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Abstract

Background: High-throughput genomic and proteomic data have important applications in medicine including
prevention, diagnosis, treatment, and prognosis of diseases, and molecular biology, for example pathway
identification. Many of such applications can be formulated to classification and dimension reduction problems in
machine learning. There are computationally challenging issues with regards to accurately classifying such data,
and which due to dimensionality, noise and redundancy, to name a few. The principle of sparse representation has
been applied to analyzing high-dimensional biological data within the frameworks of clustering, classification, and
dimension reduction approaches. However, the existing sparse representation methods are inefficient. The kernel
extensions are not well addressed either. Moreover, the sparse representation techniques have not been
comprehensively studied yet in bioinformatics.

Results: In this paper, a Bayesian treatment is presented on sparse representations. Various sparse coding and
dictionary learning models are discussed. We propose fast parallel active-set optimization algorithm for each
model. Kernel versions are devised based on their dimension-free property. These models are applied for classifying
high-dimensional biological data.

Conclusions: In our experiment, we compared our models with other methods on both accuracy and computing
time. It is shown that our models can achieve satisfactory accuracy, and their performance are very efficient.

Introduction
The studies in biology and medicine have been revolutio-
narily changed since the invents of many high-throughput
sensory techniques. Using these techniques, the molecular
phenomenons can be probed with a high resolution. In
the virtue of such techniques, we are able to conduct sys-
tematic genome-wide analysis. In the last decade, many
important results have been achieved by analyzing the
high-throughput data, such as microarray gene expression
profiles, gene copy numbers profiles, proteomic mass
spectrometry data, next-generation sequences, and so on.
On one hand, biologists are enjoining the richness of

their data; one another hand, bioinformaticians are being
challenged by the issues of the high-dimensional data.
Many of the analysis can be formulated into machine

learning tasks. First of all, we have to face to the cures of
high dimensionality which means that many machine
learning models can be overfitted and therefore have
poor capability of generalization. Second, if the learning
of a model is sensitive to the dimensionality, the learning
procedure could be extremely slow. Third, many of the
data are very noise, therefore the robustness of a model
is necessary. Forth, the high-throughput data exhibit a
large variability and redundancy, which make the mining
of useful knowledge difficult. Moreover, the observed
data usually do not tell us the key points of the story. We
need to discover and interpret the latent factors which
drive the observed data.
Many of such analysis are classification problem from

the machine learning viewpoint. Therefore in this paper,
we focus our study on the classification techniques for
high-dimensional biological data. The machine learning
techniques addressing the challenges above can be
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categorized into two classes. The first one aims to
directly classify the high-dimensional data while keeping
the good capability of generalization and efficiency in
optimization. The most popular method in this class is
the regularized basis-expended linear model. One exam-
ple is the state-of-the-art support vector machine (SVM)
[1]. SVM can be kernelized and its result is theoretically
sound. Combining different regularization terms and
various loss functions, we can have many variants of
such linear models [2]. In addition to classification,
some of the models can be applied to regression and
feature (biomarker) identification. However, most of the
learned linear models are not interpretable, while inter-
pretability is usually the requirement of biological data
analysis. Moreover, linear models can not be extended
naturally to multi-class data, while in bioinformatics a
class may be composed of many subtypes.
Another technique of tackling with the challenges is

dimension reduction which includes feature extraction
and feature selection. Principal component analysis
(PCA) [3] is the oldest feature extraction method and is
widely used in processing high-dimensional biological
data. The basis vectors produced by PCA are orthogonal,
however many patterns in bioinformatics are not orthogo-
nal at all. The classic factor analysis (FA) [4] also has
orthogonal constraints on the basis vectors, however its
Bayesian treatment does not necessarily produce orthogo-
nal basis vectors. Bayesian factor analysis will be intro-
duced in the next section.
Sparse representation (SR) [5] is a parsimonious prin-

ciple that a sample can be approximated by a sparse
linear combination of basis vectors. Non-orthogonal
basis vectors can be learned by SR, and the basis vectors
may be allowed to be redundant. SR highlights the par-
simony in representation learning [6]. This simple prin-
ciple has many strengthes that encourage us to explore
its usefulness in bioinformatics. First, it is very robust to
redundancy, because it only select few among all of the
basis vectors. Second, it is very robust to noise [7].
Furthermore, its basis vectors are non-orthogonal, and
sometimes are interpretable due to its sparseness [8].
There are two techniques in SR. First, given a basis
matrix, learning the sparse coefficient of a new sample
is called sparse coding. Second, given training data,
learning the basis vector is called dictionary learning. As
dictionary learning is, in essence, a sparse matrix factori-
zation technique, non-negative matrix factorization
(NMF) [9] can be viewed a specific case of SR. For
understanding sparse representation better, we will give
the formal mathematical formulation from a Bayesian
perspective in the next section.
This paper is the significant extension of our preliminary

work presented in [10] where sparse representation is trea-
ted from regularization and optimization perspectives.

In this paper, we formulate sparse representation from a
Bayesian viewpoint. We show that using different prior
distributions, we can obtain various sparse coding and dic-
tionary learning models. Although there exists some
works, for example [11], which apply sparse coding in the
classification of biological data, to the best of our knowl-
edge, this is the first time that sparse representation is
intensively and systematically studied in the area of bioin-
formatics. This study has the following contributions:

1. We give a Bayesian treatment on the sparse repre-
sentation, which is very helpful to understand and
design sparse representation models.
2. Kernel sparse coding techniques are proposed for
direct classification of high-dimensional biological
data.
3. Fast parallel active-set algorithms are devised for
sparse coding.
4. An efficient generic framework of kernel dictionary
learning for feature extraction is proposed.
5. We reveal that the optimization and decision
making in sparse representation is dimension-free.

We organize the rest of this paper as follow. We first
introduce factor analysis and sparse representation from
a Bayesian aspect. Classification method based on sparse
coding is then introduced and the active-set methods
are proposed for the optimization. Their kernel extensions
are given as well. Then various dictionary learning models
are given. After that, a generic optimization framework
is devised to optimize these models. In the same section,
dictionary-learning-based classification and its kernel
extension are proposed as well. Then we describe our
computational experiments on two high-dimensional data
sets. Finally, conclusions and future works are drawn.

Related work from a Bayesian viewpoint
Both (sparse) factor analysis and sparse representation
models can be used as dimension reduction techniques.
Due to their intuitive similarity, it is necessary to give their
definitions for comparison. In this section, we briefly sur-
vey the sparse factor analysis and sparse representation in
a Bayesian viewpoint. The introduction of sparse repre-
sentation is helpful to understand the content of the sub-
sequent sections. Hereafter, we use the following notations
unless otherwise stated. Suppose the training data is
D ∈ R

m×n (m is the number of features and n is the num-
ber of training instances (samples or observations)), the
class information is in the n-dimensional vector c. Suppose
p new instances are in B ∈ R

m ×p.

Sparse Bayesian (latent) factor analysis
The advantages of Bayesian (latent) factor analysis
model [12] over likelihood (latent) factor analysis
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model are that

1. The knowledge regarding the model parameters
from experts and previous investigations can be
incorporated through the prior.
2. The values of parameters are refined using the
current training observations.

The Bayesian factor analysis model [12] can be for-
mulated as

(b|μ,A, x, k) = μ + Ax + ε, (1)

where b ∈ R
m × 1 is an observed multivariate variable,

μ ∈ R
m × 1 is the population mean, A ∈ R

m × k is latent
factor loading matrix, and x ∈ R

k× 1 is latent factor score
(k ≪ m), and ε ∈ R

m×1 is an idiosyncratic error term.
This model is restricted by the following constraints or
assumptions:

1. The error term is normally distributed with mean 0
and covariance F: ε ~ N (0, F). F is diagonal on
average.
2. The factor score vector is also normally distributed
with mean 0 and identity covariance R = I: x ~ N (0,
R); and the factor loading vector is normally distribu-
ted: ai ~ N (0, Δ) where Δ is diagonal. Alternatively,
the factor loading vectors can be normally distributed
with mean 0 and identity covariance Δ = I; and the
factor score vector is normally distributed with mean 0
and diagonal covariance R. The benefit of identity cov-
ariance either on x or A is that arbitrary scale inter-
change between A and x due to scale invariance can
be avoided.
3. x is independent of ε.

For n training instances D, we have the likelihood:

p(D|μ,A,Y,�, k) =
1

(2π)
mn
2 |�|

n
2
e−

1
2

∑n
i=1 (di−μ−Ayi)

T
�−1(di−μ−Ayi) (2)

=
1

(2π)
mn
2 |�|

n
2
e−

1
2 tr[(D−μ1T−AY)T�−1(D−μ1T−AY)] , (3)

where tr(M) is the trace of square matrix M.
The variants of Bayesian factor analysis models differ

in the decomposition of the joint priors. The simplest
one may be p(µ, A, Y) = p(µ)p(A)p(Y). Suppose k is
fixed a priori. The posterior therefore becomes

p(μ,A,Y|D, k) ∝ p(D|μ,A,Y,�, k)p(μ)p(A)p(Y). (4)

The model parameters are usually estimated via Mar-
kov chain Monte Carlo (MCMC) techniques.
Sparse Bayesian factor analysis model imposes a spar-

sity-inducing distribution over the factor loading matrix

instead of Gaussian distribution. In [13], the following
mixture of prior is proposed:

p(aij) = (1 − πij)δ0(aij) + πijN(aij|0, 1), (5)

where πij is the probability of a nonzero aij and δ0(·) is
the Dirac delta function at 0. Meanwhile, Ais constrained
using the lower triangular method. Bayesian factor
regression model (BFRM) is the combination of Bayesian
factor analysis and Bayesian regression [13]. It has been
applied in oncogenic pathway studies [4] as a variable
selection method.

Sparse representation
Sparse representation (SR) is a principle that a signal
can be approximated by a sparse linear combination of
dictionary atoms [14]. The SR model can be formulated
as

(b|A, x, k) = x1a1 + · · · + xkak + ε

= Ax + ε,
(6)

where A = [a1, · · · , ak] is called dictionary, ai is a dic-
tionary atom, x is a sparse coefficient vector, and ε is an
error term. A, x, and k are the model parameters. SR
model has the following constraints:

1. The error term is Gaussian distributed with mean
zero and isotropic covariance, that is ε ~ N (0, F)
where F = jI where j is a positive scalar.
2. The dictionary atoms is usually Gaussian distribu-
ted, that is ai ~ N (0, Δ) where Δ = I. The coeffi-
cient vector should follows a sparsity-inducing
distribution.
3. x is independent of ε.

Through comparing the concepts of Bayesian factor
analysis and Bayesian sparse representation, we can find
that the main difference between them is that the former
applies a sparsity-inducing distribution over the factor
loading matrix, while the later uses a sparsity-inducing
distribution on the factor score vector.
Sparse representation involves sparse coding and dic-

tionary learning. Given a new signal b and a dictionary A,
learning the sparse coefficient x is termed sparse coding.
It can be statistically formulated as

(b|A) = Ax + ε. (7)

Suppose the coefficient vector has Laplacian prior
with zero mean and isotropic variance, that is

p(x|�) = L(0,�) =
1

(2γ )k
e
− ||x||1

γ . The likelihood is Gaussian

distributed as p(b|A, x,�) = N(Ax,�) =
1

(2π)
m
2 φ

m
2
e
− 1
2φ

||b−Ax||22.
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The posterior is thus

p(x|A, b,�,�) =
p(b|A, x,�,�)p(x|A,�,�)

p(b)

∝ p(b|A, x,�)p(x|�).
(8)

Taking the logarithm, the above is thus

L(x) = log p(b|A, x) + log p(x)

= − 1
2φ

||b − Ax||22 − ||x||1
γ

+ c,
(9)

where c is a constant term. We can see that maximiz-
ing the posterior is equivalent to minimizing the follow-
ing task:

min
x

f (x) =
1
2

||b − Ax||22 + λ||x||1, (10)

where λ = φ

γ
. Hereafter we call Equation (10) l1-least

squares (l1 LS) sparse coding model. It is known as the
l1-regularized regression model in regularization theory.
It coincides with the well-known LASSO model [15],
which in fact is a maximum a posteriori (MAP)
estimation.
Given training data D, learning (or estimating) the

dictionary A, the coefficient vectors Y, and the number
of dictionary atoms k is called dictionary learning. Sup-
pose k is given a priori, and consider the Laplacian prior
over Yand the Gaussian prior over A, and suppose

p(A,Y) = p(A)p(Y) =
k∏
i=1

(p(ai))
n∏
i=1

(p(yi)). We thus have

the prior:

p(A,Y|
,�) =
1

(2π)
k
2

e
∑k

i = 1 −1
2 ||ai||22 1

(2γ )kn
e

∑n
i = 1 −

||yi||1
γ (11)

The likelihood is

p(D|A,Y,�) =
1

(2π)
mn
2 φ

mn
2

e
−

1
2φ

tr(||D−AY||2F)
. (12)

The posterior is

p(A,Y|D,
,�,�) =
p(D|A,Y,
,�,�)p(A,Y|
,�,�)

p(D)
(13)

∝ p(D|A,Y,�)p(A|
)p(Y|�). (14)

Ignoring the normalization term (that is the marginal
likelihood), the log-posterior is thus

L(A,Y) = −
n∑
i=1

1
2φ

||di − Ayi||22 −
k∑
i=1

1
2

||ai||22 −
n∑
i=1

||yi|| 1
γ

+ c. (15)

Therefore the MAP estimation of dictionary learning
task is

min
A,Y

f (A,Y) =
n∑
i=1

1
2

||di − Ayi||22 +
k∑
i=1

α

2
||ai||22 +

n∑
i=1

λ||yi|| 1,(16)

where a = f and λ = φ

γ
. Equation (16) is known as a

dictionary learning model based on l1-regularized least
squares.
In the literature, the kernel extension of sparse repre-

sentation is realized in two ways. The first way is to use
empirical kernel in sparse coding as in [16], where dic-
tionary learning is not considered. The second way is
the one proposed in [17], where dictionary learning is
involved. However, the dictionary atoms are represented
and updated explicitly. This could be intractable, as the
number of dimensions of dictionary atoms in the fea-
ture space is very high even infinite. In the later sec-
tions, we give our kernel extensions of sparse coding
and dictionary learning, respectively, where any kernel
functions can be used and the dictionary is updated
efficiently.

Sparse coding methods
Since, the l1LS sparse coding (Equation (10)) is a two-
sided symmetric model, thus a coefficient can be zero,
positive, or negative [18]. In Bioinformatics, l1LS sparse
coding has been applied for the classification of microarray
gene expression data in [11]. The main idea is in the
following. First, training instances are collected in a dic-
tionary. Then, a new instance is regressed by l1LS sparse
coding. Thus its corresponding sparse coefficient vector is
obtained. Next, the regression residual of this instance to
each class is computed, and finally this instance is assigned
to the class with the minimum residual.
We generalize this methodology in the way that the

sparse code can be obtained by many other regulariza-
tion and constraints. For example, we can pool all train-
ing instances in a dictionary (hence k = n and A = D),
and then learn the non-negative coefficient vectors of a
new instance, which is formulated as an one-sided
model:

min
x

1
2

||b − Ax ‖ 2
2 s.t. x ≥ 0. (17)

We called this model the non-negative least squares
(NNLS) sparse coding. NNLS has two advantages over
l1LS. First, the non-negative coefficient vector is more
easily interpretable than coefficient vector of mixed
signs, under some circumstances. Second, NNLS is a
non-parametric model. From a Bayesian viewpoint,
Equation (17) is equivalent to the MAP estimation with
the same Gaussian error as in Equation (6), but the
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following discrete prior:

Pr(x) =
{
0.5k if x ≥ 0,
0 otherwise.

(18)

This non-negative prior implies that, the elements in x
are independent, and the probability of xi = 0 is 0.5 and
the probability of xi >0 is 0.5 as well. (That is the probabil-
ities of xi being either 0 or positive are equal, and the
probability of being negative is zero.) Inspired by many
sparse NMFs, l1-regularization can be additionally used to
produce more sparse coefficients than NNLS above. The
combination of l1-regularization and non-negativity results
in the l1NNLS sparse coding model as formulated below:

min
x

1
2

||b − Ax ‖ 2
2 + λTx s.t. x ≥ 0. (19)

We call Equation (19) the l1NNLS model. It is more
flexible than NNLS, because it can produce more sparse
coefficients as controlled by l. This model in fact uses
the following prior:

p(x) =

⎧⎪⎨
⎪⎩

1
γ k

e
−

‖ x‖ 1

γ if x ≥ 0,

0 otherwise.

(20)

Now, we give the generalized sparse-coding-based
classification approach in details. The method is
depicted in Algorithm 1. We shall give the optimization
algorithms, later, required in the first step. The NN rule
mentioned in Algorithm 1 is inspired by the usual way
of using NMF as a clustering method. Suppose there are
C classes with labels 1, ..., C. For a given new instance
b, its class is l = arg maxi = 1,..., k xi. It selects the maxi-
mum coefficient in the coefficient vector, and then
assigns the class label of the corresponding training
instance to this new instance. Essentially, this rule is
equivalent to applying nearest neighbor (NN) classifier
in the column space of the training instances. In this
space, the representations of the training instances are
identity matrix. The NN rule can be further generalized
to the weighted K-NN rule. Suppose a K-length vector x̄
accommodates the K-largest coefficients from x, and c̄
has the corresponding K class labels. The class label of
b can be designated as l = arg maxi = 1, ..., C si where
δi(x̄). δi(x̄) is a K-length vector and is defined as

(δi(x̄))j =
{
x̄j if c̄j = i,
0 otherwise.

(21)

The maximum value of K can be k, the number of dic-
tionary atoms. In this case, K is in fact the number of all
non-zeros in x. Alternatively, the nearest subspace (NS)
rule, proposed in [19], can be used to interpret the sparse
coding. NS rule takes the advantage of the discrimination

of property in the sparse coefficients. It assigns the class
with the minimum regression residual to b. Mathemati-
cally, it is expressed as j = min1≤i≤Cri(b) where ri (b) is
the regression residual corresponding to the i-th class
and is computed as ri (b) = ||b − Aδi (x) ||22, where δi(x)
is defined analogically as in Equation (21).
Algorithm 1 Sparse-coding-based classification
Input: Am×n: n training instances, c: class labels, Bm×p:

p new instances
Output: p: predicted class labels of the p new

instances

1. Normalize each instance to have unit l2-norm.
2. Learn the sparse coefficient matrix X, of the new
instances by solving Equation (10), (17), or (19).
3. Use a sparse interpreter to predict the class labels
of new instances, e.g. the NN, K-NN, or NS rule.

Optimization
Active-set algorithm for l1 LS
The problem in Equation (10) is equivalent to the fol-
lowing non-smooth unconstrained quadratic program-
ming (QP):

min
x

1
2
xTHx + gTx + λ‖x‖1, (22)

where Hk×k = ATA, and g = -ATb. We thus know that
the l1LS problem is a l1QP problem. This can be con-
verted to the following smooth constrained QP problem:

min
x,u

1
2
xTHx + gTx + λTu s.t. − u ≤ x ≤ u, (23)

where u is an auxiliary vector variable to squeeze x
towards zero. It can be further written into the standard
form:

min
x,u

1
2
[xT, uT]

[
H

0k×k

0k×k

0k×k

] [
x
u

]
+ gTx + λTu (24)

s.t.
[

Ik×k

−Ik×k

−Ik×k

−Ik×k

]
≤ 0,

where I is an identity matrix. Obviously, the Hessian
in this problem is positive semi-definite as we always
suppose H is positive semi-definite in this paper.
A general active-set algorithm for constrained QP is

provided in [20], where the main idea is that a working
set is updated iteratively until it meets the true active set.
In each iteration, a new solution xt to the QP constrained
only by the current working set is obtained. If the update
step pt = xt - xt-1 is zero, then Lagrangian multipliers of
the current active inequalities are computed. If all these
multipliers corresponding to the working set are non-
negative, then the algorithm terminates with an optimal
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solution. Otherwise, an active inequality is dropped from
the current working set. If the update step pt is nonzero,
then an update length a is computed using the inequality
of the current passive set. The new solution is updated as
xt = xt-1 + apt. If a <1, then a blocking inequality is
added to the working set.
To solve our specific problem efficiently in Equation

(24), we have to modify the general method, because i)
our constraint is sparse, for the i-th constraint, we have
xi - ui ≤ 0 (if i ≤ k) or -xi - ui ≤ 0 (if i > k); and ii)
when ui is not constrained in the current working set,
the QP constrained by the working set is unbounded,
therefore it is not necessary to solve this problem to
obtain pt. In the later situation, pt is unbounded. This
could cause some issues in numerical computation.
Solving the unbounded problem is time-consuming if
the algorithm is unaware of the unbounded issue. If pt
contains positive or negative ∞, then the algorithm may
crash.
We propose the revised active-set algorithm in Algo-

rithm 2 for l1LS sparse coding. To address the potential
issues above, we have the following four modifications.
First, we require that the working set is complete. That is
all the variables in u must be constrained when comput-
ing the current update step. (And therefore all variables
in x are also constrained due to the specific structure of
the constraints in our problem.) For example, if k = 3, a
working set {1, 2, 6} is complete as all variables, x1, x2, x3,
u1, u2, u3, are constrained, while {1, 2, 4} is not complete,
as u3 (and x3) is not constrained. Second, the update step
of the variables that are constrained once in the working
set are computed by solving the equality constrained QP.
The variables constrained twice are directly set to zeros.
In the example above, suppose the current working set
is {1, 2, 4, 6}, then x2, x3, u2, u3 are computed by the
constrained QP, while x1 and u1 are zeros. This is
because the only value satisfying the constraint -u1 = x1
= u1 is x1 = u1 = 0. Third, in this example, we do not
need to solve the equality constrained QP with four
variables. In fact we only need two variables by setting
u2 = -x2 and u3 = x3. Forth, once a constraint is
dropped from the working set and it becomes incom-
plete, other inequalities must be immediately added to
it until it is complete. In the initialization of Algorithm
2, we can alternatively initialize x by 0’s. This is much
efficient than x = (H)-1(-g) for large-scale sparse coding
and very sparse problems.
Active-set algorithm for NNLS and l1 NNLS
Both the NNLS problem in Equation (17) and the
l1NNLS problem in Equation (19) can be easily reformu-
lated to the following non-negative QP (NNQP) problem:

min
1
2
xTH x + gTx s.t. x ≥ 0, (26)

Algorithm 2 Active-set l1QP algorithm
Input: Hessian Hk×k, vector gk×1, scalar l
Output: vector x which is a solution to min

1
2
xTHx + gTx + λTu, s.t. − u ≤ x ≤ u
% initialize the algorithm by a feasible solution and

complete working set
x = (H)-1(-g); u = |x|;

R = {i, j|∀i : if xi > 0 let j = k + iotherwise j = i};
% initialize working set

P = {1 : 2k} − R; % initialize inactive(passive) set
while true do
% compute update step
let Ronce be the indices of variables constrained once

by R;
p2k×1 = 0;
px,Ronce = arg minqq

THRonceq + [HRoncexRonce
+ gRonce + λe]Tq

where ei = 1 if uRonce,i = xRonce,i, or -1 if uRonce,i = xRonce,i;
if p = 0 then
obtain Lagrange multiplier µ by solving

AT
Rμ = −

[
Hx + g

λ

]
(25)

where A is the constraint matrix in Equation (24)
if μi ≥ 0 ∀i ∈ Rthen
terminate successfully;
else
R = R − j;P = P + j where j = arg minl∈R μl;
add other passive constraints to R until it is

complete;
end if
end if
if p ≠ 0 then

α = min(1,mini∈P ,aTi p≥0
−aTi [x; u]

aTi p
);

[x; u] = [x; u] + ap;
if a <1 then
R = R + i; P = P − i. where i corresponds to a;
end if
end if
end while
where H = ATA, g = -ATb for NNLS, and g = -ATb + l

for l1NNLS.
Now, we present the active-set algorithm for NNQP. This

problem is easier to solve than l1QP as the scale of Hessian
of NNQP is half that of l1QP and the constraint is much
simpler. Our algorithm is obtained through generalizing the
famous active-set algorithm for NNLS by [21]. The com-
plete algorithm is given in Algorithm 3. The warm-start
point is initialized by the solution to the unconstrained QP.
As in Algorithm 2, x can be alternatively initialized by 0’s.
The algorithm keeps adding and dropping constraints in
the working set until the true active set is found.

Li and Ngom BMC Systems Biology 2013, 7(Suppl 4):S6
http://www.biomedcentral.com/1752-0509/7/S4/S6

Page 6 of 14



Algorithm 3 Active-set NNQP algorithm
Input: Hessian Hk×k, vector gk×1
Output: vector x which is a solution to

min 1
2x

THx + gTx, s.t. x ≥ 0
x = [(H)-1(-g)]+; % x = [y]+is defined as xi = yi if yi >0,

otherwise xi = 0
R = {i|xi = 0}; % initialize active set
P = {i|xi > 0}; % initialize inactive(passive) set
µ = Hx + g; % the lagrange multiplier
while R ¹ Æ and miniÎR (µi) < -e do
% e is a small positive numerical tolerance
j = arg miniÎR (µi); % get the minimal negative

multiplier
P = P + {j};R = R − {j};
tP = (HP)−1(−gP);
tR = 0;
while min tP ≤ 0do

α = min
i∈P ,ti≤0

xi
xi−ti

;

K = argmini∈P ,ti≤0
xi

xi−ti; % there is one or several
indices correspond to a

x = x + a(t - x);
P = P − −K;R = R +K;
tP = (HP)−1(−gP);
tR = 0;
end while
x = t;
µ = Hx + g;
end while

Parallel active-set algorithms
The formulations of l1QP and NNQP sparse coding for
p new instances are, respectively,

min
X,U

p∑
i=1

1
2
xTi Hxi + gTi xi + λTui, (27)

s.t. − U ≤ X ≤ U,

and

min
X

p∑
i=1

1
2
xTi Hxi + gTi xi s.t. X ≥ 0. (28)

If we want to classify multiple new instances, the initial
idea in [19] and [11] is to optimize the sparse coding one
at a time. The interior-point algorithm, proposed in [22],
is a fast large-scale sparse coding algorithm, and the proxi-
mal algorithm in [23] is a fast first-order method whose
advantages have been recently highlighted for non-smooth
problems. If we adapt both algorithms to solve our multi-
ple l1QP in Equation (27) and NNQP in Equation (28), it
will be difficult to solve the single problems in parallel and
share computations. Therefore, the time-complexity of the
multiple problems will be the summation of that of the

individual problems. However, the multiple problems can
be much more efficiently solved by active-set algorithms.
We adapt both Algorithms 2 and 3 to solve multiple l1QP
and NNQP in a parallel fashion. The individual active-set
algorithms can be solved in parallel by sharing the compu-
tation of matrix inverses (systems of linear equations in
essence). At each iteration, single problems having the
same active set have the same systems of linear equations
to solve. These systems of linear equations can be solved
once only. For a large value p, that is large-scale multiple
problems, active-set algorithms have dramatic computa-
tional advantage over interior-point [22] and proximal
[23] methods unless these methods have a scheme of shar-
ing computations. Additionally, active-set methods are
more precise than interior-point methods. Interior-point
methods do not allow u2i = x2i and u2i must be always
greater than x2i due to feasibility. But u2i = x2i is naturally
possible when the i-th constraint is active. ui = xi = 0 is
reasonable and possible. Active-set algorithms do allow
this situation.

Kernel extensions
As the optimizations of l1QP and NNQP only require
inner products between the instances instead of the ori-
ginal data, our active-set algorithms can be naturally
extended to solve the kernel sparse coding problem by
replacing inner products with kernel matrices. The NS
decision rule used in Algorithm 1 also requires only
inner products. And the weighted K-NN rule only needs
the sparse coefficient vector and class information.
Therefore, the classification approach in Algorithm 1
can be extended to kernel version. For narrative conve-
nience, we also denote the classification approaches
using l1LS, NNLS, and l1NNLS sparse coding as l1LS,
NNLS, and l1NNLS, respectively. Prefix “K” is used for
kernel versions.

Dictionary learning methods
We pursue our dictionary-learning-based approach for
biological data, based on the following two motivations.
First, since sparse-coding-only approach is a lazy learning,
the optimization can be slow for large training set. There-
fore, learning a concise dictionary is more efficient for
future real-time applications. Second, dictionary learning
may capture hidden key factors which correspond to bio-
logical pathways, and the classification performance may
hence be improved. In the following, we first give the dic-
tionary learning models using Gaussian prior and uniform
prior, respectively. Next, we give the classification method
based on dictionary learning. We then address the generic
optimization framework of dictionary learning. Finally, we
show that the kernel versions of our dictionary learning
models and the classification approach can be easily
obtained.
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Dictionary learning models
Now we give our dictionary learning models using
Gaussian prior and uniform prior over the dictionary
atoms, respectively. Both priors aims to get rid off the
arbitrary scale interchange between dictionary and coef-
ficient. Suppose Dm×n is the data of n training instances,
and the dictionary A to be learned has k atoms. If the
Gaussian prior in Equation (6) is used on the dictionary
atom, our dictionary learning models of l1LS, NNLS,
and l1NNLS are expressed as follow, respectively:

l1LS : min
A,Y

1
2

‖ D − AY ‖2F +
α

2
trace(ATA) + λ

n∑
i=1

‖ yi ‖1, (29)

NNLS : min
A,Y

1
2

‖ D − AY ‖2F +
α

2
trace(ATA) (30)

s.t. Y ≥ 0,

and

l1NNLS : min
A,Y

1
2

‖ D − AY ‖2F +
α

2
trace(ATA) +

n∑
i=1

λTyi (31)

s.t. Y ≥ 0.

The strength of the Gaussian prior based dictionary
learning is that it is flexible to control the scales of dic-
tionary atoms. However, it has two model parameters,
which increase the model selection burden in practice.
Alternatively, in order to eliminate the parameter a, we
design an uniform prior over the dictionary which is
expressed as

Pr(ai) =
{
p if ‖ ai‖2 = 1,
0 otherwise,

(32)

where p is a constant. That is the feasible region of the
dictionary atoms is a hypersphere centered at origin with
unit radius, and all the feasible atoms have equal prob-
ability. The corresponding dictionary learning models are
given in the following equations, respectively:

l1LS : min
A,Y

1
2

‖ D − AY ‖2F +λ

n∑
i=1

‖ yi‖1 (33)

s.t. aTi ai = 1, i = 1, · · · , k,

NNLS : min
A,Y

1
2

‖ D − AY ‖2F (34)

s.t. aTi ai = 1, i = 1, · · · , k; Y ≥ 0,

and

l1NNLS : min
A,Y

1
2

‖ D − AY ‖2F +
n∑
i=1

λTyi (35)

s.t. aTi ai = 1, i = 1, · · · , k; Y ≥ 0.

A generic optimization framework for dictionary learning
We devise block-coordinate-descent-based algorithms
for the optimization of the above six models. The main
idea is that, in the next step, Y is fixed, and the inner
product ATA, rather than A itself, is updated; in the
next step, Y is updated while fixing ATA (a sparse cod-
ing procedure). The above procedure is repeated until
the termination conditions are satisfied.
Now, we show that A can be analytically obtained. For

normal prior over dictionary atoms, the optimization of
finding A in Equations (29), (30), and (31) is to solve

min
A

f (A) =
1
2

‖ D − AY ‖2F +
α

2
trace (ATA) (36)

Taking the derivative with respect to A and setting it
to zero, we have

∂f (A)
∂A

= AYYT − DYT + αA = 0. (37)

We hence have

A = DY‡, (38)

where Y ‡ = Y T(Y Y T + aI)-1. The inner product ATA
can thus be updated by

R = ATA = (Y‡)TDTDY‡. (39)

We also can compute ATD by

ATD = (Y‡)TDTD. (40)

For the uniform prior as in Equation (32), updating
unnormalized A while fixing Y in Equations (33), (34),
and (35) is to solve the generalized least squares:

min
A

f (A) =
1
2

‖ D − AY ‖2F . (41)

Taking derivative with respect to A and setting it to
zero, we have

A = DY†, (42)

Algorithm 4 The generic dictionary learning
framework
Input: K = DTD, dictionary size k, l
Output: R = ATA, Y
nitialize Y and R = ATA randomly;
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rprev = Inf ; % previous residual
for i = 1 : maxIter do
update Y by solving the active-set based l1LS, NNLS,

or l1NNLS sparse coding algorithms;
if Gassian prior over A then
update R = Y ‡TDTDY ‡;
end if
if uniform prior over A then
update R = Y †TDTDY †;

normalize R by R = R./
√
diag (R)diag(R)T;

end if
if i == maxIter or i mod l = 0 then
% check every l iterations
rcur = f (A, Y ); % current residual of a dictionary

learning model
if rprev - rcur ≤ e or rcur ≤ e then
break;
end if
rprev = rcur;
end if
end for
where Y † = Y T(Y Y T)-1. The inner products of R =

ATA and ATD are computed similarly as for the Gaus-
sian prior. The normalization of R is straightforward.

We have R = R./
√
diag (R)diag(R)T, where ./ and

√• are

element-wise operators. Learning the inner product ATA
instead of A has the benefits of dimension-free compu-
tation and kernelization.
Fixing A, Y can be obtained via our active-set algorithms.

Recall that the sparse coding only requires the inner
products ATA and ATD. As shown above, we find that
updating Y only needs its previous value and the inner
product between training instances.
Due to the above derivation, we have the framework

of solving our dictionary learning models as illustrated
in Algorithm 4.

Classification approach based on dictionary learning
Now, we present the dictionary-learning-based classifica-
tion approach in Algorithm 5. The dictionary learning
in the training step should be consistent with the sparse
coding in the prediction step. As discussed in the previous
section, the sparse coding in the prediction step needs
the inner products ATA, BTB and ATB which actually is
Y ‡TDTB or Y ‡TDTB.
Algorithm 5 Dictionary-learning-based classification
Input: Dm×n: n training instances, c the class labels,

Bm×p: p new instances, k: dictionary size
Output: p: the predicted class labels of the p new

instances
{training step:}
1: Normalize each training instance to have unit l2

norm.

2: Learn dictionary inner product ATA and sparse
coefficient matrix Y of training instances by Algorithm 4.

3: Train a classifier f (θ) using Y (in the feature space
spanned by columns of A).

{prediction step:}
1: Normalize each new instance to have unit l2 norm.
2: Obtain the sparse coefficient matrix X of the new

instances by solving Equation (27), or (28).
3: Predict the class labels of X using the classifier f (θ)

learned in the training phase.

Kernel extensions
For Gaussian dictionary prior, the l1LS based kernel dic-
tionary learning and sparse coding are expressed in the
following, respectively:

min
Aφ ,Y

1
2

‖ φ(D) − AφY ‖2F +
α

2
trace(AT

φAφ) + λ ‖ Y‖1, (43)

min
X

1
2

‖ φ(B) − AφX ‖2F +λ ‖ X‖1,

where f (·) is a mapping function. Equations (30), (31),
(33), (34), (35) and their sparse coding models can be
kernelized analogically. As we have mentioned that the
optimizations of the six dictionary learning models, only
involves inner products of instances. Thus, we can easily
obtain their kernel extensions by replacing the inner pro-
ducts with kernel matrices. Hereafter, if dictionary learn-
ing is employed in sparse representation, then prefix “DL”
is used before “l1LS”, “NNLS”, and “l1NNLS”. If kernel
function other than the linear kernel is used in dictionary
learning, then prefix “KDL” is added before them.

Computational experiments
Two high-throughput biological data, including a microar-
ray gene expression data set and a protein mass spectro-
metry data set, are used to test the performance of our
methods. The microarray data set is a collection of gene
expression profiles of breast cancer subtypes [24]. This
data set includes 158 tumor samples from five subtypes
measured on 13582 genes. The mass spectrometry data
set is composed of 332 samples from normal class and
prostate cancer class [25]. Each sample has 15154 features,
that is the mass-to-charge ratios. Our experiments are
separated into two parts. The performance of sparse cod-
ing for direct classification is first investigated with respect
to accuracy and running time. Then our dimension reduc-
tion techniques using dictionary learning are tested.

Sparse coding for direct classification
When dictionary learning was not involved, the diction-
ary was “lazily” composed by all the training instances
available. In our experiment, the active-set optimization
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methods for l1LS, NNLS, and l1NNLS were tested. The
weightedK-NN rule andNS rule, mentioned in Algorithm 1,
were compared. We set K in the K-NN rule to the num-
ber of all training instances, which is an extreme case as
opposite to the NN rule. Linear and radial basis func-
tion (RBF) kernels were employed. We compared our
active-set algorithms with the interior-point [22] method
and proximal [23] method for l1LS sparse coding
(abbreviated by l1LS-IP and l1LS-PX). Benchmark classi-
fiers, including k-NN and SVM using RBF kernel, were
compared. We employed four-fold cross-validation to
partition a data set into training sets and test sets. All
the classifiers ran on the same training and test splits
for fair comparison. We performed 20 runs of cross-
validation and recorded the averages and standard
deviations. Line or grid search was used to select the
parameters of a classifiers.
The average accuracies of all classifiers with the corre-

sponding standard deviations on both data sets are com-
pared in Figure 1, from which we have four observations.
First, the weighted K-NN rule obtained comparable
accuracies with the NS rule. The advantage of the K-NN
rule over the NS rule is that the former predicts the class
labels based on the sparse coefficient vector solely, while
the later has to use the training data to compute regression

residuals. Therefore the K-NN rule is more efficient and
should be preferred. Second, on the Prostate data, the
sparse coding method l1LS and Kl1LS achieved the best
accuracy. This convinces us that sparse coding based classi-
fiers can be very effective for classifying high-throughput
biological data. Third, the non-negative models including
NNLS, l1NNLS and their kernel extensions achieved com-
petitive accuracies with the state-of-the-art SVM on both
data set. Fourth, the l1LS sparse coding using our active-set
algorithm had the same accuracies as that using the inter-
ior-point algorithm and proximal algorithm on Breast data.
But on Prostate data, the proximal method yielded a worse
accuracy. This implies that our active-set method con-
verges to the global minima as the interior-point method,
while performance may be deteriorated by the approximate
solution obtained by the proximal method in practice.
The mean running time (in second) of cross-validation

are shown in Figure 2. For better comparison, logarithm
of base two was taken on the results. First of all, we can
clearly see that the interior-point method is very slow for
the l1LS sparse coding. Second, our active-set method is
more efficient than the proximal method on Breast data.
This is because i) active-set methods are usually the fast-
est ones for quadratic and linear programmes of small
and median size; and ii) expensive computations, like

Figure 1 Mean accuracies and standard deviations of sparse coding and benchmark methods.
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solving systems of linear equations, can be shared in
the active-set method. Third, NNLS and l1NNLS have
the same time-complexity. This is reasonable, because
both can be formulated to NNQP problem. These non-
negative models are much simpler and faster than the
non-smooth l1LS model. Hence, if similar performance
can be obtained by l1LS and the non-negative models in
an application, we should give preference to NNLS and
l1NNLS.

Dictionary-learning for feature extraction
The performance of various dictionary learning models
with linear and RBF kernels were investigated on both
Breast and Prostate data sets. The Gaussian-prior based
and uniform-prior based dictionary learning models were
also compared. Again, our active-set dictionary learning
was compared with the interior-point [22] method and
proximal method [23]. The semi-NMF based on multipli-
cative update rules [26] is also included in the competition.
As in the previous experiment, four-fold cross-validation
was used. All methods ran on the same splits of training
and test sets. We performed 20 runs of cross-validation for
reliable comparison. After feature extraction by using dic-
tionary learning on the training set, linear SVM classifier
was learned on the reduced training set and used to predict
the class labels of test instances.

In Figure 3, we show the mean accuracy and standard
deviation of 20 results for each method. First, we can
see that the models with Gaussian prior on dictionary
atoms obtained similar accuracies as the uniform prior.
Second, with the comparison to sparse coding methods
on Breast data as given Figure 1, we can see that dic-
tionary learning increases the prediction accuracy.
Third, from the comparison of Figures 3 and 1, we find
that the dictionary learning based methods - DL-NNLS
and DL-l1NNLS, obtained similar accuracies as the
sparse coding methods - NNLS and l1NNLS. This con-
vinces us that dictionary learning is a promising feature
extraction technique for high-dimensional biological
data. On Prostate data, we can also find that the accuracy
obtained by DL-l1LS is slightly lower than l1LS. This is
may be because the dictionary learning is unsupervised.
Fourth, using the model parameters, DL-l1LS using
active-set algorithm obtained higher accuracy than DL-
l1LS-IP and DL-l1LS-PX on Prostate data. The accuracy
of DL-l1LS is also slightly higher than that of DL-l1LS-IP
on Breast data. Furthermore, the non-negative DL-NNLS
yielded the same performance as the well-known semi-
NMF, while further corroborates the satisfactory per-
formance of our dictionary learning framework. Finally,
the kernel dictionary learning models achieved similar
performance as their linear counterparts. We believe that

Figure 2 Log2 computing time of sparse coding and benchmark methods.
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the accuracy could be further improved by a suitably
selected kernel.
We compare the mean computing time of all the feature

extraction methods in Figure 4. First, we can see that
DL-l1LS using active-set algorithm is much more efficient
than DL-l1LS-IP, DL-l1LS-PX, and semi-NMF using multi-
plicative update rules. Second, the non-negative dictionary
learning models are more efficient than the l1-regularized
models. Therefore as in the sparse coding method, priority
should be given to the non-negative models when
attempting to use dictionary learning in an application.

Conclusions
In this study, l1-regularized and non-negative sparse repre-
sentation models are comprehensively studied for the clas-
sification of high-dimensional biological data. We give a
Bayesian treatment to the models. We prove that the
sparse coding and dictionary learning models are in fact
equivalent to MAP estimations. We use different priors on
the sparse coefficient vector and the dictionary atoms,
which lead to various sparse representation models. We
propose parallel active-set algorithms to optimize the
sparse coding models, and propose a generic framework
for dictionary learning. We reveal that the sparse represen-
tation models only use inner products of instances. Using

this dimension-free property, we can easily extend these
models to kernel versions. With the comparison with
existing models for high-dimensional data, it is shown that
our techniques are very efficient. Furthermore, our
approaches obtained comparable or higher accuracies. In
order to promote the research of sparse representation in
bioinformatics, the MATLAB implementation of the
sparse representation methods discussed in this paper can
be downloaded at [27].
Our Bayesian treatment may inspire the readers to try

other prior distributions in order to design new sparse
representation models. It also helps to discover the simi-
larity and difference between sparse representation and
other dimension reduction techniques. Our kernel ver-
sions can also be used to classify tensor data where an
observation is not a vector but a matrix or tensor [28].
They can also be applied in the biomedical text mining
and interaction/relational data where only the similarities
between instances are known.
We will apply our technique to other high-throughput

data, such as microarray epigenomic data, gene copy num-
ber profiles, and sequence data. We will impose both
sparse-inducing prior on dictionary atoms and coefficients.
Inspired by Bayesian factor analysis, we will investigate the
variable selection methods using sparse dictionary. The

Figure 3 Mean accuracies and standard deviations of dictionary learning methods.
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sparse dictionary analysis would help us to uncover the
biological patterns hidden in the high-dimensional biologi-
cal data. Furthermore, combining Bayesian sparse repre-
sentation and Bayesian regression leads to Bayesian sparse
representation regression model, which is very helpful for
designing supervised dictionary learning. Finally we should
mention that we are working on a decomposition method
for sparse coding which is efficient on large-scale biologi-
cal data where there are at least thousands of samples.
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