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Abstract

Background: High-throughput technologies, such as DNA microarray, have significantly advanced biological and
biomedical research by enabling researchers to carry out genome-wide screens. One critical task in analyzing
genome-wide datasets is to control the false discovery rate (FDR) so that the proportion of false positive features
among those called significant is restrained. Recently a number of FDR control methods have been proposed and
widely practiced, such as the Benjamini-Hochberg approach, the Storey approach and Significant Analysis of
Microarrays (SAM).

Methods: This paper presents a straight-forward yet powerful FDR control method termed miFDR, which aims to
minimize FDR when calling a fixed number of significant features. We theoretically proved that the strategy used
by miFDR is able to find the optimal number of significant features when the desired FDR is fixed.

Results: We compared miFDR with the BH approach, the Storey approach and SAM on both simulated datasets
and public DNA microarray datasets. The results demonstrated that miFDR outperforms others by identifying more
significant features under the same FDR cut-offs. Literature search showed that many genes called only by miFDR
are indeed relevant to the underlying biology of interest.

Conclusions: FDR has been widely applied to analyzing high-throughput datasets allowed for rapid discoveries.
Under the same FDR threshold, miFDR is capable to identify more significant features than its competitors at a
compatible level of complexity. Therefore, it can potentially generate great impacts on biological and biomedical
research.

Availability: If interested, please contact the authors for getting miFDR.

Background
FDR control is a statistical approach to correct multiple
comparisons in dealing with multiple hypothesis testing
problems. It has now been widely practiced in analyzing
genome-wide datasets generated by high-throughput tech-
nologies, such as DNA microarray and RNA-Seq, which
allows users to simultaneously screen the activities of tens
of thousands of genes. These high-throughput datasets
require careful analysis to identify a subset of interesting
molecular features for follow-up experiments. It is always
desired to maximizing findings in data. In the meantime, it

should be realized that follow-up experiments can be
costly in both time and money. Therefore it is important
to control the proportion of wrongly called features
among those selected (i.e., FDR).
FDR was first introduced by Benjamini and Hochberg

[1] and was later improved by the Storey procedure [2,3].
As two of the mainstream FDR controlling methods, the
BH procedure fixes the error rate and then estimates its
corresponding rejection region while the Storey proce-
dure fixes the rejection region and then estimates its cor-
responding error rate. Efron and his colleagues framed
the FDR control problem as a Bayesian problem, and
showed that both the BH and Storey approaches are* Correspondence: hongpeng@brandeis.edu
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special cases [4-6]. Assuming that the same rejection
region is used for each independent test, and the test sta-
tistics come from a random mixture of null and alterna-
tive distributions, the BH approach, the Storey approach
and the Efron’s Bayesian approach can be connected with
a mixture model of null statistics and alternative statistics
weighted by a factor representing the prior probability of
getting true nulls. The BH approach simply assumes that
the prior probability of true null is equal to 1, which
makes it the most conservative one among the three. The
Storey approach considers estimating the prior probabil-
ity of true null. The Efron approach uses empirical Baye-
sian analysis to further estimate posterior probability of
true null based on the prior probability. The BH, Storey
and Efron approaches all estimate FDR by taking the
p-values of individual features calculated by some sorts
of hypothesis tests. The t-test [7] and the Wilcoxon rank-
sum test [8] (also known as the Mann-Whitney U test,
referred as ranksum test in the rest of the paper for
conciseness) are two of the most well-known tests for
calculating the p-values of individual features.
Significance Analysis of Microarrays (SAM) [9] is

another widely applied technique for calling features that
behave significantly differently between two conditions.
Different from the BH, Storey and Efron approaches, SAM
uses a nonparametric method to estimate FDR instead of
relying on p-values directly. SAM generates a large number
of permutation controls, and the expected number of false
positives can be estimated by counting the number of per-
muted statistics beyond a certain cut-off. Although SAM
performed better than the BH and Storey approaches on
many datasets in our practices, we found that SAM’s
results were not optimal in many cases. This is mainly
because SAM decides the cut-offs based on the differences
between the observed statistics (original statistics) and the
expected statistics (averaged statistics from permuted mea-
surements) instead of the estimated FDR, which does not
guarantee the lowest FDR.
To address this problem, we developed miFDR - an

advanced significance analysis method for optimizing
FDR when the number of desired significant features is
fixed. A preliminary version of miFDR was published in
[10]. In this paper, we provide theoretical explanations
and supports for miFDR, and generate more experimen-
tal results to demonstrate that miFDR empirically
outperforms SAM, the BH approach and the Storey
approach. In particular, the simulation test results
showed that miFDR was capable of identifying more sig-
nificant features with its true FDRs consistently bounded
by the estimated FDRs. In addition, the true and esti-
mated FDRs of miFDR were lower than those of the
other three methods. Furthermore, when applied to real
DNA microarray datasets, miFDR was able to identify
more biologically relevant genes than other methods.

Methods
FDR under the Bayesian framework
FDR is defined as the expected proportion of incorrectly
rejected null hypotheses among all rejected null hypoth-
eses. It can be represented as a conditional probability
P(H = 0|d Î Γ ), where Γ denotes the rejection region for
the statistic variable d. Applying the Bayes theorem, the
above definition can be written as

FDR(d,�) = P (H = 0|d ∈ �) =
P (H = 0)P (d ∈ �|H = 0)

P (d ∈ �)
(1)

where P (d Î Γ) = P (H = 0) P (d Î Γ|H = 0) + P (H = 1)
P (d Î Γ|H = 1).
The estimation of P (d Î Γ|H = 0) is not straightfor-

ward. However, if the null distribution of d is known, the
above term can be calculated by p-value: P (p ≤ g | H = 0)
where p is the p-value of d and g is the corresponding
p-value cut-off to reject H = 0. The BH and Storey
approaches are based on this idea. Assuming that the null
distribution of p-values is uniform between 0 and 1, we
have

FDR(p, γ ) =
P(H = 0)P(p ≤ γ |H = 0)

P(p ≤ γ )
=
P(H = 0)γ
P(p ≤ γ )

(2)

The term P (p ≤ g) can be estimated in an empirical
way as the proportion of features whose p-values
are bounded by the p-value cut-off g, namely
P̂(p ≤ γ ) = #{pi ≤ γ }/#{pi} = #{pi ≤ γ }/M, where #(pi ≤ g)
denotes the number of p-values bounded by the cut-off g,
and #{pi} denotes the total amount of p-values which is
equivalent to the total number of features M. The BH
approach simply assumes that P(H = 0) = 1 while the
Storey approach estimates P(H = 0) empirically [2]. SAM
adopts the same method to estimate P(H = 0) as the
Storey approach [11].

SAM
Different from the BH and Storey approaches, SAM
does not assume the distributions of the test statistics.
In addition, it introduces corrections to t-statistic and
ranksum statistic so that the distribution of the cor-
rected statistics is independent from the levels of
feature values. Both t-statistic and ranksum statistic
can be represented as a difference score ri divided
by the corresponding standard deviation si : ri/si .
In particular, let X and Y be two groups of
samples with NX and NY samples, respectively.
The traditional t-statistic has ri = X̄i − Ȳi and
si = {[∑xim∈X (xim − X̄i)

2
+

∑
yin∈Y (yin − Ȳi)

2
] (1/NX + 1/NY)/(NX +NY − 2}1/2;

and the traditional ranksum statistic has
ri = R̄X

i − NX(NX +NY + 1)/2 and si = NXNY(NX +NY + 1)/12,
where R̄X

i is the sum of the ranks of the i-th feature from
X (the measurements from X and Y are merged and then
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ranked from lowest to highest). They share one major
drawback: the estimation of the standard deviation si is
very unstable when the sample size is relatively small,
which is very common in studies involving high-through-
put technologies. In addition, the distributions of the test
statistics vary with respect to the levels of feature values,
which makes it difficult to compare features with different
value levels. To address these problems, SAM adds a
factor s0 to the denominator si to reduce the variance of
the corrected statistic di = ri/(si + s0) (referred as d-value
in the rest of paper for conciseness). In practice, SAM
chooses the value of s0 from the pool of all {si} so that the
variance of di is minimized. The goal is to make the
variance of di independent to the expression level [11].
We found the corrected statistics useful in analyzing many
datasets in our research.
Since the null distributions of the corrected statistics are

unknown, SAM uses permutations of the replicates to esti-
mate FDR. Given a particular rejection region Γ, SAM
generates B permutations of the original measurements
and estimates P (d Î Γ|H = 0) as the median of
{Pb(d̂ ∈ �)}b=1...B, where d̂ denotes the d-values in the b-th
permutation. SAM estimates P (H = 0) in the same way as
the Storey approach does [11].
In SAM, the rejection region Γ is determined by a posi-

tive cut-off τ+ > 0 and a negative cut-off τ- < 0. The corre-
sponding rejection regions are �+ = {d|d > τ + > 0} and
�− = {d|d < τ− < 0}, respectively. A feature is called “sig-
nificant positive” if its d-value is greater than τ+,
or “significant negative” if its d-value is smaller than τ-.
The total rejection region is

�(τ +, τ−) = �+ ∪ �− = {d|d > τ + > 0 or d < τ− < 0} (3)
To decide τ+ and τ-, SAM introduces a Δ-index which is

calculated as follows. First, the features are sorted in
ascending order based on their original d-values. Let {d∗

i }
denote the d-values of the sorted features. Then the
d-values obtained from the permutated replicates are
sorted and used to estimate E [d̂∗

i ]. Finally, the Δ-value of

the i-th feature is calculated as �i = d∗
i − E[d̂∗

i ]. Given a
user-defined threshold Δ0, SAM searches in the ascending
order of Δ-values and decides τ + = d∗

k, where k is the index
of the first feature satisfying Δk ≥ Δ0. Similarly, SAM
searches in the descending order of Δ-value and decides
the negative cut-off as τ− = d∗

l , where l is the index of the
first feature satisfying Δl ≤ -Δ0.
It is obvious that the behaviour of Δ-values has a great

impact on SAM’s results. We observed that Δ-values were
not always monotonic with respect to d-values, which can
greatly limit SAM’s performance. To illustrate this, we
used a Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/) dataset GDS3661 [12] as an example. Shown

in Figure 1(a), the monotony does not hold at both ends
of the curve, especially the lower end. In Figure 1(b),
a group of features, whose d-values ranged from -6.25 to
-7, are circled by an ellipse. Let Δ* denote the smallest
Δ-values of these circled features. Given any small constant
δ > 0, if we change the threshold from Δ* - δ to Δ* + δ, the
negative cut-off τ− will jump significantly from -6.25
(marked by the white arrow) to -7.6 (marked by the black
arrow). This means either all of those circled features will
be called as significant simultaneously, or none of them
will be called. No valid threshold allows a subset of them
to be called significant even though FDR can be improved
by doing so. Therefore it is not always reliable to determine
d-value cut-offs based on Δ-values. This inspired us to
develop miFDR which relies only on d-values and will be
explained below.

Minimize FDR - miFDR
If we would like to select N > 0 significant features (N+

positive significant features and N- negative significant
features), there are N + 1 different possible options for
choosing (N+, N-), i.e. (0, N), (1, N - 1), (2, N - 2), ···, (N, 0).
These options assume: If two d-values are of the same
sign, the one with larger absolute value is more significant.
SAM does not explore all of these options, and hence
its results can be sub-optimal. We designed a straight-
forward algorithm (pseudo codes in Algorithm 1) called
miFDR to explore all N + 1 options and report the one
with the lowest estimated FDR. Mathematically, this idea
can be expressed as

(N∗
+,N

∗
−) = argmin

N++N−=N
FDR(N+,N−) (4)

where FDR(N+, N-) indicates the FDR of choosing N+

positive significant features and N- negative significant
features. Given a FDR cut-off Ψ Î (0,1), we can find the
global optimal N*

N∗ = max(N|FDR(N∗
+,N

∗
−) < �)

where N∗
+ and N∗

− are obtained by solving eq. (4)
(5)

Theorem 1: Given a FDR cut-off Ψ Î (0,1), miFDR
always finds the maximum number of significant features.
Proof: Eq. (5) is equivalent to

N∗ = min(N|FDR(N∗
+,N

∗
−) ≥ �) − 1 (6)

According to eq. (4), for ∀N+, N− ≥ 0 s.t. N+ + N− = N,
FRD(N∗

+,N
∗
−) ≤ FRD(N+,N−). This means: If

FRD(N∗
+,N

∗
−) ≥ �, then ∀N+, N− ≥ 0 s.t. N+ + N− = N,

we have FDR(N+,N−) ≥ FDR(N∗
+,N

∗
−) ≥ �. Therefore,

eq. (6) can be written as

N∗ = min(N|∀N+,N− ≥ 0 s.t. N+ +N− = N&FDR(N+,N−) ≥ �) − 1 (7)
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This is equal to

N∗ = max(N|∃N+,N− ≥ 0 s.t. N+ +N− = N&FDR(N+,N−) < �) (8)

Eq. (8) indicates that miFDR always finds the maxi-
mum number of features given a specific FDR cut-off.
The maximum number of features that SAM is able to

call under the FDR cut-off Ψ can be written as:

N∗
SAM = max(N|∃�0 s.t. N+

�0
+N−

�0
= N&FDR(N+

�0
,N−

�0
) < �) (9)

where N+
�0

and N−
�0 respectively are the numbers of

positive and negative features called significant by the
positive and negative d-value cut-offs decided by Δ0. It
should be noted that users need to manually try several
Δ-value cut-offs to find the best Δ0. It is obvious that
(N+

�0
,N−

�0
) is a special case of (N+,N−) in eq. (8).

Hence SAM only explores a subset of options consid-
ered by miFDR mainly because SAM does not directly
tune d-value cut-offs. Instead, SAM control d-value cut-
offs via Δ0. Thus the best result of SAM is bounded by
the best result of miFDR.
Algorithm 1: [fdr, feature+, feature-] = miFDR

({di}, {d̂i,b},N)
Input: {di} - the original d-values; {d̂i,b} - the d-values

in permutations; N - the number of desired significant
features.
1) Initialize fdr ¬ ∞, N+ ¬ 0, and N- ¬ 0.
2) Sort {di} in the ascending order to obtain {d∗

i }.
3) For (n = 0; n ≤ N; n++)

a) Select n positive significant features and N - n
negative significant features.

b) Define the corresponding rejection region

�(d∗
M−n, d

∗
N−n+1) = {d|d > d∗

M−n or d < d∗
N−n+1}

c) Estimate FDR “cFDR“ for above rejection region
using {d̂i,b}.
d) If cFDR <fdr, then fdr = cFDR, and update N+ ¬
n and N- ¬ N - n.

4) Let feature+ = the indexes of N+ features with the
largest d-values; and feature- as the indexes of N- fea-
tures with the smallest d-values.
Output: fdr - the estimated FDR; feature+ - the

indexes of positive significant features; feature- - the
indexes of negative significant features.

Computational complexity of miFDR
Assume that a dataset is composed of W samples, each
sample has M features, and the samples are permutated
P times to generate the control. It takes O(WMP) for
miFDR to compute the permuted statistics (the compu-
tation time for one feature in one permutation is pro-
portional to the sample size W), and the computation
time for the original statistics can be ignored because
P 	 1. Once the original and permuted statistics are
computed, miFDR can be applied to achieve two typical
goals:
• Minimize FDR when finding N significant features:

In this case, miFDR needs to explore N + 1 options. For
each option, namely a given (N+, N-) pair, the expected
computation time for miFDR to estimate FDR is O(MP)
because it has to go through the entire permutation

Figure 1 The problem of relying on Δ-values to call features. An example showing the problem of using Δ-values to decide the d-value cut-
offs. The x-axis indicates d-values and the y-axis indicates Δ-values. (b) is the blow-out of the dashed rectangle region in (a). Two d-value cut-offs
are indicated by the solid arrow and the open arrow respectively in (b) (see main text for a detailed explanation). The solid arrow marks the
negative d-value cut-off τ− corresponding to the Δ-value indicated by the black line.
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matrix. Thus, the computational complexity for miFDR
applied to this goal is O(NMP).
• Find the maximal number of significant features

given a FDR cut-off: In this case, miFDR needs to exam-
ine up to a certain number Mr (0 <Mr ≤ M) in order to
find the best result yielding the required FDR cut-off. In
the worst-case scenario, miFDR has to estimate FDRs for

all
1
2
Mρ

2 possible (N+, N-) airs that satisfy N+ + N− = 1,2,

..., Mr. If not well implemented, the worst computational
complexity for doing this is O(Mρ

2MP), which is much
worse than that of the first goal. However, we noticed that
both N+ and N- can only be chosen from 0, 1, 2, ...Mr.
Thus, miFDR can be implemented in a very efficient way
as below. We can use the permutated measurements to
calculate in advance the one-sided false positives for N+ =
0,1,2, ..., Mr and N− = 0,1,2, ..., Mr in each permutation.
This will take O(MrMP) in total. Then, to evaluate a given
(N+, N-) pair, all we need to do is simply combine the pre-
computed false positives for N+ and those for N- in each
permutation, and then calculate the median of the com-
bined false positives in O(P). Hence, it will take miFDR

O(Mρ
2P)to cover all

1
2
Mρ

2options. Since Mr ≤ M, miFDR

has a computational complexity of O(MrMP) to check up
to Mr features, which is comparable to that of the first
goal if the desired number of features N ~ Mr. Based on
the above idea, we designed Algorithm 2. In practice, the
value of Mr can be easily tuned by users. By default, we
set it to 1000, which worked well in practice so far, and
the calculation can be finished in a few minutes. Neverthe-
less, we theoretically proved that Mr can be determined
automatically and efficiently (see Theorem S1 in Addi-
tional File 1 Appendix C).
Algorithm 2: [N, feature+, feature-] = miFDR2

({di}, {d̂i,b},�,Mρ)
Input: {di} - the original d-values; {d̂i,b}- the d-values

in permutations; Ψ - target FDR cut-off; Mr - the
expected number of significant features to be tested.
1) Initialize fdr ¬ ∞, N+ ¬ 0, and N- ¬ 0.
2) Calculate P(H = 0).
3) Sort {di} in the ascending order to obtain {d∗

i }.
4) For (k = 0; k ≤ Mr; k++)

a) TP+
k = the number of the original d-values larger

than d∗
M−k.

b) TP−
k = the number of the original d-values smaller

than d∗
k+1.

c) For (b = 0; k ≤ P; b++)
i. FP+

k,b = the number of the d-values in b-th per-
mutation that are larger than d∗

M−k.
ii. FP−

k,b = the number of the d-values in b-th per-
mutation that are smaller than d∗

k+1.

5) For (k =Mr; k ≥ 0; k −−)

a) Initialize ̂cFDR ← ∞, N̂+ ← 0, and N̂− ← 0
b) For (n = 0; n ≤ k; n++)

i. The estimated FDR can be obtained efficiently
as follows:

cFDR =
median

(
{FP+

n,b + FP−
k−n,b}b=1...B

)
· P(H = 0)

TP+
n + TP−

k−n

ii. If cFDR < ̂cFDR, then ̂cFDR ← cFDR, N̂+ ← n
and N̂− ← k − n.

c) If ̂cFDR < �, then fdr ← ̂cFDR,

N+ ← N̂+,N− ← N̂−, and N ¬ k. Jump to (6).

6) Let feature+ = the indexes of N+ features with the
largest d-values; and feature- = the indexes of N- fea-
tures with the smallest d-values.
Output: N - the maximum number of significant fea-

tures satisfying the FDR cut-off Ψ; feature+ - the indexes
of positive significant features; feature- - the indexes of
negative significant features.

Results
We compared the miFDR approach to SAM (v4.0), the
BH approach and the Storey approach on both simula-
tion test and real microarray data analysis. We selected
two-sided t-test p-values for the BH and Storey
approaches (implemented in MATLAB Bioinformatics
Toolbox v4.2) because we found two-sided t-test has
better performance than one-sided t-test, one-sided
ranksum test and two-sided ranksum test. The results
showed that miFDR outperformed the other three meth-
ods in a wide range of FDR cut-offs.

Simulation test
We ran the simulation test 1000 times, which were
designed to have enough complexity to extensively test
different FDR controlling methods. In each run, a dataset
was simulated according to the distributions in Table 1.
Each simulation dataset contains 16 samples in total, 8
samples in each group. Each sample has 10400 features:
10000 null hypothesis features + 400 alternative hypothesis
features. Out of 10000 null hypothesis features, 5000 fea-
tures follow standard normal distribution and the rest fol-
low uniform distribution in range [−√

3, +
√
3]. And 400

alternative hypothesis features follow a mixture of multiple
distributions described in Table 1.
In each simulation, every approach produced a curve

describing the estimated FDR vs. the number of significant
features. Those 1000 curves were then averaged with
respect to the number of significant features. Since the
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ground-truth was known, we were able to calculate the
true FDR and derive the averaged curve to show true FDR
vs. the number of significant features for each approach.
As expected, miFDR consistently called more signifi-

cant features than SAM at the same estimated FDR levels
(see Figure 2a). In particular, at FDR cut-off level 0.05,
miFDR identified 19.64 features on average, 17.61% more
than the average 16.18 features identified by SAM. Paired
t-test showed that the results of miFDR was significantly
better than those of SAM (p-value = 6.04e-73). In addi-
tion, the true FDR curve of miFDR was consistently
bounded by that of SAM (see Figure 2b). This means
miFDR made less false calls than SAM did. Finally, the
true FDR curve of miFDR was well bounded by its esti-
mated FDR curve (see Figure 2c).
The BH and Storey approaches were also included in the

comparison. But their performance was much worse than
miFDR and SAM (Figure 2a &2b), with two reasons:
Firstly, they consistently identified fewer significant fea-
tures than miFDR and SAM did at the same FDR levels.
Secondly, their true FDRs are much higher than those of
miFDR and SAM when calling the same numbers of sig-
nificant features. Such worse performance can be because
50% null features follow uniform distributions. However
the BH and Storey approaches used t-test p-values, which
assume Gaussian distributions. When ranksum p-values
were used in the BH and Storey approaches, the results
were even worse (see Figure 3).
We also ran the simulation test with sample size 6 vs. 6

and 10 vs. 10. The results resonated the above findings
(see the Additional File 1 Appendix A & B).

Analyze DNA microarray datasets
To further demonstrate that miFDR has high performance
in practice, we compared miFDR, SAM, the BH and Storey
approaches on a couple of public DNA microarray gene
expression datasets obtained from Gene Expression Omni-
bus (GEO, http://www.ncbi.nlm.nih.gov/geo/). The results
(see Table 2) clearly showed that miFDR significantly out-
performed the other three approaches.

Two of those datasets happen to be related to hyperten-
sion: GDS3661 and GDS3689, which caught our attentions.
Hypertension accounts for about 25% of heart failures [13].
If uncontrolled, hypertension can cause various changes in
myocardial structure, conduction system and coronary vas-
culature of the heart, which can further cause the develop-
ment of left ventricular hypertrophy, atherosclerosis and
other complications. It has been proved by both experi-
mental animal and clinical studies that left ventricular
hypertrophy could induce myocardial ischemia [3], and
eventually result in large-scale programmed cell death and
heart failure. We therefore want to see if genes called by
miFDR in these datasets are indeed biologically relevant.
GDS3661 was generated to investigate the molecular activ-
ity underlying the onset hypertensive heart failure, by pro-
filing left ventricular samples from rats with spontaneously
hypertension [14]. It used Affymetrix Rat Genome 230 2.0
Array to compare the gene expression levels of 6 heart fail-
ure rats (HF-rats) with those of 6 rats without heart failure
(Control-rats). Hypertension has been proved by many stu-
dies to be highly related to environmental pollution, espe-
cially diesel exhaust exposure [15-19]. To discover
molecular links between hypertension and diesel exhaust
exposure, GDS3689 was generated by profiling samples
from rats exposed to diesel exhaust particles [20] using
Affymetrix Gene Chip Rat 230A microarray. It compared 4
rats exposed to diesel exhaust particles (DE-rats) with 4
rats without exposure (Control-rats). GDS3689 contains
samples of both hypertensive rats and healthy rats. In this
paper, we only analyzed the samples of healthy rats.
GDS3661
We set the FDR cut-off as 0.05, and compared the number
of probe sets called significant by the BH approach, the
Storey approach, SAM, and miFDR. Using either t-test or
ranksum test, both the BH approach and the Storey
approach failed to identify any significant probe set. At the
same FDR cut-off, miFDR identified 210 probe sets versus
129 probe sets identified by SAM.
The probe set lists detected by SAM and miFDR were

submitted to DAVID [21,22] for gene ontology (GO)

Table 1 Null and alternative hypotheses in simulated datasets

Category # of features Group 1 Group 2

1 5000 Gaussian with mean = 0 and variance = 1 Gaussian with mean = 0 and variance = 1

2 5000 Uniform in range [−√
3,

√
3] Uniform in range [−√

3,
√
3]

3 50 Gaussian with mean = 0 and variance = 1 Gaussian with mean = -2 and variance = 1

4 150 Gaussian with mean = 0 and variance = 1 Gaussian with mean = 1 and variance = 1

5 150 Uniform in range [−√
3,

√
3] Uniform in range [1 − √

3,1 +
√
3]

6 50 Uniform in range [−√
3,

√
3] Uniform in range [1.5 − √

3,1.5 +
√
3]

Each simulation dataset has 10400 features, which are divided into six groups. The number of features in each group and the corresponding distributions are
listed below. Category 1 and 2 are for null hypotheses features and category 3, 4, 5 and 6 are for alternative features. Particularly in Category 2, we use uniform

distribution in range [−√
3,

√
3] to make the variance equal to 1.
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enrichment analysis. The result showed that miFDR was
better than SAM in identifying genes with functions closely
related to phenotypic changes from compensated hypertro-
phy to systolic heart failure. Some typical GO categories
are: GO-0007179: transforming growth factor beta receptor
signaling pathway (miFDR matched 4 genes vs. SAM
matched 3 genes), GO-0010647: positive regulation of cell

communication (miFDR 10 genes vs. SAM 5 genes), GO-
0012501: programmed cell death (miFDR 9 genes vs. SAM
7 genes), GO-0033554: cellular response to stress (miFDR
10 genes vs. SAM 5 genes), and GO-0040008: regulation of
growth (miFDR 9 genes vs. SAM 3 genes).
We found in literature that several genes identified

only by miFDR may shed new light on the molecular

Figure 2 Simulation result I. Compare the average performance of BH, Storey, SAM and miFDR on 1000 simulation runs. In each plot, a blow-
out of the curve segment in the dashed rectangle is shown at the bottom-right corner for clearer illustration. (a) Compare the estimated FDRs
among four approaches. The performance of miFDR is the best. (b) Compare the true FDRs. The performance of miFDR is the best. (c) Compare
the estimated FDRs and the true FDRs of miFDR. The true FDR curve of miFDR is well bounded by its estimated FDR curve, which indicates that
miFDR does not under-estimate the number of falsely called significant features.
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mechanism underlying the deterioration of cardio func-
tion and remodeling associated with hypertensive heart
failure. Figure 4 illustrates the potential roles of three
genes (Mmp2, Rtn4 and Pdlim5) in the context of hyper-
tensive heart failure.

• Mmp2 (up-regulated in HF-rats by 1.88 folds) may
play a critical role in preventing hypertensive heart failure.
On the one hand, it was reported that classic precondi-
tioning can inhibit ischemia/reperfusion induced release
and therefore offer cardio protection [23] (Figure 4, L1).

Figure 3 Simulation result II. Compare the average performance of four approaches: 1) BH using t-test, 2) Storey using t-test, 3) BH using
ranksum and 4) Storey using ranksum on 1000 simulation runs. The performance of BH using t-test and Storey using t-test are much better than
those of BH using ranksum and Storey using ranksum.

Table 2 Numbers of detected significant genes under FDR cut-off = 0.05

Dataset miFDR SAM BH - t-test Storey - t-test BH - ranksum Storey - ranksum

GDS1517* 610 546 20 29 0 0

GDS2154 684 292 150 300 0 0

GDS2414 322 286 102 115 0 0

GDS2470 104 58 4 4 0 0

GDS2552 787 741 245 508 0 0

GDS2765 177 112 10 20 0 0

GDS2778 734 701 57 108 0 13

GDS3087 74 15 2 4 0 0

GDS3132 453 420 163 205 0 0

GDS3295** 342 267 149 319 0 0

GDS3395 463 425 98 98 210 56

GDS3407*** 283 241 1 1 0 0

GDS3518 450 420 23 43 0 0

GDS3663 419 235 0 0 0 0

Numbers of detected significant genes under FDR cut-off = 0.05. Three out of total 14 datasets have more than two classes. In each of those datasets, we
select two classes as the following. *GDS1517: wild type/control (5 samples) versus wild type/low fat, high carbohydrate (5 samples). **GDS3295: GV oocyte/66
weeks (4 samples) versus GV oocyte/6 weeks (4 samples). ***GDS3407: wild type/control (4 samples) versus wild type/PFOA (4 samples).
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On the other hand, the suppression of Mmp2 activity by
angiotensin-converting enzyme inhibitors can prevent left
ventricular remodeling in a rat model of heart failure [24]
(Figure 4, L2). Thus, we hypothesize that inhibiting Mmp2
may help prevent heart failure from hypertension.
• Rtn4 (up-regulated in HF-rats by 1.59 folds) may have

great effects on hypertensive heart failure. Programmed
cell death of cardiomyocytes following myocardial ische-
mia imposes a biomechanical stress on the remaining
myocardium, leading to myocardial dysfunction that may
cause heart failure or sudden death. It was shown that
knocking down Rtn4 inhibits the loss of cardiomyocytes

following ischemic/hypoxic injury [25]. It was also
reported that Rtn4 expression was significantly increased
in cardiac tissue from patients with dilated cardiomyopa-
thy and from patients who have experienced an ischemic
event [26,27] (Figure 4, L6). These evidences suggest that
myocardial ischemia may trigger Rtn4-mediated large
scale programmed cell death of cardiomyocytes, which
eventually leads to heart failure.
• Pdlim5 (up-regulated in HF-rats by 2.96 folds) is a

heart and skeletal muscle-specific protein that may per-
form an essential role in heart development [28]. Pdlim5
are related to hypertensive HF in three ways. Firstly, it was

Figure 4 Literature supports for the results of analyzing GDS3661. Three genes (Mmp2, Rtn4 and Pdlim5, marked in blue) identified only by
miFDR may perform important roles in the context of hypertensive heart failure. See main text for the detailed explanations of literature
evidence labeled as L1-6 (marked in yellow).
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reported that Pdlim5 promoted the expression of hyper-
trophy markers and increased cell volume when overex-
pressed in rat neonatal cardiomyocytes [29] (Figure 4, L3).
Secondly, Pdlim5 protein was found to preferentially inter-
act with protein kinase C beta (PKCB) which is markedly
activated in the cardiac hypertrophic signaling [30] (Figure
4, L4). Finally, it was suggested that the protein of Pdlim5
scaffolded protein kinase D1 (PKD1), a key enzyme in the
response to stress signals in cardiomyocytes, to regulate
the cardiac L-type voltage-gated calcium channels [31]
(Figure 4, L5). There are several drugs for treating hyper-
tension, myocardial ischemia and cardiac arrhythmias by
targeting at this channel.
Besides the three genes (Mmp2, Rtn4 and Pdlim5) men-

tioned above, we also found several other interesting genes
in literature, such as Ptgs1 (up-regulated in HF-rats with
2.06 folds) and Glrx2 (up-regulated in HF-rats with 1.35
folds). The human homology of Ptgs1 regulates the physio-
logical process involving the growth of new blood vessels
from pre-existing vessels in endothelial cells. Ptgs1 can
mediate endothelial dysfunction under oxidative stress in
chronic heart failure [32]. Therefore, Ptgs1 may have a
strong effect on the onset of hypertensive heart failure.
Mitochondrial Glrx2 plays a crucial role in cardio-pro-

tection [33]. It was shown that Doxorubicin-induced car-
diac injury is reduced in transgenic mice expressing the
human Glrx2 when compared to non-transgenic mice
[34]. Overexpression of human Glrx2 in transgenic mice
reduces myocardial cell death by preventing both apopto-
sis and necrosis [33]. We think that the up-regulation of
Glrx2 is most likely due to the auto-adjustment of the
heart system to compensate for heart failure. However,
the endogenous mechanisms in those heart failure rats
were not able to raise Glrx2 up to a level high enough to
prevent the onset from happening.
GDS3689
At FDR < 0.05, the BH and Storey approaches using rank-
sum p-values failed to identify any significant probe set. If
t-test p-values were used, the BH and Storey approaches
identified 18 and 249 significant probe sets, respectively. At
the same FDR level, miFDR identified 640 probe sets while
SAM only identified 388. We submitted the probe set lists
identified by miFDR and SAM for GO enrichment analysis.
The result showed that miFDR outperformed SAM in iden-
tifying genes in those functional categories closely related to
the response to diesel exhaust exposure and hypertension,
such as GO-0006952: defense response (miFDR identified
17 genes vs. SAM identified 8 genes), GO-0006954: inflam-
matory response (miFDR 12 genes vs. SAM 6 genes), GO-
0009967: positive regulation of signal transduction (miFDR
11 genes vs. SAM 4 genes), GO-0009968: negative regu-
lation of signal transduction (miFDR 8 genes vs. SAM
7 genes), GO-0030198: extracellular matrix organization

(miFDR 3 genes vs. SAM 0 genes) and GO-0033554: cellu-
lar response to stress (miFDR 21 genes vs. SAM 10 genes).
Literature evidences also suggested that several genes

identified only by miFDR can elucidate new molecular con-
nections between diesel exhaust exposure and hyperten-
sion, in particular through atherosclerosis. Atherosclerosis
is one of the most serious hypertension-related health pro-
blems. The arteries of hypertensive animals have greater
mass of vascular smooth muscle than normotensive ones,
and the alteration in the differentiated state (e.g. increased
proliferation, enhanced migration and down-regulation of
vascular smooth muscle differentiation marker genes) of
vascular smooth muscle cells is known to perform a key
function in the development of atherosclerosis. In addition,
diesel exhaust particles greatly promote atherosclerosis
[35-37]. One study showed that the synergy between diesel
exhaust particles and oxidized phospholipids affect the
expression profiles of several gene modules corresponding
to the pathways relevant to vascular inflammatory pro-
cesses such as atherosclerosis [38].
Here we focused on five genes (Tgfbr1, Zeb1, Hdac2,

Rab5a, and Ets1), which were all identified by miFDR
alone, and discussed their potential roles in the context of
diesel particle exposure and atherosclerosis (see Figure 5).
• Tgfbr1 (up-regulated in DE-rats by 2.05 folds) acts

as the upstream of p38 in MAPK signaling pathway
(http://www.genome.jp/keggbin/show_pathway?hsa04010).
It was shown that diesel exhaust particles activate p38 to
produce interleukin 8 and RANTES by human bronchial
epithelial cells [39]. Thus, we suggest that diesel exhaust
particles trigger p38 by activating Tgfbr1 (Figure 5, L1).
Tgfbr1 also forms a heteromeric receptor complex with
TGF-beta type II receptor that mediates TGF-beta signal-
ing (Entrez Gene summary as of May 30th, 2013: http://
www.ncbi.nlm.nih.gov/gene/29591) (Figure 5, L2).
• Zeb1 w?>(up-regulated in DE-rats by 1.43 folds)

mediates TGF-beta signaling in vascular disease and
vascular smooth muscle cell differentiation during
development [40] (Figure 5, L3), which eventually leads
to atherosclerosis.
• Hdac2 (up-regulated in DE-rats by 1.43 folds) was

reported to mediate the suppression of vascular smooth
muscle cell differentiation marker genes by POVPC [1-pal-
mitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine]
[41]. POVPC is concentrated within atherosclerotic lesions
and contributes to the pathogenesis of atherosclerosis by
inducing profound suppression of vascular smooth muscle
cell differentiation marker genes via a transcription factor
KLF4 [42] (Figure 5, L5).
• Rab5a (up-regulated in DE-rats by 1.83 folds) was

shown to have a strong effect on vascular smooth muscle
cell proliferation and migration, which can cause intimal
hyperplasia and restenosis. And RNAi-mediated Rab5a
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suppression can inhibit proliferation and migration of
vascular smooth muscle cells [43] (Figure 5, L4).
• Ets1 (up-regulated in DE-rats with 1.69 folds) may be

related to atherosclerosis in two ways. On the one hand,
Ets1 was reported to activate platelet-derived growth fac-
tor (PDGF) A-chain [44] and PDGF D-chain [45] (Figure
5, L6). PDGF has been implicated in the pathogenesis of
vascular occlusive disorders such as atherosclerosis and
restenosis in part due to its regulation of vascular smooth
muscle cell phenotype. On the other hand, Ets1 is also
involved in the signaling mechanisms whereby angioten-
sin II, a potent up-regulator of osteopontin, increases
osteopontin expression in vascular smooth muscle cells
[46] (Figure 5, L5). Several recent studies have revealed
that osteopontin performed multiple roles in the progres-
sion of atherosclerotic plaques [47-51].

Conclusions
We presented a new powerful FDR control method -
miFDR, which minimizes the estimated FDR when calling
a fixed number of significant features. We showed theo-
retically that the search strategy of miFDR maximizes
findings given any certain FDR cut-off. We validated this
idea by showing that miFDR outperformed the other
three widely accepted FDR control methods (SAM, BH
and Storey) in simulation tests and DNA microarray ana-
lysis. Literature evidences support that several genes
identified only by miFDR are indeed relevant to the
underlying biology of interest. Controlling FDR is critical
in analyzing genome-wide datasets. Therefore, miFDR is
an important innovation that will benefit projects util-
izing high-throughput technologies and make a broad
impact in the future.

Figure 5 Literature supports for the results of analyzing GDS3689. The miFDR approach identified five genes (Tgfbr1, Zeb1, Hdac2, Rab5a,
and Ets1, marked in blue) that may shed new light on the molecular connections between diesel exhaust exposure and hypertension, in
particular through atherosclerosis. See main text for detailed explanations of literature evidence labeled as L1-7 (marked in yellow).
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Additional material

Additional file 1: The supplementary materials contain Appendices A, B,
and C. Appendices A and B show the simulation test results using
different sample sizes: 6 vs. 6 and 10 vs. 10, respectively. Appendix C
proves a theorem that allows us to automatically decide the upper-
bound of Mr in Algorithm 2 for a given FDR cut-off.
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