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Abstract

Background: A fundamental issue in systems biology is how to design simplified mathematical models for
describing the dynamics of complex biochemical reaction systems. Among them, a key question is how to use
simplified reactions to describe the chemical events of multi-step reactions that are ubiquitous in biochemistry and
biophysics. To address this issue, a widely used approach in literature is to use one-step reaction to represent the
multi-step chemical events. In recent years, a number of modelling methods have been designed to improve the
accuracy of the one-step reaction method, including the use of reactions with time delay. However, our recent
research results suggested that there are still deviations between the dynamics of delayed reactions and that of
the multi-step reactions. Therefore, more sophisticated modelling methods are needed to accurately describe the
complex biological systems in an efficient way.

Results: This work designs a two-variable model to simplify chemical events of multi-step reactions. In addition to
the total molecule number of a species, we first introduce a new concept regarding the location of molecules in
the multi-step reactions, which is the second variable to represent the system dynamics. Then we propose a
simulation algorithm to compute the probability for the firing of the last step reaction in the multi-step events.
This probability function is evaluated using a deterministic model of ordinary differential equations and a stochastic
model in the framework of the stochastic simulation algorithm. The efficiency of the proposed two-variable model
is demonstrated by the realization of mRNA degradation process based on the experimentally measured data.

Conclusions: Numerical results suggest that the proposed new two-variable model produces predictions that
match the multi-step chemical reactions very well. The successful realization of the mRNA degradation dynamics
indicates that the proposed method is a promising approach to reduce the complexity of biological systems.

Background
The advances in systems biology have raised the impor-
tance of quantitative methods for studying various systems
in molecular biology. In recent years, various research
methods, including mathematical modeling, statistical ana-
lysis, computer simulation and visualization, have been
employed to investigate the dynamic or statistical proper-
ties of regulatory networks. In particular, mathematical

models have been widely used to describe the dynamics of
complex systems inside the cell, including genetic regula-
tory networks, cell signalling transduction pathways and
metabolic pathways [1,2]. However, these substantial
progresses have further raised a number of fundamental
and challenging issues that require to be addressed
imperatively.
One of the major challenges in systems biology is how

to use simple mathematical models to describe complex
biological systems. To address this issue, a number of
modelling techniques have been designed. Among them,
a widely used approach is to use one-step reaction to
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represent multi-step reactions, which is also called slow
reaction. This technique is very important because
recent theoretical and experimental studies have shown
that a wide variety of biochemical events involve multi-
step reactions [3]. Perhaps the most important example
of multi-step reactions is transcriptional and transla-
tional processes that produce mRNA transcripts and
proteins, respectively. Other examples include molecules
(e.g. mRNA and protein) degradation and telomere
length shortening processes. In fact, the process of
multi-step reactions also exists in other areas such as
organic chemistry and biophysical chemistry [4,5].
Therefore the major aim of this research work is to
design simplified models to accurately characterize bio-
logical systems with multi-step reactions.
A widely used approach to simplify multi-step chemical

reactions in the literature is to use one-step reaction. For
example, the degradation process of mRNA or protein
has been modelled by a first order reaction. However,
since the one-step reaction cannot provide consistent
description of the multi-step reactions, chemical reac-
tions with time delay have been designed recently to
model the multi-step chemical events more accurately
[6-9]. Another important factor is noise in biological net-
works that may influence the system dynamics substan-
tially. The deterministic modelling methods, which
approximate molecular numbers using continuous con-
centrations [10,11], may not be appropriate to describe
systems that contain species with small population num-
bers. To model stochastic systems more accurately, there
are a few other ways. For example, we can use discrete
Markov processes where the density of states of a well-
stirred chemical reaction system at each time point can
be represented by the chemical master equation (CME)
[12,13]. One of the most well-known methods is called
the stochastic simulation algorithm (SSA), which is a sta-
tistically exact method for simulating trajectories of the
CME as the system evolves in time [14].
Furthermore, to deal with the intrinsic noise in reac-

tions with time delay, the delay stochastic simulation
algorithm (DSSA) was designed by introducing time
delay into the SSA [15,16]. Unlike the SSA, which
assumes that biochemical reactions are instantaneous
and independent, the DSSA characterizes chemical sys-
tems that contain both fast and slow reactions. This
delayed modelling approach has been applied to many
physical and biological systems [16]. The DSSA was also
extended to describe chemical events that have multiple
delays or stochastic delay that follows a given probabilis-
tic distribution [17,18]. In recent years, the DSSA has
been widely used to simulate the dynamics of genetic reg-
ulatory networks and cell signalling pathways [7][19-22].
In addition, a number of effective simulation methods
have been proposed to reduce the huge computing load

of the DSSA [23-26]. Recently the work done by Luis
Mier-y-Terán-Romero et al. opened some new aspects
for the application of time delays in biological systems.
Time delay may not be a constant that was assumed
before [27]. Other modelling techniques proposed
recently include the slow-scale linear noise approxima-
tion and stochastic quasi-steady-state assumption [28,29].
Most recently a new modelling approach has been pro-
posed to simulate chemical reaction systems with mem-
ory reactions [30].
The degradation process of mRNA molecules is an

important step in the regulation of gene expression,
which also represents a typical system with multi-step
reactions [31]. Although the mechanisms of mRNA
degradation have been studied extensively during the last
ten years, there are still a number of open problems with
respect to the function of enzymes, structure of pathways
and role of P-bodies, etc. in the regulation of mRNA
degradation [32-34]. A major step in the quantitative
study of mRNA degradation was the development of
mathematical models based on the detailed chemical pro-
cesses. A linear multi-component model was designed to
investigate the nonsense-mediated decay of mRNA mole-
cules in yeast [35,36]. This deterministic model for
mRNA degradation process consists of 23 first-order
reactions that describe transcription, translocation, ploy
(A) shortening, decapping and digestion process. Compu-
ter simulations suggested that the widely used concept of
half-life underestimated the averaged life-span of mRNA
molecules; however, it is still a major factor that deter-
mines the life-span of different steps in the degradation
pathway. In addition, robustness analysis showed that the
change of degradation rate constant led to large varia-
tions of mRNA copy numbers. To interpret the complex-
ity of mRNA degradation in a simpler manner, we
proposed a multi-step reaction model using a chain of 11
chemical reactions, which gave very good approximation
to the detailed one [37].
Chemical reactions with time delay has been used to

further simplify mathematical models of mRNA degrada-
tion. Here time delay represents the time required in the
multi-step reactions except the first reaction [37]. This
simplified model was also extended to using stochastic
time delay. However, numerical results showed that these
first-order reaction models with delay did not give good
approximation to the detailed degradation process [37].
Instead of using time delay to represent the missing
intermediate reactions in the multi-step reaction, we
recently proposed a new modelling approach by introdu-
cing a novel concept, namely the length of a molecule
indicating its location in the multi-step reactions. Deter-
ministic models using ordinary differential equations
have been used to find the optimal value in a non-linear
probability function [38]. However, it is still a challenge
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to apply this concept to stochastic models that are much
more important than deterministic models for chemical
reaction systems. Thus this work further validates the
proposed model using stochastic simulations. We first
introduce a new stochastic modelling method with two
variables for describing chemical events with multi-step
reactions, and then propose a stochastic simulation algo-
rithm to numerically calculate the probability of the fir-
ing of the last reaction in the multi-step events. The
efficiency and accuracy of the proposed method are
examined by studying the mRNA degradation process of
gene PRL30 based on experimental data.

Results and discussion
A new two-variable model
The starting-point of this research work is the chemical
events with multi-step reactions. Using the notation
proposed in [3], we consider the following chemical
reactions

B1
k1→ B2

k2→ B3
k3→· · · kn→ Bn

kn→ P. (1)

where Bi are molecular species and ki rate constants.
It is assumed that each molecule in the system will
eventually turn to the product P or degrade if P = ().
During this process, each molecule will pass through a
number of states B1, B2, . . . , Bn via the multi-step
reactions.
When the number of reaction step n is large, we need

to design a smaller scale model to simplify the multi-
step reactions. We first consider the total number of
molecules in the system, defined by

X =
n∑
i=1

[Bi]. (2)

Here we introduce a new concept to describe the sys-
tem state. The number of reactions for a molecule to
reach the product P is termed as the length of that
molecule. Thus the length of molecule Bi is (n − i + 1)
and the total length of the molecules in the system is

L =
n∑
i=1

(n − i + 1)[Bi]. (3)

According to the total molecule number, chemical
reactions in the system can be classified into two
groups. If one of the first (n − 1) step reactions occurs,
namely Bi

ki→ Bi+1
, the total number of molecules X is

unchanged but the total length L is decreased by one,

(X, L) → (X, L − 1). (4)

However, if the last reaction Bn
kn→ P fires, both the

total number and total length will decrease by one,

(X, L) → (X − 1, L − 1). (5)

In this work we use reactions (4) and (5) to design the
two-variable reaction model.
The key question now is how to determine whether

reaction (4) or (5) will fire if one of the reactions in the
multi-step process (1) happens. We denote the probabil-
ity for the degradation of one molecule, namely the fir-
ing of reaction (5), as f (X, L, n), and then the
corresponding probability for reaction (4) as 1 − f (X, L,
n). It is clear that, when all molecules are of full length
(X = nL), the probability of f is zero; while when X = L,
the probability is one. For the molecules with other
lengths, we developed an algorithm, namely Algorithm I
in the Method section, to calculate the probability of
molecule degradation. With the help of this algorithm,
we numerically calculated the exact probability f (X, L,
n) using n = 8 and X = 15 as an example. The probabil-
ity is represented in Figure 1 as the solid line.
Next we find an appropriate probability function to

approximate the calculated curve in Figure 1. Note that
the total length L of X molecules satisfies X ≤ L ≤ nX .
When L = X , all molecules have length 1, the probability
of firing of the last step reaction is 1, i.e. f (X, L, n) = 1;
when L = nX , all molecules have length n, there is no
chance for the final reaction to occur in the next step, i.e.
f (X, L, n) = 0. Therefore we suggested a probability func-
tion to approximate the curve in Figure 1 in the following
format:

f (L,X,n) = 1 − L − X

X(n − 1)
. (6)

The approximated probability through the proposed
function (6) is plotted as the straight dashed line in
Figure 1. It shows that the approximated values are not
close to the exact probability values, and the exact prob-
ability curve is in a quadratic-like form. Hence, instead
of using a linear probability f in terms of X , L and n
(6), we introduced another parameter q into this
approximation, and proposed the following two expres-
sions for the probability function f in terms of L, X, n,
and q. One candidate is

Type I : f (X, L,n, q) = 1 −
(

L − X
X(n − 1)

)q

, (7)

and the alternative expression is

Type II : f (X, L,n, q) =
(
1 − L − X

X(n − 1)

)q

. (8)

Determination of probability function
The major work of this research is to select a probability
function from (7) and (8) and also search the optimal
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value of parameter q in the probability function. Using
Algorithm I in the Method section, we first calculated
the probability f (X, L, n, q) with different values of the
total molecule number X (X = 3 ~ 20), different num-
bers of reaction step n (n = 3 ~ 20) and various values
of the total length L (L = X ~ nX ). The calculated prob-
ability was used as the exact value to search the optimal
q in the proposed probability functions. To select a bet-
ter probability function, we used both type I and II
functions to calculate the probability f (X, L, n, q) using
the same initial condition (n = 8 and X = 15) but differ-
ent values of q (q = 0.01 ~ 15) in a step size of 0.01. By
searching for the smallest difference between the exact
probability values and those obtained from approxi-
mated functions with different q, the optimal values of q
for two approximations were achieved which are 0.27 and
3.91 respectively in this particular case. The exact and
approximated probability values are shown in Figure 2.
We found that the type II approximation is closer to the
exact probabilities than the type I approximation. Then we
only used the probability function (8) for the following
studies.
To establish a more general formula for defining q

under different conditions of X, L, n, we extended the
simulations to various initial conditions of n, X both
varying from 3 to 20 together with different values of q.
The optimal q values acquired under these conditions

are illustrated by Figure 3 (A) and (B). Figure 3 (A)
shows that when n increases, the optimal value of q
increases for a fixed X value; while Figure 3 (B) indicates
that there is no significant variation for the optimal q
when X increases for a fixed n value. Therefore, we cal-
culated the averaged optimal q values under various
value of n for each given X. A plot of this averaged opti-
mal q̄ against n is shown in Figure 3 (C). We suggested
a linear relationship between n and q. A linear regres-
sion analysis suggested that this relationship is

q̄ = 0.3146n + 1.3615. (9)

We have developed deterministic models of ordinary
differential equations (ODEs) based on the multi-step
reactions (1) and the two-variable model (4, 5) [38].
Simulation results of the deterministic models gave
some similar patterns such that the optimal value of q
increases when the number of chemical reactions n
increases. The established relationship between the opti-
mal value of q and related model parameters, which is
also shown in Figure 4, is given by

q̄ = 0.4570n + 0.8567. (10)

The above equation is slightly different from expres-
sion (9). For example, when n = 5, the averaged value of
optimal q is found to be 2.8494 using probability

Figure 1 The probability for the firing of the last reaction Bn
kn−→ P.
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simulation while it is 3.06 from the ODE simulation.
The possible reason of the difference is that the ODE
model is not the best approach for describing chemical
reaction systems with molecules of small copy numbers
and some model errors may arise from the ODE simula-
tions. A combination of regression analyses is shown in
Figure 4.
Even with the different formulations for the optimal q

values, we still find that the ODE method confirms the
conclusion derived from stochastic simulations. Based
on both stochastic and deterministic simulations, we
found that the value of q is associated with the number
of reaction step n, but not connected to the total mole-
cule number X. Our results also suggested that, when
the value of q approaches the optimal one, simulation
error of the two-variable model using q is very close to
that using the optimal q value. Using the function
derived from stochastic simulations, the probability
function of molecule degradation is given by

f (L,X,n) =
(
1 − L − X

X(n − 1)

)0.3146n+1.3615

. (11)

Using this probability function, we designed an algo-
rithm, namely Algorithm II in the Method section, to

simulate the two-variable reaction model based on the
SSA.

mRNA decay dynamics: case study for gene RPL30
In this section, we apply the established theory in the pre-
vious section to study the dynamics of mRNA degradation.
Here we use gene ribosomal protein L30 (RPL30) as the
test system with a dataset generated from experiments. In
these experiments, two constructs of RPL30 were used to
demonstrate the decay kinetics of the mRNA transcripts
[39]. The first construct ("construct A“) contains the
ACT1 UAS (upstream activating sequence), and the other
("construct B”) contains the RPL30 UAS. The mRNA
molecule decay dynamics was monitored after blocking
transcription by using drug 1,10-phenanthroline [39].
Thus we assumed that there was no further transcription
during the monitoring process. The decay dynamics was
normalized by the RPL30 transcript level at time zero
(namely before adding the drug), which was set to 100%.
Using the endogenous RPL30 mRNA levels obtained from
the two construct [39], we first used the one-step differen-
tial equation model

dX
dt

= −kX (12)

Figure 2 Simulated exact probabilities and two approximated probabilities for the firing of the last reaction.
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To simulate the decay dynamics [40].
Figure 5 (A) and (B) show that the one-step model

failed to describe the dynamics of the first 25 minutes
accurately. The simulated mRNA levels are always smal-
ler than the experimental observation.

To model mRNA degradtion, Cao and Parker pro-
posed a multi-component model that includes mRNA
transcript synthesis, mRNA translocation, poly(A)-short-
ening process, and terminal deadenylation [35]. We
have proposed a simplified model by putting a number

Figure 3 Simulation results from probability approach. (A) the optimal values of q with different n; (B) the optimal values of q with different
X ; (C) the averaged optimal values of q against n.
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of terminal deadenylation reactions into a single one
[37]. This simple model is a typical multi-step reaction
process. In this model, mRNA transcript is synthesized
by a zero-order reaction S1, then mRNA molecules
translocate from the nucleus to cytosal via reaction S2.
The mRNA molecules in the cytosol produce proteins
by the translational process, and in the meantime, the
length of mRNA begins to decrease via a number of

poly(A)-shortening reactions S3, . . . , S9. The final reac-
tion in this process is the further exonucleolytic degra-
dation S10, which is regarded as the degradation
reaction in this work, since the fragment product (FG)
has no function to produce protein molecules.
Based on the reactions listed in Table 1 and rate con-

stants, the propensity functions of these reactions are
listed below.

Figure 4 Relationship between n and q. Dashed-line: estimated relationship from stochastic simulations; dash-dot-line: relationship derived
from the ODE model; Solid-line: q = 0.5n.
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Reaction Propensity function

DNA
s1→A a1 = s1,

DNA
s1→A a1 = s1,

B
s3→BC1 a3 = s3.[B],

BC1
s4→BC2 a4 = s4.[BC1],

BC2
s5→BC3 a5 = s5.[BC2],

BC3
s6→BC4 a6 = s6.[BC3],

BC4
s7→BC5 a7 = s7.[BC4],

BC5
s8→BC6 a8 = s8.[BC5],

BC6
s9→BC7 a9 = s9.[BC6],

BC7
s10→ FG a10 = s10.[BC7],

(13)

Following the experimental conditions, it is assumed
that s1 = 0. For simplicity, it is assumed that s2 = . . . =
s10. When using the two-variable model to study the
mRNA degradation process, we write the total copy
number X and total length of mRNA molecules L as

X = [A] + [B] + [BC1] + · · · + [BC7],

L = 9[A] + 8 [B] + 7B[C1] + · · · + [BC7].

Here we put the mRNA synthesis as a separate reaction.
Then the remaining nine reactions (n = 9) form a chemi-
cal event of multi-step reactions. The dynamics of vari-
ables × = (L, X ) is described by the following reactions
together with the corresponding propensity functions

Figure 5 Simulated mRNA degradation dynamics using the estimated model parameters. (A) Deterministic simulations for mRNA numbers
from the ACT1 construct (green dash-line: the one-step model (k = 0.0276), red solid-line: the two-variable model with the optimal initial length (k

= 0.112, L = 371), black dot-line: the two-variable model with the averaged initial length L = nX
2
, blue dots: experimental data); (B) Deterministic

simulations for mRNA numbers from the RPL30 construct (green dash-line: the one-step model (k = 0.0343), red solid-line: the two-variable model

with the optimal initial length (k = 0.167, L = 473), black dot-line: the two-variable model with the averaged initial length L = nX
2 (k = 0.161), blue

dots: experimental data); (C) Stochastic simulations of the two-variable model for the ACT1 construct (red dot-line: initial X0 = 5, k = 0.115, L = 19,
black dash-dot-line:initial X0 = 10, k = 0.111, L = 37, blue dots: experimental data); (D) Stochastic simulations of the two-variable model for the RPL30
construct (red dot-line: initial X0 = 5, k = 0.171, L = 24, black dash-dot-line:initial X0 = 10, k = 0.166, L = 47, blue dots: experimental data).
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Reaction Propensity function

DNA
k1→ (9L,X) a1 = k1,

(X, L)
k→ (X, L − 1) a2 = k · X · (1 − f (L,X, 9)),

(X, L)
k→ (X, L − 1, L − 1) a3 = k · X · f (L,X, 9).

(14)

Using the assumption s2 = . . . = s10, the rate constant
k (14) is the harmonic mean of rate constants s2, . . . ,
s10, given by

k =
8

∑10
i=2

1
si

= si. (15)

Next we used the proposed two-variable model to give
more accurate simulations. We first estimated the
degradation rate constant k and optimal initial total
length of transcripts. We have also estimated the degra-
dation rate constant k by assuming that the total initial
length is a half of the maximal total length (L = nX /2),
which is termed as the averaged total length. To reduce
the computing time, we first estimated parameters in
the ODE model (12) using different initial transcript
numbers (X0 = 5, 10, 20, . . . , 100). Table 2 suggests
that the variation between the estimate rate constant k
was very small for different initial mRNA numbers.
Similar observation is applied to the ratio of the optimal
initial total length to the maximal total initial length,

namely L0/(nX), for the tests with different initial
mRNA numbers. Thus our results suggested that the
estimated model parameters are independent to the
initial mRNA copy numbers.
Using the estimated model parameters of the case

X0 = 100, simulation results for the two constructs in
Figure 5 (A) and (B) show that the two-variable model
provides more accurate description of the mRNA degra-
dation dynamics than the one-step model, in particularly
for that in the first 25 minutes. For the ACT1 construct
in Figure 5 (A), the optimal length number with ratio
0.412 gave more accurate simulation than the averaged
length number. However, in Figure 5 (B) for the RPL30
transcript, the difference between the simulations using
two different length numbers is small. In this case, the
optimal ratio is 0.525, which is very close to 0.5.
To further examine the accuracy of the two-variable

model, we used the stochastic model to simulate the
mRNA dynamics using different initial transcript num-
bers. For each initial mRNA number, we generated 10,
000 simulations and then calculated the averaged
mRNA numbers of all stochastic simulations. For both
constructs in Figure 5 (C) and (D), our results show that
there is small difference between the simulations using
X0 = 5 and X0 = 10. However, there is not any signifi-
cant difference between simulations when the initial
mRNA number is larger than 10.
Finally we provided a few stochastic simulations for

mRNA degradation dynamics for the construct ACT1 in
single cells. The rate constants of the detailed model
were derived from the two-variable model using the
relationship (15); and the initial molecular numbers
were randomly selected while the length of the initial
molecules matches the length in the two-variable model.
When the mRNA synthesis rate is s1 = 0, Figure 6
shows that the molecular numbers and lengths
approaches to zero at the time point around 100. In
addition, compared with the simulations of the detailed
model in Figure 6A and 6C, the two-variable model gen-
erates simulations with more fluctuations in Figure 6B
and 6D. After the time point 100, more simulations of
the two-variable model still have non-zero molecular
numbers.

Conclusions
This work represents an attempt to use simplified math-
ematical models to describe complex biological systems.
Concentrating on the chemical events of multi-step
reactions, we proposed a new concept (e.g. the length of
a molecule) as an additional measure to characterize
system dynamics. The length of a molecule is defined as
the location of a molecule in the multi-step reactions.
Using the total molecule number and total length of
molecules, we proposed a two-variable model to reduce

Table 1 Reactions and kinetic rates of the simplified
stochastic model.

Reaction Rate constant si Comment

S1 DNA ® A s1 transcription

S2 A ® B s2 transport

S3 B ® BC1 s3 full-length 70A-60A

S4 BC1 ® BC2 s4 full-length 60A-50A

S5 BC2 ® BC3 s5 full-length 50A-40A

S6 BC3 ® BC4 s6 full-length 40A-30A

S7 BC4 ® BC5 s7 full-length 30A-20A

S8 BC5 ® BC6 s8 full-length 20A-10A

S9 BC6 ® BC7 s9 full-length 10A-0A

S10 BC7 ® FG s10 fragment production

The rate constants si are in the unit of 1/sec.

Table 2 Estimated parameters for the stochastic model of
RPL30 and ACT1 mRNA degradations (Ratio = L0/nX).

ACT1 construct RPL30 construct

X0 Rate k L0 Ratio Rate k L0 Ratio

m = 5 0.1150 19 0.4222 0.1710 24 0.5333

m = 10 0.1110 37 0.4111 0.1660 47 0.5222

m = 20 0.1130 75 0.4167 0.1680 95 0.5278

m = 30 0.1130 112 0.4148 0.1670 142 0.5259

m = 40 0.1120 149 0.4139 0.1680 190 0.5278

m = 50 0.1120 186 0.4133 0.1670 237 0.5267
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the complexity of the multi-step reactions. The major
contribution of this work is to design a nonlinear func-
tion that represents the probability of the firing of the
last reaction in the multi-step reactions. To calibrate this
probability function, we proposed a stochastic simulation
method to calculate the probabilities of various system
states. Numerical results suggested that this probability is
dependent on the number of reaction steps but indepen-
dent of the total molecule number, which suggested that
we were able to design a simplified model based on the
network structure. Then our proposed two-variable
model was applied to simulate the dynamics of mRNA
degradation using experimentally observed data. Numeri-
cal results suggested that the length of molecules, which
is approximately a half of the maximal length initially,
played an important role in realizing experimental data.

The potential future work includes the application of the
two-variable model to other multi-step reaction systems
such as gene expression and telomere length regulation.
In addition, the refinement of the two-variable model,
such as the accuracy of the probability function, would
also be very interesting.

Methods
Simulation algorithm for the probability function
To find the probability for the firing of the last reaction
in the multi-step reactions (1), we first designed a
Monte-Carlo method to numerically calculate the prob-
ability function f(X, L, n) based on the given X and n.
By the law of total probability, the formation of prob-
ability that the final reaction occurs given by any L and
× is defined as following:

Figure 6 mRNA degradation dynamics of gene RPL30 construct ACT1 in single cells. (A, C) three simulations of X and L values over t for the
detailed multi-step reaction model. (B, D) three simulations of X and L values over t for the two-variable model. For the detailed multi-step
model, rate constants are s1 = 0, s2 = . . . = s10 = 0.112, and initial molecular numbers are ([A], [B], [BC1], . . . , [BC7]) = [4,3,3,5,15,20,20,15,15]. For
the two-variable model, rate constant is k = 0.112, initial conditions (X0, L0) = (100, 371).
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f (X, L,n) =
X∑
j=0

P(Rn|Bn = j) .P(Bn = j|L,X),

where Rn represents the occurrence of last reaction

Bn
kn−→ P. Based on the total molecule number X, we cal-

culate the probability

P(Rn|Bn = j) =
j
X
.

The major part of this algorithm is to find frequency
of the event Bn = j based on the given length L and
total molecule number X, which is explained as the fol-
lowing algorithm I.
Algorithm I

1. Set the total number of molecule X , number of
reactions n, and initial full length L0 = nX.
2. Based on the following 10, 000 Monte-Carlo
simulations, calculate the frequency freq(Bn = j|L, X)
for X molecules with total length L having j mole-
cules, where j = 0, 1, . . . X and each of the molecule
with length 1:

(a) Consider X molecules with full length.
Denote the length of the i-th molecule as li with
i = 0, 1, . . . X.
(b) Use a random number r ~ U (0, 1) to select
one molecule, with index j. If the length of that
molecule lj > 1, reduce its length by 1, namely
lj = lj − 1; if lj = 1, then repeat this step until
finding a molecule with length greater than 1.
(c) Repeat step (b) for (L0 − L) times to get a set
of molecules with total length L.

(d) Count the number of molecules in this
set with length 1, denote as i, then update

freq(Bn = i|L,X) = freq(Bn = i|L,X) + 1.

(e) Repeat steps (a) ~ (d) for 10,000 times.
3. The probability for the last reaction firing is
obtained by

f (X, L,n) =
X∑
j=1

freq(Bn = j|L,X)
10000

× j
X
.

Ordinary differential equation model
The most widely used approach to study chemical reac-
tion systems is deterministic model using ordinary dif-
ferential equations. The approach is valid if the copy
numbers of chemical species in the system are large. To
confirm the probability function f(X, L, n) derived from
stochastic simulations, we designed a deterministic
model of ODEs for the multi-step chemical reaction sys-
tem (1), given by

dB1

dt
= −k1B1,

dB2

dt
= k1B1 − k2B2,

...
dBn

dt
= kn−1Bn−1 − knBn,

dP

dt
= knBn.

(16)

Using the total molecule number X(= B1 + . . . + Bn) and
the total length of the molecules L(= Bn + 2Bn−1 + . . . +
nB1), we have a simplified model of the above ODE system

dX
dt

= −kBn,

dL
dt

= −kX,
(17)

where k is the harmonic mean of the rate constants
k1, . . ., kn (19), and kBn represent the probability of
molecule degradation which is represented by the prob-
ability function f (X, L, n). Using the notations of sto-
chastic simulation, the ODE model with the length of
molecules is given by

dX
dt

= −kX
(
1 − L − X

X(n − 1)

)q

,

dL
dt

= −kX.

(18)

For a given initial condition Bi(0), we obtained the
analytical solution of the detailed system (16) and then
solved the two-variable model (18) numerically using a
stiff ODE solver ode23s in MATLAB. We tested the
solution of the two-variable model with different values
of q based on different system conditions ranging from
n = 5, 10, 15 as well as X = [5 10 50 100 200 500]. For
each system condition, we selected the optimal value of
q with which the two-variable model (18) generates
simulation that is very close to that of the detailed ODE
model (16). Finally we find the relationship between the
value of q and system condition (X, L, n) by using a
regression method [38].

An algorithm for simulating systems including two-
variable model
The SSA is a general framework for simulating bio-
chemical reaction systems. Now we propose an algo-
rithm to incorporate the two-variable model into the
SSA. It is assumed that a chemical reaction system is a
well-stirred mixture at constant temperature in a fixed
volume Ω. This mixture consists of N molecular species
{S1, . . . , SN} that chemically interact through M reac-
tion channels {R1, . . . , RM}. The dynamic state of this
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syetem is denoted as x ≡ (x1(t), . . . , xN (t))⊤, where xi(t)
is the molecular number of species Si at time t. For each
reaction channel Rj (j = 1, . . . , M), a propensity func-
tion aj (x) is defined by a given state x(t) = x and the
value of aj (x)dt represents the probability that one reac-
tion will occur somewhere during the infinitesimal time
interval [t, t + dt) [14][26][41]. In addition, a state
change vector νj is defined to characterise the change of
molecular numbers due to the reaction Rj. The element
νij of νj represents the change of the copy number of
species Si. The algorithm for simulating chemical reac-
tion systems with two-variable model is given below.
Algorithm II
1. Calculate the values of propensity function aj (x)

based on the system state x at time t. In particular, for
the two-variable reaction with the total molecule num-
ber X (2) and total length L (3), the propensity function
is aj = kX, where k is the harmonic mean of the rate
constants (1), given by

k =
n

1
k1

+ · · · + 1
kn

. (19)

Then the sum of propensity function values is

a0(x) =
M∑
j=1

aj(x).

2. Generate a sample r1 of the uniformly distributed
random variable U(0, 1), namely r1 ~ U (0, 1), and
determine the time of next reaction

μ =
1

a0(x)
ln

1
r1
.

3. Generate another sample r2 of U(0, 1) to determine
the index k of the next reaction occurring in [t, t + µ],

k−1∑
j=1

aj(x) < r2a0(x) ≤
k∑
j=1

aj(x)

4. If the k-th reaction is not a two-variable model,
update the state of the system by

x(t + μ) = x(t) + νk

Otherwise generate a sample r3 ~ U(0, 1) to determine
which reaction of the followings will occur,

(X, L) =
{
(X, L − 1) if r3 > f (X, L,n),
(X − 1, L − 1) if r3 < f (X, L,n),

where f (X, L, n) is the probability of the firing of the
last reaction. Then the system is updated.
5. Go back to step 1 if t + µ ≤ T, where T is the end

time point. Otherwise, the system state at T is x(T) = x(t).
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