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Abstract

Background: To facilitate new drug development, physiologically-based pharmacokinetic (PBPK) modeling
methods receive growing attention as a tool to fully understand and predict complex pharmacokinetic
phenomena. As the number of parameters to reproduce physiological functions tend to be large in PBPK models,
efficient parameter estimation methods are essential. We have successfully applied a recently developed algorithm
to estimate a feasible solution space, called Cluster Newton Method (CNM), to reveal the cause of irinotecan
pharmacokinetic alterations in two cancer patient groups.

Results: After improvements in the original CNM algorithm to maintain parameter diversities, a feasible solution
space was successfully estimated for 55 or 56 parameters in the irinotecan PBPK model, within ten iterations, 3000
virtual samples, and in 15 minutes (Intel Xeon E5-1620 3.60GHz × 1 or Intel Core i7-870 2.93GHz × 1). Control
parameters or parameter correlations were clarified after the parameter estimation processes. Possible causes in the
irinotecan pharmacokinetic alterations were suggested, but they were not conclusive.

Conclusions: Application of CNM achieved a feasible solution space by solving inverse problems of a system
containing ordinary differential equations (ODEs). This method may give us reliable insights into other complicated
phenomena, which have a large number of parameters to estimate, under limited information. It is also helpful to
design prospective studies for further investigation of phenomena of interest.
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Background
Pharmacokinetics is a field of study that analyzes and
predicts behaviors of drugs in organisms [1]. A major
purpose of this study area is to predict pharmacokinetic
properties of new drugs in humans, without performing
clinical studies, in order to accelerate the efficiencies of
new drug development processes. Another important
purpose is to facilitate the proper use of not only newly

developed drugs but also already existing drugs. There
are numerous factors altering pharmacokinetics, such as
drug-drug interactions (DDIs) [1], pharmacogenetics [2],
or disease states [3,4], which can cause large inter-
individual variability in drug responses. By studying
these complicated phenomena, we may be able to
explain and predict the alterations in clinical settings to
administer drugs properly to each patient [5].
Physiologically-based pharmacokinetic (PBPK) modeling

and simulation are essential in understanding and pre-
dicting the above-mentioned, complicated pharmacoki-
netic phenomena [6-8]. The basic idea of PBPK modeling
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is to reproduce physiological functions (absorption, distri-
bution, metabolism, and elimination) in mathematical
equations in order to understand the physiological phe-
nomena extensively from the information obtained from
in vivo studies and to predict unknown phenomena
quantitatively. PBPK models are becoming more impor-
tant because of the increase in complicated pharmacoki-
netic phenomena, such as DDIs involving multiple
interaction sites [9] or the combined effect of multiple
inhibitors [10]. Current draft guidance on DDI studies by
the U.S. Food and Drug Administration [11] emphasizes
the importance of PBPK simulation in deciding whether
clinical DDI studies are required or not during new drug
developments.
In analyzing complex pharmacokinetic phenomena

with PBPK models, Gauss-Newton or its modified algo-
rithm is often used for parameter estimation. However,
these methods require feasible initial parameters before-
hand, which are often difficult for the pathways with lit-
tle or no prior information, such as pharmacokinetic
parameters of metabolites, or of enterohepatic circula-
tions (EHC). Optimized parameters may highly depend
on the initial parameter settings as well. Additionally,
the PBPK model contains a lot of parameters to esti-
mate in nature, compared to the limited information
available in clinical studies, making the accurate estima-
tion of parameters more difficult. Since the accuracy of
the parameter estimation process is quite important in
PBPK analyses, these characteristics make the interpre-
tations or extrapolations of the obtained results
complicated.
Aoki et al. recently developed a new parameter esti-

mation algorithm called CNM [12]. In this algorithm,
we first prepare a group of virtual samples with random
samplings from a certain initial range for each para-
meter to estimate. Then, linear approximations of a pro-
jection from parameter space into target values give the
initial parameter values for the next iteration. In our
experience, fewer than nine iterations of this process
achieve the final, optimized parameters, which can
reproduce clinically observed phenomena.
This algorithm has multiple advantages over conven-

tional parameter estimating algorithms. The first advan-
tage is the simplicity of the initial parameter settings.
The new method only requires the designation of rela-
tively broad parameter ranges as an initial setting, while
the conventional algorithm requires the identification of
feasible initial parameters. The second advantage is low
computational costs owing to the deterministic nature
of this algorithm, unlike other algorithms that use col-
lective intelligence, such as genetic algorithms or parti-
cle swarm optimization. The last and the most
important advantage is that the results are obtained as a
group of optimized parameter sets. It allows us to

interpret the phenomena with higher confidence and to
extrapolate the obtained insights into new phenomena.
Aoki et al. previously applied CNM for analyzing a

complicated pharmacokinetic phenomenon [5,12] using
a PBPK model [13], in which the pharmacokinetic prop-
erties of an anti-cancer drug, irinotecan (also known as
CPT-11), differs a lot between a bile-duct cancer (BDC)
patient and other cancer (OC) patients [14]. After intra-
venous administration, irinotecan is metabolized by
CYP3A4 or carboxylesterase 2 (CES2) to form APC,
NPC, SN-38, and M4 [15,16] (Figure 1). NPC and SN-
38 are further metabolized by CES2 and UGT1A to
form SN-38 and SN-38G, respectively. Organic anion
transporting polypeptide 1B1 (OATP1B1) is involved in
the hepatic uptake of SN-38, while OATP1B1 does not
actively transport irinotecan or SN-38G, according to an
in vitro study [17]. SN-38G is said to be deconjugated
to form SN-38 by b-glucuronidase in intestinal micro-
flora [18]. Possible involvement of enterohepatic circula-
tion (EHC) in determining irinotecan pharmacokinetics
[19] makes the estimation of parameters difficult
because of the model structure and limited information
about the feasible parameter values of EHC.
Since the previous report is mainly focused on the

establishment of CNM, the PBPK model was not suita-
ble from the pharmacokinetic viewpoint. Most impor-
tantly, the previous PBPK model did not contain EHC.
Biliary drainage in the BDC group was not considered
either. Furthermore, our preliminary investigation
showed that the original CNM is not applicable to ana-
lyze the phenomena with EHC in a PBPK model.
In this paper, we improved both the PBPK model of

irinotecan and the CNM algorithm itself. Firstly, we
included EHC and biliary drainage in the PBPK model
to properly interpret our obtained results. We also tried
to improve the CNM algorithm itself to maintain the
diversity of virtual samples during iterations, since the
application of the original CNM algorithm failed using
the new PBPK model in this study.

Results and discussion
Improvements in CNM for analyzing irinotecan
accumulation profiles
In this study, we have applied and improved the CNM
algorithm for the accumulation profiles of irinotecan and
its metabolites by using the PBPK model shown in Figure
1 and in Additional File 1. Parameter estimation in the
PBPK model was performed with 9 and 14 objective
values for OC and BDC, respectively (Table 1c). Initial
ranges of parameters were set as shown in Table 1b,
which were thought to be large enough to contain the
real value for each parameter.
Firstly, we performed the modified CNM with various
dS values, ranging from 0 to 0.9. The modified CNM
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replicates a group of parameters towards the direction
of the estimated feasible solution space with the ratio of
dS after each iteration (see Methods section for details).
We examined the effect of dS values on the convergence
in this system, which was newly introduced in the algo-
rithm to maintain parameter diversities as explained in
the Methods section, and the calculation with dS of 0 is
identical to the original CNM algorithm. By changing
the dS values from 0 to 0.9, we performed CNM on the
accumulation profiles in the BDC group with the same
initial parameter ranges. As shown in Figure 2, the
objective values converged well to the observed values

when dS was no less than 0.5 (Figure 2p-t). For the OC
group, dS of at least 0.2 was needed to complete the
process (data not shown).
When dS was smaller than 0.5, the ranges of the

objective values remained similar to the initial range
(Figure 2f-j). Particularly, parameters got diverged after
2 iterations for dS of 0 to 0.2, or after 3 iterations for
dS of 0.3 (Figure 2a-d). The divergences of parameters
after 3 iterations were smaller with higher dS values. It
might be due to the capability to maintain parameter
diversities with higher dS values. Since we have some
parameters sensitive to the changes in dS values, such

Figure 1 A PBPK model to analyze pharmacokinetic properties of irinotecan and metabolites. We constructed a PBPK model to simulate
time profiles of the accumulations of irinotecan and the metabolites. We included compartments for rapid and late equilibrium, liver, small and
large intestine, biliary transits, urine, feces, and biliary T-tubes.The ordinary differential equations of this model are described in the Additional file
1. CL12, clearance from a rapid to a late equilibrium compartments; CLCES,1, metabolic clearance of irinotecan by CES2 to form SN-38; CLCES,2,
metabolic clearance of NPC by CES2 to form SN-38; CLbile, biliary clearance to a transit compartment; CLbile,T, biliary clearance to biliary T-tube;
CL3A4,1, metabolic clearance of irinotecan by CYP3A4 to form APC; CL3A4,2, metabolic clearance of irinotecan by CYP3A4 to form NPC; CLR, renal
clearance; CLUGT, metabolic clearance of SN-38 by UGT to form SN-38G; CPT-11, irinotecan; k21, kinetic constant from a late to a rapid equilibrium
compartment; ka, absorption rate constant; kfeces, kinetic constant for the transit from large intestine to feces; kLI, kinetic constants for the transit
from small intestine to large intestine; KP,H, concentration ratio between liver and rapid equilibrium compartment; ktransit, kinetic constant for the
transit in bile compartments to small intestine; QH, blood flow rate in liver.
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Table 1 Initial, final, and fixed parameters for CNM

a Parameters Fixed

Dose µg/kg 1500

Duration of infusion Min 90

Qliver ml/min/kg 20.7

Vliver ml/kg 24.1

b Parameters to estimate

ID min Max

1-5 Kp,liver - 0.1 10

6-11 CLr ml/min/kg 1 100

11-15 CLbile ml/min/kg 1 100

16 CLCES,1 ml/min/kg 1 100

17 CLCES,2 ml/min/kg 1 100

18 CL3A4,1 ml/min/kg 1 100

19 CL3A4,2 ml/min/kg 1 100

20 CLUGT ml/min/kg 1 100

21-25 kfeces /min/kg 0.001 0.1

26-30 ka /min/kg 0.001 0.1

31-35 kLI /min/kg 0.001 0.1

36-40 ktransit /min/kg 0.001 0.1

41-45 CL12 ml/min 1 100

46-50 k21 min-1 0.1 10

51-55 Vrapid ml/kg 10 1000

56* CLbile,T-tube/CLbile,transit - 0.1 10

We used the same initial ranges for these parameters in irinotecan and the metabolites

* Fixed and set to be zero when analyzing the OC group.

c Objective values

ID OC BDC

1 Urinary accumulation µg/kg irinotecan 427 412

2 SN-38 8.20 17.0

3 SN-38G 57.6 227

4 NPC 2.67 1.70

5 APC 42.5 146

6 Fecal accumulation µg/kg irinotecan 616 118

7 SN-38 + SN-38G 162 52.6

8 NPC 25.9 6.05

9 APC 158 31.4

10 Biliary accumulation µg/kg irinotecan - 349

11 SN-38 - 8.32

12 SN-38G - 50.5

13 NPC - 5.68

14 APC - 73.8

a fixed parameters for calculation, b initial parameters to estimate, and c objective values are shown. Minimum and maximum values of the initial ranges were
represented for the parameters to estimate. We used the same initial ranges for each of the five parameters for irinotecan and the metabolites, except for #16-20
and #56. We used the same parameter value of #56 for irinotecan and the metabolites. Parameter #56 was fixed and set to be zero and fixed when analyzing
the OC group. The total amount of urinary, fecal, and biliary accumulation was normalized to the amount of dose (1500 µg/kg). BDC, bile-duct cancer patients;
CL12, clearance from a rapid to a late equilibrium compartments; CLCES,1, metabolic clearance of irinotecan by CES2 to form SN-38; CLCES,2, metabolic clearance of
NPC by CES2 to form SN-38; CLbile,total, sum of biliary clearance to a transit compartment and biliary clearance to biliary T-tube; CL3A4,1, metabolic clearance of
irinotecan by CYP3A4 to form APC; CL3A4,2, metabolic clearance of irinotecan by CYP3A4 to form NPC; CLR, renal clearance; CLUGT, metabolic clearance of SN-38
by UGT to form SN-38G; k21, kinetic constant from a late to a rapid equilibrium compartment; ka, absorption rate constant; kfeces, kinetic constant for the transit
from large intestine to feces; kLI, kinetic constants for the transit from small intestine to large intestine; KP,H, concentration ratio between liver and rapid
equilibrium compartment; ktransit, kinetic constant for the transit in bile compartments to small intestine; OC, other cancer patients; QH, blood flow rate in liver;
VH, volume of a liver; Vrapid, apparent volume of a rapid equilibrium compartment.
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as a biliary clearance to a transit compartment of SN-38
(CLbile, parameter #12), we might be able to control the
convergence by observing the behaviors of sensitive
parameters. These results suggest the importance of
maintaining parameter diversities in performing CNM
using the dS algorithm, while further investigations
should be needed to rationally determine feasible dS
values in other cases.
Some pharmacokinetic parameters gradually con-

verged to a feasible solution space along with the itera-
tions of the parameter estimation process with high dS
values. The residuals in objective values were decreased
towards zero as well. Figure 3 illustrates the estimated
parameters and the objective values after iterations with
dS of 0.5, and the corresponding values are described in
Additional File 2. While the ranges of parameter values
seem stable only after the first iteration, the residuals in
objective values continued to decrease until the third
iterations. This observation may suggest that correla-
tions among parameter values converged while main-
taining the diversity of the absolute value in each
parameter.
After 9 iterations, we observed high convergence of

certain parameters, such as renal clearance (CLR) of

irinotecan (parameter #6) in both the OC and the BDC
groups, and ratio of biliary clearance into T-tube to bili-
ary clearance into a transit compartment (CLbile,T /
CLbile,transit, parameter #56) in the BDC group (differ-
ences in convergence will be discussed later). In particu-
lar, the estimated values of irinotecan CLR in OC (5.7 ±
1.2 ml/min/kg, geometric mean ± SD, Additional file 2)
was close to the values calculated from the original
report (2.8 ml/min/kg). Furthermore, the averages of
estimated irinotecan CLR values with two different initial
distributions were within three fold of the values from
the original report (data not shown). We do not have
clear explanations of the convergences in clearance
parameters without information on plasma concentra-
tions, since these parameters are defined as the ratio
between urinary, biliary, or fecal accumulations of drugs
with area under the blood concentration-time curve
(AUC). We suspect that these parameters were determi-
nants of the behavior of our PBPK model structures,
and that the relationships with other parameters
restricted the absolute values.
The calculation time required for the whole process

was short; it took less than 15 minutes with ten itera-
tions and 3000 virtual samples (Intel Xeon E5-1620

Figure 2 Effect of dS values on convergences of parameters and objective values in the BDC group. Distributions of parameters to
estimate and objective values at the final iterations in BDC group with corresponding dS values are displayed for the initial (blue) and estimated
(green) ranges. Overlapped areas are represented in orange. A number of iterations and a dS value are displayed at the lefthand side of each
figure. Parameters got diverged after 2 iterations for dS of 0 to 0.2, or after 3 iterations for dS of 0.3. Normalized values with the initial ranges in
log-scale are displayed for the parameters to estimate, and normalized values with the observed objective values in log-scale are displayed for
the simulated objective valued. BDC, bile-duct cancer patients.
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3.60GHz × 1 or Intel Core i7-8702.93GHz × 1; see
Methods section for details).
After the application of CNM, we simulated the accu-

mulation time-profiles using estimated parameter sets to
compare them with the reported values (Figure 4a, b).
In both groups, some parameter sets reproduced the
observed time profiles well, and the range of the esti-
mated parameters became smaller when we selected
samples which reproduced the observed time profile
well (Figure 4c, d).

Differences in optimized parameters between OC and
BDC
We compared the estimated parameter distributions
between OC and BDC. When comparing the distribu-
tion of parameters with all samples, parameter distribu-
tions were similar in the two groups (Figure 5a). As
mentioned in the previous section, we observed strong
convergence in parameter #6, CLR of irinotecan.

Expansions of parameter ranges were also similar
between the two groups. On the other hand, the distri-
butions of the numbers of parameters were shifted
when we considered accumulation time-profiles (Figure
5b). Interestingly, these parameters are mostly involved
in hepatobiliary or intestinal pathways (#12-13, 19, 20,
35, 41). These results may suggest the importance of
hepatobiliary and intestinal pharmacokinetic processes
in determining the pharmacokinetics of irinotecan in
the BDC patient, and are partly in a good agreement
with the reports on reduced MRP2 expressions in liver
with biliary cancer [20] or in the duodenums of patients
with hepatic cholestasis [21], and altered pharmacoki-
netics of irinotecan and its metabolites with genetic
polymorphisms of MRP2 [15,16]. However, further
investigations are needed to clarify the cause of the
pharmacokinetic alterations, since most of the parameter
ranges in BDC group are actually included in the para-
meter ranges in OC group.

Figure 3 Normalized fitted parameters and target values over iterations. Processes of parameter estimations for (a-b) OC and (c-d)
BDC groups are described for the initial (blue) and estimated (green) ranges with dS of 0.5. Overlapped areas are represented in orange.
Convergence of (a,c) parameters and (b,d) objective values can be observed. Normalized values with the initial ranges in log-scale were
displayed for the parameters to estimate (a,c), and normalized values with the observed objective values in log-scale were displayed for the
simulated objective valued (b,d).Corresponding parameter ranges after nine iteractions were described in the Additional File 2. BDC, bile-duct
cancer patients; OC, other cancer patients.
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Correlations among parameters
Finally, we have observed correlations among the
estimated parameter values (Figure 6). We selected para-
meters with an r2 value of more than 0.64 against at
least one other parameter in this figure. Tendencies in
parameter correlations were similar between the two
groups, while the number of parameter combinations
having higher correlations was large in BDC group. The
number of objective values might again be the cause of
this observation.
Most of these relationships can be explained theoreti-

cally. For example, in both groups, parameters among
#6, 16, and 18 have a strong linear relationship with
each other to keep the ratio of parameters to maintain
the ratio in the final outcome. Another example is the
inverse proportional relationship of #56 to #12 and #14.

When the amount of bile collected in the T-tube was
increased (#56 increased), biliary clearances decreased
(#12 and #14) to keep the amount of compounds
excreted into the T-tubes. While these phenomena can
be explained retrospectively, we cannot easily observe the
actual parameter dependencies quantitatively without per-
forming this kind of parameter estimation algorithms.

Conclusions
Efficient and reliable estimations of parameter values are
important for the analysis of complex pharmacokinetic
phenomena with PBPK models. In this study, we have
successfully improved and applied CNM to estimate
55 or 56 parameters in the irinotecan PBPK model, by
implementing dS function in the algorithm. The applica-
tion of this method presented not only the control

Figure 4 Simulated accumulation time-profiles after parameter estimations and the parameter selections with SSlog. Accumulation time-
profiles of total irinotecan radioactivity in urine, feces, and biliary T-tubes were simulated using the estimated parameters with CNM for (a) OC
and (b) BDC, after the estimation processes with the objective values shown in Table 1c. Blue lines in the upper and lower panels represent the
simulated time-profiles with all the estimated parameter sets and the parameter sets with three lowest SSlog values. Pink circles represent the
observed time-profiles. Distributions of parameters to estimate at the final iterations were displayed for all the parameter sets (blue) and the
parameter sets with three lowest SSlog values (green) for (c) OC and (d) BDC. Overlapped areas are represented in orange. Normalized values
with the initial ranges in log-scale are displayed for the parameters to estimate. BDC, bile-duct cancer patients; OC, other cancer patients; SSlog,
sum of squares of log residuals.
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parameters in this PBPK model, but also correlations of
parameters, which are important in determining the
behaviors of the PBPK model.

Methods
Data source
Throughout thee study, we analyzed reported pharma-
cokinetic profiles of irinotecan and its metabolites [14].
This report described the accumulation of irinotecan
and its metabolites into urine and feces for two groups
of patients, with bile-duct cancer (BDC, one patient) or
with other cancers (OC, seven patient). Bile was also
collected via biliary T-tube for a patient in the BDC
group.

PBPK model and parameter settings
In order to analyze the causes of the different pharma-
cokinetic profiles from the two groups of patients, we
developed a simplified PBPK model for irinotecan and
its four metabolites (Figure 1), based on the reported
metabolic pathways of irinotecan [15,16]. The ordinary
differential equations of this model are described in the
Additional File 1.
Fixed parameter values and initial parameter ranges

were shown in Table 1a and 1b, respectively. While
these ranges were set arbitrarily, they may be large
enough to contain real values, and may be applicable to
many compounds having different kinetic constants. We
used the same parameter for the ratio between CLbile,T

Figure 5 Comparison of estimated parameters for OC and BDT. Estimated parameter distributions were compared between OC (blue) and
BDT (green) for (a) all the estimated parameter sets and (b) the parameter sets with ten lowest SSlog values. Overlapped areas are represented in
orange. Normalized values with the initial ranges in log-scale are displayed for the parameters to estimate. BDC, bile-duct cancer patients; OC,
other cancer patients; SSlog, sum of squares of log residuals.

Yoshida et al. BMC Systems Biology 2013, 7(Suppl 3):S3
http://www.biomedcentral.com/1752-0509/7/S3/S3

Page 8 of 11



and CLbile for irinotecan and the metabolites, since this
parameter can be regarded as the ratio of bile flow
between in T-tube and in bile duct after T-tube. In OC
group, CLbile,T- was set to be equal to zero, since biliary
T-tube was not placed for this group of patients. We
have performed the whole parameter optimization pro-
cesses in the log space of all the parameters for avoiding
negative parameter values in the original space.
Objective values for the parameter estimation pro-

cesses were shown in Table 1c. Since the deconjugation
of SN-38G to SN-38 by b-glucuronidase in intestinal
microflora may affect the fecal elimination amount of
SN-38G and SN-38, we combined the accumulation of
these two compounds in objective values #7.

Materials
We solved the system of ODEs by using the MATLAB
stiff ODE solver ODE15s [22]. We performed all calcu-
lations with MATLAB using a desktop computer (CPU:
Core i7-870 2.93GHz × 1, OS: Windows 7 SP1 32 bit,
RAM: 4GB, MATLAB version: 8.0.0) or a workstation
(CPU: XeonE5-1620 3.60GHz × 1, OS: CentOS 6.4 64
bit, RAM: 16GB, MATLAB version: 8.1.0).

CNM Method and its modification
CNM was constructed previously [12]. Briefly, a group
of initial parameter sets (3000 virtual samples) was pre-
pared with a random sampling from given parameter
ranges. The linear approximations of the projections

from one group of parameter sets into objective values
generated the next group, and nine iterations of this
process yielded a group of optimized parameter sets.
In each iteration process, we have newly implemented

a calculation using a parameter called dS to maintain
parameter diversities. In each iteration of the original
CNM, we have parameter sets before (Xb) and after (Xa)
the parameter estimation process. In our new strategy,
we calculated internally dividing point Xi with the ratio
of dS:(1-dS), and applied the same inverse matrix to
obtain new estimated parameters Xa’. Parameter sets for
the next iteration were obtained by randomly selecting
Xa or Xa’ for each virtual sample.
After completing the estimations of parameters, the

accumulation time-profiles were compared with the
observed profiles, using sum of squares of log residuals
(SSlog):

SSlog =
∑(

ln
Ae,simulated

Ae,observed

)2

where Ae,simulated and Ae,observed represent the simu-
lated or observed amount of total irinotecan radioactiv-
ity at each time point.

Correlations of parameters
After the parameter estimation process, we have
observed parameter correlations using PLOTMATRIX
function in MATLAB. Parameters to be displayed in

Figure 6 Correlations among estimated parameters. Correlations of parameters (a) OC and (b) BDC groups were visualized using
PLOTMATRIX function in MATLAB. Parameters to be displayed were those who have high correlation (r2 > 0.64) with at least one other
parameter. BDC, bile-duct cancer patients; OC, other cancer patients; SSlog, sum of squares of log residuals.
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Figure 6 were those who have high correlation (r2> 0.64)
with at least one other parameter.

Additional material

Additional file 1: The ordinary differential equations in our PBPK model

Additional file 2: Estimated parameter ranges after nine iterations of
CNM
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