of close and distantly related amino acid
sequences released by the advances in genomics makes
it increasingly difficult to reconstruct an up to date
phylogenetic tree. To meet these challenges, we set up a
two-stage procedure summarized in Methods. First, we
define a seed alignment of the amino acid sequences of
PyrD (EC 1.3.98.1), PreA (EC 1.3.1.1) and PydA (EC
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1.3.1.2) that have been structurally characterized. This
limited set of representative sequences was build in
order to be sufficiently consistent and biologically mean-
ingful to reflect accurately the structural and functional
diversity of the different families of DHODases and
DHPDases. Then, as described in Methods, we added
progressively to the seed alignment their homologues
found in UniProtKB [19], to obtain an optimal multiple
sequence alignment (MSA) of the whole superfamily
(available as Additional file 1). Figure 2 shows a simpli-
fied view (the complete view is available in three differ-
ent formats as Additional files 2, 3 and 4) of the
topology of the phylogenetic tree obtained from this
MSA, confirming that PyrD homologues are clustered in
two main subtrees (each one rooting the other one).
These subtrees correspond to the multimeric cytoplas-
mic DHODases type 1 and the monomeric membrane-
bound DHODases type 2 [20]. Moreover, the sequences
of DHODases 1 can be further separated into two
monophyletic subclasses: the minority of PyrD subunits
that form homodimers, defining a subtree containing
all DHODases 1A, the majority of PyrD proteins that
form heterotetramers with PyrK, defining the subtree
DHODases 1B. Members of 1B subfamily share a com-
mon ancestor with four other clades: (i) the variant 1S
where PyrD molecules form heterotetramers with a
subunit analogous to PyrK (without obvious sequence
similarity), first described in the archaeon Sulfolobus
solfataricus [21] and found later in other Archaes; (ii) its
sister subtree contains three clades, including a mono-
phyletic group corresponding to PydA and to PreA,
forming heterotetramers with PydX and PreT, respect-
ively; (iii) diverging before these DHPDases, we found
two clades of unknown dehydrogenases corresponding
to newly discovered families which we provisionally call
X1 and X2.

A gene coding for X2 was found in 69 bacterial species
(belonging to nearly all phyla of the Domain Bacteria) as
a close neighbour of a gene annotated as encoding a
pyruvate-ferredoxin oxidoreductase. Moreover, in 13 out
of these 69 species, the immediate neighbour to this
pyruvate-ferredoxin oxidoreductase is a gene homolo-
gous to preT, encoding the ferredoxin part of the com-
plex PreA-PreT of the Escherichia coli DHPDase [22]. In
the remaining species defining the X2 subtree, this preT-
like gene is present but is not in the same transcriptional
unit as the gene for dehydrogenase X2. Since E. coli is
found to contain four preT paralogues but only one copy
of preA, one may guess by analogy that X2 could be the
partner of one of these preT paralogues. This should
form a complex with the pyruvate-ferredoxin oxidore-
ductase in order to dehydrogenate an uncharacterized
component that may be similar to dihydropyrimidines or
hydantoin.
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Figure 2 The phylogenetic tree of the DHODases/DHPDases superfamily reveals new uncharacterized families. This is the simplified view
of the tree obtained with FastTree [58]. Complete view is available as Additional files (see below).
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Figure 3A summarizes the phylogenetic profile of the
dehydrogenase X1 homologues and neighbouring genes
in various organisms. E. coli is used as reference al-
though there is — paradoxically — no DHase X1
homologue in this model organism. We found that the
X1 homologue is often found together with homologues
of hyuA (ygeZ) encoding a D-phenylhydantoinase
(superfamily of cyclic amidohydrolases); ygeW encoding
a hypothetical carbamoyltransferase (see below Figure 4);
ygeY encoding a uncharacterized peptidase belonging to
family M20; ygfL encoding an uncharacterized metal
dependent aminohydrolase SsnA; xdhA, xdhB, and xdhC
encoding the three subunits of xanthine deshydrogenase
XDHase; ygfU encoding a xanthine/uracil permease,
and, finally; ygeA encoding a carbamate kinase-like pro-
tein. Figure 3B further underlines, in the case of E. coli,
that several of these gene products are known to be as-
sociated by protein-protein interactions as published in
STRING database 9.05 [23] while being involved in pur-
ine salvage [24]. The gene cluster ygeW to ygeA (2870
to b2874) linked to ygfL/ssnA (b2879) delineate a con-
served network of syntenic genes where some of the
nodes (i.e., yeiA and ygeZ) are linked to genes encoding
carbamoyltransferases (pyrB and argF/argl) and the
carbamate kinase (ygeA). Thus, Figure 3 suggests that
dehydrogenase X1 homologues are associated with

conserved genes potentially involved in pyrimidine but
also purine catabolism. To explore such an unexpected
link between pyrimidine and purine metabolism, we
inspected further the reactions described in Figure 1,
Box 1. These three parallel reactions appear to be chem-
ically similar in terms of substrate and product struc-
tures. Moreover, the allantoate amidohydrolase AAHase
(arrow A) and N-carbamoyl-beta-aminoacid hydrolase
(arrow B) involved in pyrimidine and purine catabolism,
respectively, appear to be homologous. This is not the
case, however, for the aspartate carbamoyltransferase
(ATCase), which is involved in pyrimidine anabolism
(Figure 1, arrow C). We thus looked for a possible un-
detected reaction module in the purine pathway (Figure 1,
arrow A) by searching for a putative biochemical reaction
that could be similar to that of the ATCase (PyrB prod-
uct). Accordingly, we re-examined the phylogeny of the
whole superfamily of carbamoyltransferases to look for
uncharacterized homologues that could be involved in
such an undetected reaction module.

Updating the carbamoyltransferase phylogenetic tree

The methodological approach previously described [12]
and summarized above and in Methods, was used to
reconstruct an accurate evolutionary tree of the carba-
moyltransferase superfamily. Figure 4 shows a simplified



Barba et al. BMC Systems Biology 2013, 7:99
http://www.biomedcentral.com/1752-0509/7/99

Page 6 of 16

Petrotoga mobilis

Spirochaeta smaragdinae (1)

Kosmotoga olearia

Spirochaeta smaragdinae (2)
Clostridium difficile (1)
Clostridium difficile (2)

Halanaerobium hydrogeniformans

Thermosphaera aggregans

Staphylothermus marinus

[TAgBIUS | [ A9eITs | [ AsBITE | [Caseima | [ Aseuz | [AsBIT1 | [ yes |
[[C5CHS6 | - [ cscHsa | [ CocHS3 |
[Emsmr] [Eirerz | [EiRese |
[ E4rRJUS | [ E4rKi6 | [ E4RIVE | [(Earavi | [E4rovi | [[EarRIU3 | [ yes |
[0 [Dsurs | [mswooe] [Dsuocs |
A3DL4T ASDKSS A3DL30 A3DL38

Escherichia coli

carbamoyltransferase are shown with the label TCase in green rectangles.

[hwa | [Croew ] [ yeen | [ ey ] [ sona | [yoi ] [ yes ]

DHase YgeZ YgeW CKase YgeY SsnA  Permease XDHase
_____________ [TCase|
ygeg( ]
o ]
2 b2871 TCase.
MCasel, N _
L_ygew - ygeY - ygeZ/hyuA L_YgeA
b2870 - b2872 T b2873 b2874
r’l‘l ;,ﬂ::‘,‘
(it /ssnAl
b2879

Figure 3 Genomic context of genes encoding uncharacterized dehydrogenases (DHases) X1 sequences and their interactions with
neighbours. A. Genetic neighbourhoods of DHases X1 found in various organisms are schematized. The order and spacing of the genes are not
respected for the sake of clarity. Except for E. coli where the gene name is given, the names in boxes are the UniprotKB accession number of the
corresponding protein. The organisms mentioned twice with numbers (1) and (2) display two different neighbourhoods in different genome
locations. “XDHase” stands for the full set of genes (xdhA, xdhB, xdhC) encoding the three subunits of xanthine dehydrogenase. B. The detected
protein-protein interactions are summarized as a synthesis of individual data published by STRING database [23]. The £. coli gene names that are
syntenic are in bold and accompanied by their Blattner identifier (02870 and following) as published in [24]. The gene products that catalyze
reactions shown in Figure 1 are highlighted by their respective box number (indicated in yellow circles). The different genes encoding a

view (see Additional files 5, 6, 7 and 8 for complete
views of the MSA and tree, respectively) of this updated
tree. As in the trees we reconstructed previously, with
far less sequences [25-27], there is a clear separation be-
tween the ornithine carbamoyltransferases (OTCases)
and the ATCases (Figure 4). However, the huge increase
in the number of sequences brings with it three notable
features. (i) The previously described OTCase alpha and
beta subfamilies appear now to be partially inter-
mingled. (ii) The putrescine carbamoyltransferases
(PTCases) form a monophyletic group that currently
branches inside this OTCase subtree. This evolutionary
location appears to be biologically significant since it
has been recently demonstrated that the PTCase syn-
thesized by Listeria monocytogenes is actually a bifunc-
tional enzyme, catalyzing the decarbamoylation of
either citrulline or carbamoylputrescine [28]. This
depends on growth conditions at low pH and when
expressed as a virulence factor [28]. In addition, the
recent determination of the 3D structure of PTCases
confirms the evolutionary inclusion of PTCases among
OTCases [29,30]. (iii) The two families of ATCases
(ATCI and ATC II) we described previously [25-27] still

form two monophyletic subtrees corresponding to
different quaternary structures [26].

However, we now find, at the root of the ATC II
subtree, a small polyphyletic subgroup which is com-
posed of uncharacterized proteins. We call them
pseudo-ATCases since these paralogues - annotated as
ATCases in public databases - can be simply discrimi-
nated from the authentic ATCases found in the same or-
ganism as detailed below (see Figure 5 and Table 1). For
example, in the case of Rhodopirellula baltica, it is easy
to distinguish the gene RB7429, encoding a genuine
ATCase (PyrB, UniProtKB: Q7UNR3), and found next
to the gene RB7430, encoding a DHOase (PyrC,
UniProtKB: Q7UNR2), from its paralogue RB13301, en-
coding the pseudo-ATCase (UniProtKB: Q7UHC6), and
located in a completely different context (see Figure 5).

Characterizing the pseudo-ATCases

Figure 5 shows that pseudo-ATCases can be differenti-
ated into three evolutionarily-defined subgroups using
their closest homologue, the Pyrococcus abyssi authentic
ATCase, as the outgroup. Table 1 shows that this phylo-
genetic differentiation is also well supported by major
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Figure 4 Simplified phylogenetic tree of the carbamoyltransferase superfamily. This is the simplified view of the tree obtained with

Pseudo-ATCases _— Ryl e

ATCases 11

PyrBI

differences, defined using the E. coli ATCase sequence
as a reference, in the two structural motifs located in the
C-terminal part (in bold). The first motif, corresponding
to H265-P268 (column 3 in Table 1) distinguishes each
group of pseudo-ATCases from all the other carba-
moyltransferases, while the second motif R230-Q232
(column 4 in Table 1) distinguishes each group of
pseudo-ATCases from the genuine ATCases. Moreover,
pseudo-ATCases contain, at their N-terminal region,
two structural motifs (corresponding to S53-T56
(column 1), and H135-Q138 (column 2) in the E. coli
ATCase sequence) that are highly conserved in the
whole superfamily as a carbamoyltransferase signature.
Additionally, the phylogenetic differentiation of each
of the three subgroups of pseudo-ATCases is confirmed
by a distinctive gene context (Figure 5). In Subgroup 2
(composed of only one organism, the actinobacterium
Nocardioides sp. ]S614), the gene encoding the pseudo-
ATCase is adjacent to a homologue of the E. coli ygeW
gene. YgeW [31] is a carbamoyltransferase which be-
longs to a group sharing a common ancestor with the

AOTCases [32] and SOTCases [33] (see Figure 4 and
Table 1), but its true physiological role remains elusive
[31]. In Nocardioides, the adjacent downstream genes
are xdhA, xdhB and xdhC, together encoding a putative
heterotrimeric xanthine dehydrogenase (involved in
purine degradation [24]), and then a gene encoding a
putative phenylhydantoinase HyuA [16]. Such gene asso-
ciation is reminiscent of the specific context of X1 family
(Figure 3) even if there is no detectable X1 homologue
in Nocardioides sp. ]S614.

Members of the Subgroup 3 pseudo-ATCases are found
in marine bacterial species. The encoding gene is part of a
conserved syntenic block containing on one side a gene
encoding a Na* symporter (seawater milieu?) and on the
other side a gene encoding a putative asparaginase. In
nearly all cases, this cluster is adjacent to a gene annotated
as encoding a putative deiminase, which is most probably
an N-carbamoyl-L-amino acid amidohydrolase (HyuC) in-
volved in hydantoin metabolism [34].

The three species defining Subgroup 1 exhibit a block
of genes directly involved in purine metabolism, namely
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Figure 5 Pseudo-ATCase subtree with its 3 subgroups and their gene contexts. Group 1 includes Bilophila wadsworthia 3_1_6 (GenBank Project:
PRINA41963), Clostridium ljungdahlii DSM 13528 (GenBank Project: PRINA202264) and Rubrobacter xylanophilus DSM 9941 (GenBank Project:
PRINA58057); group 2 includes Nocardioides sp. 15614 (GenBank Project: PRINA58149); group 3 includes Rhodopirellula baltica SH1 (GenBank Project:
PRINA61589), Nitrosococcus oceani ATCC 19707 (GenBank Project: PRINA58403), Synechococcus sp. WH 8102 (GenBank Project: PRINA61581) and
Kangiella koreensis DSM 16069 (GenBank Project: PRINA59209). The gene encoding the pseudo-ATCase is highlighted in the yellow rectangle.

a carbamate kinase and an allantoinase, next to the
pseudo-ATCase (Figure 5). Moreover, the gene context
of Rubrobacter xylanophilus pseudo-ATCase Rxyl 2847
(UniProtKB Q1AS69) is particularly intriguing since
it includes a gene cluster composed of several op-
erons involved in purine degradation. The operon
encompassing genes Rxyl_2840 to Rxyl_2850 (Table 2)

Table 1 Conserved residues among carbamoyltransferases

is implicated in successive steps of degradation to
allantoate. Xanthine dehydrogenase genes (Rxyl 2836
to Rxyl_2839) are found upstream of this operon, while
genes involved in the degradation of glyoxylate to D-
glycerate (last steps of purine catabolism) are located
downstream in a third transcription unit (Rxyl_2851 to
Rxyl_2854).

Enzyme family

Common TCase motifs

(Positions in Escherichia coli ATCase)

ATCase motif

1 2 3 4
S53-T56 H135-Q138 H265-P268 R230-Q232
OTCase SILTIRT HPXQ HCLP -
AOTCase, SOTCase SILMIRT HPILCIQ HCLP -
YTCase SILTIRT HPITMFIQ HIAVCILP -
abTCase STRT HPTQ HDLP -
ATCase (I &1I) SITRIRT HPISTIQ HPILGIP RXQ
pseudo-ATCase 1 STRT HPTQ HPLA AIA or AIS or SIA
pseudo-ATCase 2 STRT HPTQ HISTILP GX[SC]
pseudo-ATCase 3 STRT HPTQ HSLP VXP

The structural motifs specific for each subgroup of pseudo-ATCases are in bold.
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Gene id Uniprot AC Uniprot annotation Proposed annotation
Rxyl_2840 Q1AS76 uracil/xanthine permease uracil/xanthine permease
Rxyl_2841 Q1AS75 uncharacterized protein OHCU decarboxylase
Rxyl_2842 Q1AS74 CMP/dCMP deaminase, CMP/dCMP deaminase
Rxyl_2843 Q1AS73 uricase uricase
Rxyl_2844 Q1AS72 5-hydroxyisourate hydrolase 5HIU hydrolase
Rxyl_2845 QTAS71 allantoinase allantoinase
Rxyl_2846 Q1AS70 uncharacterized protein Unknown
Rxyl_2847 Q1AS69 ATCase see text
Rxyl_2848 Q1AS68 carbamate kinase carbamate kinase
Rxyl_2849 Q1AS67 asparaginase see text
Rxyl_2850 Q1AS66 transcriptional regulator transcriptional regulator

UniprotKB data are as published in UniProt release 2013_05 (May 1, 2013). The annotations proposed for genes Rxyl_2847 and Rxyl_2849 are detailed in the text

(see text in bold).

Deducing a novel carbamoyltransferase activity in a
reaction module involved in purine degradation

The degradation process of allantoin to glyoxylate may in-
volve one of several possible enzymes, namely, allantoicase,
allantoate amidohydrolase, ureidoglycine amidohydrolase,
ureidoglycolatase, and ureidoglycolate amidohydrolase
[35-38]. Importantly, however, we could not detect in
the R xylanophilus genome (RefSeq: NC_008148) any
gene encoding the catalytic step corresponding to any
of these enzymes. This suggested the possibility that
Rxyl_2847 and its neighbours (Table 2) could play a role
in this pathway. Accordingly, we searched for possible
reaction modules composed of chemically similar sub-
strates/products through the comparison of purine catab-
olism (Figure 1A), pyrimidine catabolism (Figure 1B), and
pyrimidine biosynthesis (Figure 1C).

Figure 1, Box 1 shows the functional similarities of
ATCase with the pyrimidine catabolic N-carbamoyl-L-
amino acid amidohydrolase (deiminase) and the purine
catabolic allantoate amidohydrolase (AAHase) [39]. This
suggests that the product of the Rxy/_2847 gene may play a

role as a carbamoyltransferase to functionally replace
the AAHase. In addition, Rxyl_2847 is followed by
Rxyl_2848, a gene annotated as encoding a carbamate
kinase (Figure 5). Consequently, we propose to reclas-
sify the pseudo-ATCase Rxyl 2847 as an ureidoglycine
carbamoyltransferase (UGTCase), which would catalyze
the reaction: allantoate + P; < = > ureidoglycine + carbamoyl-
phosphate in R. xylanophilus (Figure 6).

Indirect evidence that Rxyl_2847 has a ureidoglycine
carbamoyltransferase activity

Although a reaction module transforming allantoate to
ureidoglycine appeared to be the most logical reaction
that we are looking for, we could not exclude the alter-
native possibility of a promiscuous carbamoyltransferase
activity normally involved in purine degradation, being
responsible for transformation of allantoate to glyo-
xylate. To address this point, we quantified the chemical
similarity of all the potential substrates and products of
Rxyl 2847 with that of ATCase, ie., aspartate and
carbamoyl-aspartate (Figure 1C Box 1), using Chem-

P HE Ryl 2849
HN o7 NH Ryl 2847 - ’ Ureidoglycine :
g\w“i - 2 UGTCase o NH: aminohydrolase oF @,
o NﬁgO T HNTWT YO 7 e eg e
Allantoate S-Ureidoglycine N S-Ureidoglycolate
HR ADP
OJ\P S > ATP+ NH, + HO
Carbamoylphosphate Carbamate kinase
Figure 6 Proposed purine degradation pathway in Rubrobacter xylanophilus. The proposed reaction degrading allantoate to S-ureidoglycine
and carbamoyl phosphate is in black. The reactions that are presumed to be catalyzed by the neighbouring genes (Rxyl_2848 and Rxyl_2849) are
written in light gray. The encircled P stands for phosphate, P; for inorganic phosphate.
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Figure 7 ChemMine dendrograms and heatmaps. Similarity between carbamoylated (A) and uncarbamoylated (B) compounds that are
known or potential substrates of carbamoyltransferases is shown as dendrograms and heatmaps as computed using ChemMine [40].
DHT = dihydrothymine; DHU = dihydrouracil; DHO = dihydroorotate. Count, is the number of compound-compound comparison in each
value range from 0 to 1. Value, is the Tanimoto coefficient minus 1 for each comparison [40].
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Mine [40]. Figure 7A shows the dendrogram obtained
using the Tanimoto coefficient (see Methods) to com-
pare all potential carbamoylated substrates from purine
catabolism (allantoin, allantoate, ureidoglycine, ureidogly
colate and oxalurate), as well as those from pyrimidine
catabolism (carbamoyl-p-alanine, carbamoyl-B-aminoiso
butyrate), with pyrimidine anabolism (carbamoyl-aspar-
tate). Likewise, a second dendrogram (Figure 7B) was
obtained by comparing the same decarbamoylated coun-
terparts as potential products (dihydrothymine (DHT),
dihydrouracil (DHU), dihydroorotate (DHO), oxamate,
aspartate, and ureidoglycine). Both dendrograms and
their corresponding deduced heatmaps show that among
all possible compounds usable as respective substrate/
product couples of the predicted UGTCase, allantoate
(Figure 7A) and ureidoglycine (Figure 7B) are the most
similar to aspartate and carbamoyl-aspartate (the sub-
strate/product couple of ATCase). These similarities are
underlined by a double arrow in the heatmaps and
framed in the dendrograms (Figure 7A and Figure 7B).
Therefore, it becomes chemically legitimate, in the case
of R xylanophilus, to substitute the AAHase molecular
function (Figure 1A Box 1) by that of the predicted
UGTCase (Figure 6) in order to perform the cellular
function transforming allantoate into ureidoglycine.
Noticeably, such a chemical closeness of Rxyl 2847 with
ATCase supports the phylogenetic proximity and se-
quence similarity of the suggested UGTCase with genu-
ine ATCases in the frame of our reaction module
concept.

Experimental validation that Rxyl_2847 has a
ureidoglycine carbamoyltransferase activity
To ascertain the bioinformatic deduction that Rxyl_2847
is really an UGTCase, the Rxyl_2847 gene was cloned
into a pBAD expression vector (see Methods and
Additional file 9). Unexpectedly, the sequencing of plas-
mid pCEC53 revealed several mismatches between the
cloned ORF sequence and the published genomic se-
quence of R. xylanophilus DSM9941 (RefSeq: NC_008
148). An extended DNA fragment encompassing the
ORF Rxyl_2847 was generated by two independent PCR
reactions, sequenced, and this confirmed the sequence
of the cloned Rxyl_2847 (GenBank : JX289826).
Recombinant His-tagged enzyme was purified to near-
homogeneity by a three-step procedure including heat-
treatment, metal affinity chromatography and molecular
sieving (see Figure 8 and Methods). SDS-PAGE showed
a subunit molecular mass of 37 kDa but also a major
band at 80 kDa (Figure 8A). The western blot analysis of
purified enzyme (Figure 8B) pointed out that it
corresponds to a dimeric state of Rxyl_2847. Such
phenomenon was already reported for other thermo-
philic enzymes [41,42]. The activity of the purified
enzyme was examined in the physiological, catabolic
direction, i.e. the phosphorolysis of allantoate. Since the
equilibrium of the reaction catalyzed by carbamoyltrans-
ferases strongly favours the carbamoylation direction,
in vitro studies of the catabolic reaction require the
removal of one of the products formed. This can be
achieved by using arsenate instead of phosphate [43] or
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Figure 8 Analysis of the purified Rxyl_2847 enzyme. (A) SDS-
PAGE of purified Rxyl_2847 enzyme on a NuPage Bis-Tris 4-12% gel
(Life Technologies) in MOPS running buffer. Proteins were stained
with PageRuler protein staining solution (ThermoScientific). Lane 1,
PageRuler Unstained Broad Range Protein Ladder (ThermoScientific);
Lane 2, 10 pg of purified Rxyl_2847 enzyme. (B) Western blot
analysis of purified Rxyl_2847 enzyme (same condition of electro-
phoresis as in (A), electroblot onto Hybond (GE Healthcare)
nitrocellulose membrane). Lane 1, PageRuler Unstained Broad Range
Protein Ladder (ThermoScientific); Lane 2, 100 ng of purified
Rxyl_2847 enzyme; Lane 3, 100 ng of a purified His-tagged protein

control; Lane 4, 100 ng of a purified untagged protein control.

by coupling the reaction in vivo to that of a carbamate
kinase, or an anabolic carbamoyltransferase. In this
work, the E. coli OTCase, purified as described previ-
ously [44] was used in the presence of ornithine to
convert the carbamoyl phosphate produced by the phos-
phorolysis of allantoate to citrulline (Table 3).
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To assay if the purified recombinant protein had a
carbamoyltransferase activity, we first examined its abil-
ity to catalyze the arsenolytic cleavage of allantoate
(Table 3). Importantly, since ureidoglycine, the putative
product of the reaction, is thermally unstable, assays
were performed with an incubation time not exceeding
5 min. (see Methods for details). The amino content in
the reaction mixture was immediately analyzed by
reverse phase HPLC after pre-column derivatization
with o-phtaldialdehyde (see Methods). One prominent
peak, corresponding to ureidoglycine (retention time:
11.6 min), was obtained after the enzyme was incubated
at 37°C with allantoate and arsenate. After incubation at
60°C (the optimal growth temperature of R. xylanophilus
[45]), only a small amount of ureidoglycine was ob-
served, probably due to the lability of this product.
Ureidoglycine formation was observed when UGTCase
was incubated with allantoate and arsenate, but not in
the absence of arsenate, excluding the possibility of en-
zymatic hydrolysis of allantoate (Table 3).

The physiological reaction catalyzed by UGTCase,
namely the phosphorolysis of allantoate, was then analyzed
by coupling with purified E. coli OTCase to prove that
carbamoyl phosphate was effectively formed in the
reaction. The citrulline produced in the coupled assay
was quantified by reverse phase HPLC after pre-column
derivatization with o-phtaldialdehyde. Table 3 demonstrates
that carbamoyl phosphate was indeed produced. Compari-
son of the activities at both 37° and at 60°C showed that
UGTCase was much more active at 60°C, as expected for
a thermophilic enzyme (Table 3).

Conclusion

In this paper, we have substantiated the potency of the
concept of the reaction module to unravel undisclosed
functional relationships in central metabolism and to
discover the actual function of misannotated proteins
[46,47], especially when coupled with an informative

Table 3 Characterization of the Rubrobacter xylanophilus UGTCase activity

Reaction mixture composition

Assay temperature Specific activity < (umol min™' mg™)

25 mM potassium arsenate pH 6.8, 20 mM allantoate 37°C 0.046 +0.007 *
25 mM Hepes pH 6.8, 20 mM allantoate 37°C nd.?

50 mM potassium phosphate pH 6.8, 20 mM allantoate, 37°C 0.050 + 0.002 °
5 mM ornithine, EcOTCase (100 units)

25 mM Hepes pH 6.8, 20 mM allantoate, 5 mM ornithine, ECOTCase (100 units) 37°C nd.®

50 mM potassium phosphate pH 6.8, 5 mM ornithine, ECOTCase (100 units) 37°C nd.®

50 mM potassium phosphate pH 6.8, 20 mM allantoate, 60°C 5913+0584°
5 mM ornithine, EcOTCase (100 units)

50 mM potassium phosphate pH 6.8, 5 mM ornithine, ECOTCase (100 units) 60°C nd.®

fassessed by quantifying ureidoglycine.
Passessed by quantifying citrulline.

“Data are the mean + SD from at least three independent experiments. n.d., not detectable as defined in Methods.
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gene context. The so-called pseudo-ATCases (Figure 4)
were found to be such an example of uncharacterized
paralogues when we demonstrated they are unrelated to
authentic ATCases (Figure 5 and Table 1). Using our
conceptual approach, we have deduced and experimen-
tally proved that the Rxyl 2847 protein, the pseudo-
ATCase detected in the extremophile R xylanophilus
[45], is an UGTCase involved in the degradation of
allantoin to ureidoglycine (Figure 6).

By analogy with steps observed in other species
[37,48,49], we further suggest that this reaction is part of
a new route of purine catabolism, where ureidoglycine is
then degraded by the carbamate kinase Rxyl 2848 to
produce carbamoyl-phosphate (Figure 6). Moreover,
spontaneous degradation of ureidoglycine at 60°C
(growth temperature of R. xylanophilus) would provide
eventually glyoxylate (as well as ammonia and urea). We
propose that Rxyl 2849, adjacent to Rxyl 2847 and
Rxyl_2848, also plays a crucial role in this newly de-
scribed pathway (Figure 6). In fact, Rxyl_2849 has
been annotated as an asparaginase-like enzyme in the
R. xylanophilus genome (RefSeq: NC_008148). In
contrast, Gravenmade et al. [50] claimed that allantoate
amidohydrolase isolated from Streptococcus allantoicus
could hydrolyze allantoate to ureidoglycolate with the
release of CO, and NHj. In this case, AAHase is
expected to produce ureidoglycine, which is later
transformed into ureidoglycolate by an ureidoglycine
aminohydrolase. Thus, in R. xylanophilus, Rxyl_2849
may also catalyze this deamination of ureidoglycine
to ureidoglycolate, as the logical step following the
action of the UGTCase Rxyl 2847 (Figure 6). Al-
though this prediction remains to be experimentally
validated, it would introduce another category of
reaction module. In that case, while substrates and
products are chemically similar, the enzymes catalyz-
ing analogous reactions could be evolutionarily unre-
lated. Consequently, automated detection of such
modules with the currently available bioinformatic
tools would be less simple than in the case of enzyme
homology. However, it remains possible when using
tools like ChemMine [40] to compare various substrates
and products to detect similar chemical functions in
alignable pathways.

Use of the reaction module concept should be of great
value when studying mechanistically diversified super-
families [7,11,13,14,46,47]. Reaction modules could be
viewed as the elementary bricks used to assemble func-
tional modules [17,18]. More generally, defining progres-
sively these different elements will help to trace how the
present pathways progressively diverged from ancestral
pathways where the successive primordial enzymes [4]
were promiscuous and gave birth to the present-day
superfamilies.
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Methods

Building a reference multiple sequence alignment (MSA)
of superfamilies

We developed a two-step approach to obtain an MSA
reflecting the structural and functional diversity of en-
zyme superfamilies. In a first step, we collected the lim-
ited set of homologues that have been both crystallized
(published in the Protein Data Bank [51]) and experi-
mentally studied, as indicated in UniProtKB/SwissProt
[19].These sequences were multiply aligned using the
Expresso update of the 3D-Coffee program [52] that has
been benchmarked as optimal when sequence identity
between target and template falls below 50% [53]. The
automated alignment was further improved by hand to
define a seed MSA. In a second step, an HMM profile of
this seed was created to screen UniProtKB using
HMMsearch [54]. This allows the identification of suit-
able (threshold of E-value = 10E-15) homologues that
were further clustered using Cd-hit [55]. For each cluster,
an automated MSA was built with MUSCLE [56] and an
HMM profile (HMM_cluster) was computed. In parallel,
another HMM profile was computed for the closest
homologous sequences present in the seed alignment
(HMM_seed). Then, the two profiles, HMM_cluster and
HMM_seed, were aligned using the HHalign program [57].
A stepwise approach allows progressive addition of each
aligned cluster to the seed alignment. To make this step-up
more efficient and safer, we started with highly matching
sequences (at least 70% identity), and the whole process
was repeated while the identity threshold was progressively
decreased 60, 55, 50, 45, and 40%. This allowed us to ex-
clude a few unreliable distant sequences and to assort the
individual tribes that are part of each aligned cluster.

A script was designed to detect the emergence of new
homologues each time a new version of UniProtKB [19]
was published. These presumptive homologues were
assessed and added to the reference alignment using the
HMM stepwise approach described above. Accordingly,
we worked at any one time with a reliable reference
MSA that was always up to date.

Reconstructing phylogenetic trees

Seed and reference MSA were used to derive phylogenetic
trees with approximate maximum likelihood approaches
(FastTree version 2.1 [58]). Robustness of the recon-
structed tree topologies was assessed using a bootstrap ap-
proach or a much faster alternative, the approximate
likelihood-ratio test (aLRT [59]). The trees obtained (writ-
ten in Newick format) were visualized using MEGA 5.1
[60] or Dendroscope 3.2.2 [61] programs.

Functional annotation by monophyly
With the deluge of new genome sequences, phylogenetic
trees contain more and more functionally unknown
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sequences branching together with a few experimentally
characterized proteins. We used topological information
of elementary subtrees to annotate uncharacterized
leaves as follows. When two monophyletic subtrees,
sharing a common ancestor, each contain at least one of
their leaves with the same experimentally assessed func-
tional annotation, then this function is transferred to
their whole subtree, on the assumption that this shared
feature comes from their common ancestor. If this is not
the case, each monophyletic subtree is considered
independently, tentatively divided in two more elemen-
tary subtrees and the analysis continued until the most
distal subtrees coincide with leaves. Such a cautious
approach prevents the introduction of damaging over-
interpretation of functional proximity.

Chemical and structural comparison of potential
substrates

We used ChemMine tools [40] to compare systematic-
ally potential substrates and products of putative en-
zymes. Their hierarchical clustering was calculated by
all-against-all comparisons of chemically related com-
pounds using atom pair similarity measures. We used
the Tanimoto coefficient, which is defined as c/(a + b + ¢),
where c is the number of features common in both
compounds, while a and b are the number of features
that are unique in one or the other compound, respectively.
For each cluster, the similarity scores generated were
transformed into distance values, allowing creation of
a dendrogram and then a heatmap that highlights the
hierarchical clustering of the analyzed compounds.

Cloning and heterologous expression of Rxyl 2847

Rubrobacter xylanophilus strain  DSM9941 obtained
from Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (DSMZ) was grown aerobically at
60°C on a rotary shaker in complex medium (9 g of
tryptic soy broth, 4 g of yeast extract, 3 g of NaCl, H,O
to 1 L, adjusted to pH 7.5). Genomic DNA was extracted
according to Magarvey et al. [62] and we used Pfu DNA
polymerase (ThermoScientific) to amplify the open read-
ing frame (ORF) Rxyl 2847 with primers ocej475 (5'-
tttaactttaagaaggagatatacatacccatgcagaaagaggcggtaaggga -
3) and ocejd76 (5- atccgccaaaacagccaagetggagaccgtctaa
tgatgatgatgatgatgcgeccecacgatageggegac -3’). The PCR
product was inserted into the pBAD vector (Life Tech-
nologies) by homologous recombination in E. coli
MC1061 [63] after growth on LB broth in the presence
of 100 pg/mL ampicillin. The resulting pCEC53 plasmid
was verified by sequencing (Genetic Service Facility,
University of Antwerp, Belgium). For additional sequen-
cing of the ORF Rxy/ 2847, a PCR fragment extending
from nucleotide 2853037 to nucleotide 2854149 of the
published genome of R. xylanophilus DSM9941 (acces-
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sion number GI:108764099) was generated with Pfu
DNA polymerase and primers ocej483 (5- ctcttcgagaa
ggcctgagaatag -3’) and ocejd84 (5- tcgtcctttatgagggag
ttgc- 3'). The PCR product was cloned subsequently with
the CloneJet PCR cloning kit (ThermoScientific) and
sequenced.

Production and purification of recombinant Rxyl_2847
protein

E. coli MC1061 transformed with the expression vector
pCEC53 was grown at 37°C in two litres of LB broth
supplemented with 100 pg/mL ampicillin. Expression of
Rxyl_2847 was induced in mid-exponential phase by
adding 0.2% arabinose, followed by overnight growth at
18°C. Cells were harvested by centrifugation, suspended
in 50 ml 0.05 M potassium phosphate buffer pH 7.5,
containing Complete EDTA-free protease inhibitor cock-
tail (Roche Applied Science) and disrupted by sonication
(Ultrasonic Inc., W-225R). Insoluble particles were
pelleted at 17,500 g for 30 min (Sorvall RC-6, SS34
rotor). The cell extract was heated at 60°C for 15 min
and coagulated proteins were removed by centrifugation
for 30 min at 17,500 g. The cleared lysate was submitted
to ion metal affinity chromatography on Ni-nitrilo-
triacetic acid agarose resin (Qiagen) in 0.05 M potassium
phosphate buffer, pH 7.5, containing 0.3 M NaCl.
Elution was performed in three steps with increasing
concentrations (0.1, 0.25, and 0.5 M) of imidazole.
Fractions corresponding to the elution peak at 0.25 M
imidazole were pooled and applied to a Superdex 200
(GE Healthcare, 16/70 column) gel filtration resin in
0.02 M Hepes buffer, pH 7.5, containing 0.15 M NaCl
and 10% glycerol. Fractions containing the protein of
interest were pooled and concentrated using Vivaspin
15R 30 kDa (Sartorius) membranes. The presence and
purity of the recombinant enzyme was checked through-
out the purification procedure by SDS-PAGE and its
identity verified by Western blot. Western blot analysis
was carried out as previously described [41], Rxyl_2847
enzyme was detected using PentaHis antibodies (Qiagen)
and Amersham ECL Prime western blotting reagents
(GE Healthcare).

Enzymatic synthesis of ureidoglycine

Ureidoglycine is not commercially available and was
generated by enzymatic hydrolysis of allantoate, cata-
lyzed by purified recombinant E. coli allantoate amido-
hydrolase as referred to in French and Ealick [48].
Plasmid EcCD00311947 carrying the E. coli allC gene
under the control of a T7 promoter was obtained from
DNASU Plasmid Repository (The Biodesign Institute/
Arizona State University, USA). E. coli strain BL21(DE3)
was transformed with this plasmid and grown in LB
broth supplemented with 50 pg/mL kanamycin to allow
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expression of recombinant E. coli AAHase with a 6xHis
tag fused to its N-terminus. Expression of AAHase was
induced in mid-exponential growth phase by adding
1 mM IPTG, followed by growth for 4 h at 37°C. All
purification steps were performed as described above ex-
cept that the thermal treatment was omitted.

Enzymatic assays

Enzyme activities were measured in 200-pl assay mix-
tures whose composition is detailed in the Results sec-
tion. After incubation, the reaction was stopped by
freezing on ice and the enzyme was removed from the
reaction mixture by ultrafiltration on a Vivaspin 500
3 kDa (Sartorius) membrane. The products of the reac-
tion were immediately analyzed by reverse phase HPLC
after pre-column derivatization with o-phtaldialdehyde.
The fluorescent derivatives of amino compounds were
prepared according to Hill et al. [64] and analyzed by
reverse phase HPLC on an Alltech Altima C18 5 pm
column (150/4.6) as referred to in Jones et al [65].
Initial conditions were 75% solvent A (tetrahydrofuran -
methanol - 0.05 M sodium acetate (1:19:80) pH 5.9),
25% solvent B (methanol - 0.05 M sodium acetate
(80:20) pH 5.9). The gradient program (flow rate of
1 ml min-1) was as follows: 75% solvent A + 25% solvent
B for 1 min from the initiation step of the program; lin-
ear step to 80% solvent B in 14 min; isocratic step at
80% solvent B for 3 min; linear step to 100% solvent B
for 7 min; isocratic step to 100% solvent B for 5 min.
One unit of activity is defined as the amount of enzyme
that converts 1 umol of substrate to product per min
under the assay conditions. Specific activity is defined in
units per mg protein and activity was considered as not
detectable when less than 0.001 pmol per min per mg.
Protein concentration was determined by measurement
of the UV absorbance at 280 nm and by the Bradford
method, with bovine serum albumin as the standard.

Additional files

Additional file 1: This is the complete MSA of DHases in FASTA
format.

Additional file 2: Complete tree of DHases can be viewed in three
different formats (Newick [60], NeXML [http://www.nexml.org/], and
Dendroscope [61]).

Additional file 3: Complete tree of DHases can be viewed in three
different formats (Newick [60], NeXML [http://www.nexml.org/], and
Dendroscope [61]).

Additional file 4: Complete tree of DHases can be viewed in three
different formats (Newick [60], NeXML [http://www.nexml.org/], and
Dendroscope [61]).

Additional file 5: This is the complete MSA of carbamoyltransfe-
rases in FASTA format.

Additional file 6: Complete tree of carbamoyltransferases can be

viewed in three different formats (Newick [60], NeXML [http://www.
nexml.org/], and Dendroscope [61]).
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Additional file 7: Complete tree of carbamoyltransferases can be
viewed in three different formats (Newick [60], NeXML [http://www.
nexml.org/], and Dendroscope [61]).

Additional file 8: Complete tree of carbamoyltransferases can be
viewed in three different formats (Newick [60], NeXML [http://www.
nexml.org/], and Dendroscope [61]).

Additional file 9: Analysis of the PCR-amplification of Rxyl_2847
gene by agarose gel electrophoresis.
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