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Abstract

Background: Pattern mining for biological sequences is an important problem in bioinformatics and
computational biology. Biological data mining yield impact in diverse biological fields, such as discovery of
co-occurring biosequences, which is important for biological data analyses. The approaches of mining sequential
patterns can discover all-length motifs of biological sequences. Nevertheless, traditional approaches of mining
sequential patterns inefficiently mine DNA and protein data since the data have fewer letters and lengthy
sequences. Furthermore, gap constraints are important in computational biology since they cope with irrelative
regions, which are not conserved in evolution of biological sequences.

Results: We devise an approach to efficiently mine sequential patterns (motifs) with gap constraints in biological
sequences. The approach is the Depth-First Spelling algorithm for mining sequential patterns of biological
sequences with Gap constraints (termed DFSG).

Conclusions: PrefixSpan is one of the most efficient methods in traditional approaches of mining sequential
patterns, and it is the basis of GenPrefixSpan. GenPrefixSpan is an approach built on PrefixSpan with gap constraints,
and therefore we compare DFSG with GenPrefixSpan. In the experimental results, DFSG mines biological sequences
much faster than GenPrefixSpan.

Background
Pattern mining has numerous applications, such as pur-
chasing pattern mining, biological pattern mining, and
Web log pattern mining. Therefore the academic com-
munity has devised useful methods to mine patterns, e.g.,
mining traditional sequential patterns [1-4], maximal
sequential patterns [5], closed sequential patterns [6],
sequential patterns of data streams [7], incremental
sequential patterns [8], and progressive sequential pat-
terns [9]. Traditional sequential pattern mining methods
discover general sequential patterns, which can be
applied to various constraints. The methods of mining
traditional sequential patterns have two famous types of
algorithms from technical view. The two types are
apriori-based methods [1,2] and projection-based pattern

growth algorithms [3,4]. The apriori-based methods com-
bine items into candidate patterns, and then the methods
validate the patterns. The projection-based pattern
growth algorithms scan all sequences and project pat-
terns recursively. The data formats of traditional methods
are divided into horizontal data formats and vertical data
formats.
Traditional sequential pattern mining methods dis-

cover 2l subsequences of a sequential pattern with length
l. The numbers of subsequences for a sequential pattern
are too large in traditional mining methods, and there-
fore the maximal sequential pattern mining method [5] is
proposed to efficiently identify maximal sequential pat-
terns, which have no frequent supersequences. Another
alternative is to mine closed sequential patterns [6],
which patterns do not have any frequent supersequences
with the same occurrence frequency. The closed sequen-
tial patterns not only largely reduce the number of
reported sequential patterns, but also preserve the
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expressive power of traditional mining algorithms since
the subsequences of a closed sequential pattern are easily
derived. Mining sequential patterns of data streams [7] is
in a different environment and has some additional con-
straints, such as strictly restricted memory, continuously
identified sequential patterns, and a linear time
execution.
Incremental databases are formed with newly added

sequences. The incremental sequential pattern mining
algorithm [8] is devised to efficiently mine incremental
databases since many real data grow incrementally. Most
users are usually interested in recent data, and therefore
the progressive sequential pattern mining algorithm [9]
generates sequential patterns in a period of interest. The
method can find newly arriving sequential patterns and
discard obsolete sequential patterns. Data mining tech-
nology has been used in bioinformatics domain. For
example, temporal pattern mining techniques are used to
mine predictive and non-spurious patterns [10]. Asso-
ciated functional subgraphs are discovered by a pattern
mining method [11] in cancer protein-protein interaction
networks. It is increasingly important to develop
approaches for efficient biological data mining since bio-
logical sequences are now in widespread use in the field
of bioinformatics.
Some important research directions for data mining in

bioinformatics are discovery of co-occurring biological
sequences, effectively classifying biological sequences,
and clustering biological sequences [12-14]. In molecu-
lar biology, the motifs are functional significance and
have specific structures which are mined from unaligned
biological sequences. Mining sequential patterns (motifs)
promote identifying co-occurring biological sequences
and discovering relationships in DNA or protein data
[15,16]. In bioinformatics domain, mining sequential
patterns (motifs) have shown the usefulness, such as
classification of biological sequences, prediction of tran-
scription factor binding sites, recognition of protein
folds, and identification of hot regions in protein-protein
interactions.
The problems of mining sequential patterns correlate

closely with some traditional problems of computational
biology [17-20], such as the problems of motif finding
and those of sequence alignment. In the field of biology,
biological sequences conserve sequential patterns for
long evolution, which may be critical functions. The
2PDF approach [21] first proposed to mine sequential
patterns of biological sequences, but a large number of
patterns were generated, and gap constraints were not
coped. DFSP [22] is a general model of mining sequen-
tial patterns for biological sequences, but it did not cope
with gap constraints either. The gap constraints of
TEIRESIAS algorithm [23] and SPLASH [24] are rigid.
The TEIRESIAS algorithm has two phases. The first

phase is the scanning, and the second phase is the con-
volution. In the scanning phase, TEIRESIAS generates
all <L, W> patterns, which are at least k support. L is
the number of least residues, and W is the length of pat-
terns. In the convolution phase, TEIRESIAS constructs
maximal patterns from <L, W> patterns. SPLASH is
another algorithm with the rigid gap constraints.
SPLASH first builds a seed set, and then extends pat-
terns recursively. All the final patterns satisfy the density
constraint. The density constraint denotes that all sub-
strings of a pattern have length l0 and at least k0 full
characters.
Next, we briefly introduce the 2PDF method. New

and different types of patterns are generated by the
2PDF method. The patterns have the form “P1*P2*...
*Pk*...*Pn-1*Pn.” Each “Pi“ denotes a frequent segment, in
contrast to the complete set of patterns in traditional
sequential pattern mining problems. A frequent seg-
ment represents a segment that is longer than MinLen
(minimum segment length). The arbitrary lengths of
items or gaps are represented by one symbol “*”. They
extract segments from all sequences by a generalized
suffix tree. To generate the pattern tree in the 2PDF
method, the segment tree (composed of the segments)
is used. The method mines the complete set of sequen-
tial patterns in only setting MinLen = 1 for the 2PDF
method. The complete set of all-length sequential pat-
terns means the complete set of sequential patterns.
The complete set of length 1 sequential patterns in
DNA sequences may be {<A>, <T>, <C>, <G>}. When
MinLen = 1, the segment tree in the 2PDF method is
too large. A combinatorial method generated the pat-
tern tree in the method. Thus, too many patterns (all
combinations of the “*” position) are generated by these
techniques. For example, the 2PDF method may gener-
ate the patterns “abc*d,” “ab*cd,” “a*bcd,” “ab*c*d,”
“a*bc*d,” “a*b*cd,” and “a*b*c*d” if the DFSG [25] or
GenPrefixSpan [26] merely generates the pattern
“a*b*c*d” (without limitation of gap constraints). The
2PDF method mines too many patterns for biological
sequences, which are shown in this example.
The traditional algorithms of mining sequential pat-

terns [1-4] cope with a large number of items and short
sequence lengths. Nevertheless, two diverse characteris-
tics are in DNA and protein data. First, the alphabet of
DNA data are made up of four letters, and that of pro-
tein data are made up of twenty letters. Second, the
DNA and protein data usually have hundreds or thou-
sands of the sequence lengths. Accordingly, traditional
approaches of mining sequential patterns difficultly cope
with small alphabets and lengthy sequences of biological
sequences. Consequently, traditional algorithms are inef-
fective for mining biological sequences. Projection-based
pattern growth algorithms [3,4] are used to process long
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sequences in traditional sequential pattern mining, but
they require an extensive running time because they
need to construct and scan corresponding projected
databases numerous times to generate long sequential
patterns. Another type of algorithm, apriori-based meth-
ods [1,2], are frequently used in traditional sequential
pattern mining, but they also have a long processing
time. Moreover, traditional approaches suit to a larger
number of items and brief sequences, such as supermar-
ket transactions; accordingly, the traditional approaches
inefficiently cope with biological data.
A novel method, the Depth-First Spelling algorithm for

mining sequential patterns (motifs) with Gap constraints
in biological sequences (termed DFSG [25]), is devised
in this work. This paper is mainly added explanations of
gap constraints, explanations of various sequential pat-
tern mining approaches, related works for biological
sequences, explanations of projection-based pattern
growth algorithms, explanations of the counting matrix
techniques for the gap constraints, explanations of Gen-
PrefixSpan, explanations of how to gain our real data,
more summaries for this work, and references of related
works for biological sequences and rewritten from the
proceedings version of our article. Gap constraints are
contained in DFSG, which is a generalization approach.
The distance limitation between two separate letters of
a sequence is a gap constraint. The gap constraint suits
to the data features with fewer letters and lengthy
sequences, such as biological sequences. The unrelated
sections of the biological evolution are skipped by the
gap constraints. For the gap constraints, a maximal
number of the distance limitation in the separate letters
can be assigned by the user. We devise the DFSG
approach to leave traditional methods of mining sequen-
tial patterns, and struggles with the problems of the
long runtime. DFSG need briefer runtime to execute to
discover motifs of biological data, compared to tradi-
tional approaches of mining sequential patterns. The
DFSG approach was evaluated by a large number of
experiments. First, DFSG and GenPrefixSpan [26] were
utilized to cope with real and simulated DNA data.
Afterward the executing time of the two approaches was
contrasted by using increased values of gap constraints,
synthetic protein data, and diversified variables in syn-
thetic biological data. In the experimental results, the
runtime of the DFSG approach is superior to that of
GenPrefixSpan in biological data, and DFSG is more
scalable.
Some reasons are accounted for the efficient runtime

and scalability of the DFSG method. We compare the
DFSG approach with GenPrefixSpan, which is a projec-
tion-based method of the pattern growth. Corresponding
projected databases are not needed to build by the DFSG
approach unlike traditional projection-based methods of

pattern growth; accordingly, the databases are not needed
to scan by DFSG. Then, DFSG saves recursive runtime of
projection and scan. As shown in Figure 1, the executing
steps of GenPrefixSpan are partially exhibited in an
example. GenPrefixSpan must first scan all sequences to
generate frequent items {“a”,“t”,“c”,“g”} in biological
sequences {X: atacgat, Y: atcacga, Z: taacgca} with the
minimum support l equal to 3 and the gap constraint
equal to 3 (Figure 1). Then, the projected databases for
“a”, “t”, “c”, and “g” are generated individually, as {tacgat,
cgat, t, tcacga, cga, acgca, cgca}, {acgat, cacga, aacgca},
{gat, acga, ga, gca, a}, and {at, a, ca}, respectively. All the
sequences in the projected database of “a” are scanned by
GenPrefixSpan to generate frequent items {“a”,“c”,“g”}
after projecting projected database for “a”, and then pro-
jected databases for “aa,” “ac,” and “ag” are generated
individually. The GenPrefixSpan approach projects the
corresponding databases recursively until it can not gen-
erate any frequent letters.

Methods
DFSG algorithm
This section introduces the Depth-First Spelling algo-
rithm for Gapped sequential pattern mining of biological
sequences (referred to as DFSG). DFSG is designed for
efficient mining sequential patterns of biological
sequences with gap constraints. The gap constraints are
critical and have numerous applications in bioinfor-
matics. A counting matrix Cl is proposed to cope with
gap constraints and it records each position of a latest
item for a gapped sequential pattern in each sequence.
The latest item positions in the counting matrix Cl must
satisfy the gap constraint. Each position of the latest item
for the gapped sequential pattern is recorded in Cl since
each position of the latest item may extend to a next
sequential pattern with the gap constraint. If the count-
ing matrix records only one position of the latest item in
each sequence, the other positions of the latest item may
miss chances to contribute support counts for the next
sequential pattern with the gap constraint. If the situation
causes the support counts of the next gapped sequential
pattern to be less than the minimum support counts, the
next gapped sequential pattern will not to be generated,
and the subsequent gapped sequential patterns will not
be discovered either.
All positions of the latest item for a sequence in Cl can

contribute only one support count to the support counts
of the next gapped sequential pattern since a sequence can
contribute only one support count to a pattern. If each
position of the latest item for a sequence in Cl can contri-
bute one support count to the next gapped sequential pat-
tern, the support counts of the pattern will be larger, and
this situation may result in wrong reported patterns. A
sequence can not contribute multiple support counts to a
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sequential pattern by the definition. In the following, we
introduce the execution of the DFSG approach. DFSG has
two performed procedures. First, the three-dimensional
indices are built by scanning the provided data set once

for the DFSG approach. Second, DFSG-Generation pro-
duces gapped sequential patterns for motifs, as shown in
Figure 2. The spelling manner of candidate-gapped pat-
terns and the verification of gapped sequential patterns are

Figure 1 A partial example of the GenPrefixSpan process.

Liao and Chen BMC Systems Biology 2013, 7(Suppl 4):S7
http://www.biomedcentral.com/1752-0509/7/S4/S7

Page 4 of 13



included in the DFSG-Generation operation. Direct access
and binary search with the three-dimensional indices are
contained in the procedure of verification. The prefix of
each item is depended by the succeeding appearance point
of the item for each motif-producing procedure.

Therefore, we designed the counting matrix and the three-
dimensional indices for the DFSG-Generation operation.
The counting matrix cannot store the succeeding appear-
ance point ahead since there are too large and unknown
feasible points for the succeeding appearance.

Figure 2 The DFSG-Generation Algorithm.
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Definition 1. The set of all items is E, which equals
{e1, e2, ..., eA}. It simulates DNA sequence when A
equals four. Furthermore, it simulates protein sequence
when A equals twenty. Let a sequence s be the ordered
list of items. We denote s = {s1s2s3...sn}, where si is an
item. Biological sequences usually have long lengths,
and an identical item can occur many times in a
sequence.
Definition 2. We denoted a sequence u = {u1u2u3...

uq}, where ui is an item. A sequence s contains u if
{u1u2u3...uq} is sequentially mapped to {s1s2s3...sn} (q≦n).
One subsequence of s is u in the above condition.
Definition 3. The support count of a pattern a is the

number of sequences, which contain the pattern a in
the database. If the support of pattern a is larger than
the minimum support, this pattern is called a gapped
motif. In general, the problem of mining gapped motifs
does not confine any categories of biological sequences.
Definition 4. We denote a motif p = {p1p2p3...pm},

where pm is an item. If a sequence s can contribute the
support to the motif p, this motif is one subsequence of
the sequence s. The item si of the sequence is mapped
by pj, and the item sk of the sequence is mapped by pj+1.
If the sk position is less than the si position plus the gap
constraint value, the motif p conforms to the gap con-
straint G.
Definition 5. The three-dimensional indices are the

position number Wk, the sequence number Ej, and the
item number Ai. The item number Ai, which appears in
the sequence number Ej of the biological database is the
position number Wk.
Definition 6. The counting matrix Cl has multiple posi-

tion numbers in each sequence number Ej for the proce-
dure of generating gapped motifs. Let a=<t1t2...tn-1>be a
gapped motif with the suffix b in the database that
b=<t1t2...tn-1tn>is a sequence with the prefix a. The multi-
ple position numbers form the counting matrix Cl of
the suffix b. The position number Wk is determined by
the item <tn>in each sequence number Ej of the three-
dimensional indices. The position number Wk of the suffix
b must be greater than the counting matrix Cl of the pre-
fix a. The updated position numbers of the present letter
in sequences conform to the gap constraint G for the
gapped motif, and they are recorded by the counting
matrix Cl.
Definition 7. The support of the suffix b is the num-

ber of rows, which have at least one value in the count-
ing matrix Cl of b. If the minimum support is less than
the support g of b, the sequence b is certainly a gapped
motif.

An example of DFSG
The following is a demonstrated example of performing
the DFSG approach. A set of items {A, T, C, G} for the

biological sequence database D {X: ATACGAT, Y:
ATCACGA, Z: TAACGCA} is mined by using the DFSG
algorithm. For the DFSG example, the minimum sup-
port l is equal to 3, and the gap constraint is also equal
to 3. The performed procedures are in the following
context. The three-dimensional indices are constructed
by using the DFSG approach, which reads the biological
sequence database once in the first procedure. The
DFSG approach reads the biological sequence S, and
puts the position Wk of the read item Ai into the three-
dimensional indices. According to Figure 3, the DFSG-
Generation operation discovers gapped motifs of biological
sequences in the second procedure. The DFSG approach
spells item I to generate candidate-gapped motifs a for
biological sequences in a depth-first manner. The support
counts of candidate-gapped motifs are verified by using
the counting matrix Cl and the three-dimensional indices.
If the support counts of candidate-gapped motifs are
greater than the minimum support count, the recursive
execution of the procedure is continued, and the motifs
are gapped motifs of biological sequences.
The counting matrix Cl of “C” is {(4),(3,5),(4,6)} since

“C” occurs in the position (4) of sequence X, the posi-
tions (3,5) of sequence Y, and the positions (4,6) of
sequence Z. In the initial stage, all the positions of “C”
are in the counting matrix Cl of “C” and satisfy the gap
constraint. As shown in Figure 3, the candidate-gapped
motif “C*A” is spelt by the DFSG approach in a depth-
first manner. DFSG searches the positions in dimension
“A“ of the three-dimensional indices to detect minimum
positions that are greater than the positions in the
counting matrix and satisfy the gap constraint. The cur-
rent counting matrix {(6),(4,7),(7)} is greater than the
former counting matrix {(4),(3,5),(4,6)}, and all the posi-
tions in the new Cl satisfy the gap constraint 3 since the
position (6) is less than (9), the positions (4,7) is less
than (8,10), and the position (7) is less than (9).
The candidate-gapped motif “C*A” is certainly a

gapped motif since the support count 3 satisfies the
minimum support count. A support is regarded to satisfy
a minimum support when the support is greater than or
equal to the minimum support. The support of gapped
pattern “C*A” is 3 since the position (6) of sequence X,
the positions (4,7) of sequence Y, and the position (7) of
sequence Z contribute one support count to the gapped
pattern individually. DFSG continues to depth-first spell
and verify candidate motifs. Then, we observe another
candidate motif “A*T.” The positions in the “T” dimen-
sion of the indices are searched. The support count is 2
since the updated counting matrix is {(2,7),(2),(-)}.
Therefore, the candidate-gapped motif “A*T” is certainly
not a gapped motif, and the subsequent candidate-
gapped motifs of this failed candidate “A*T” are not
continued to generate.
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Results and discussion
Design of experiments
The DFSG performance was evaluated with a number of
experiments. In the first part of the experiments, we
compared the performance of DFSG with that of Gen-
PrefixSpan in synthetic and real DNA data. GenPrefix-
Span is a generalized method of PrefixSpan, which uses
the projected database approach to recursively construct
sequential patterns and is an efficient algorithm in tradi-
tional sequential pattern mining. GenPrefixSpan stores
all subsequences of each frequent item occurrence in
projected databases to cope with gap constraints. We
acquired real DNA data from the National Center for
Biotechnology Information (NCBI), which is national
resource funded by U.S. government. In the second part
of the experiments, we tested DFSG and GenPrefixSpan
with gap constraints, number of sequences, length of
sequences, and simulated protein sequences. The scal-
ability of the DFSG algorithm was experimented, too.
The total experiments were conducted on a 3.20 GHz
Pentium(R) 4 PC with 1 GB of RAM, and Microsoft
Windows XP Professional (2002) was the operating sys-
tem. In order to make fair comparisons, the two pro-
grams were written in the same environment, Microsoft
Visual C++ 6.0.

Synthetic and real DNA data
DFSG and GenPrefixSpan were evaluated by using real
DNA data, which are acquired from NCBI. Variables
used in the experiments are the length of a sequence L,
the number of letters A, the value of gap constraint G,
the minimum support S, and the number of sequences N.
The users can access numerous public databases of mole-
cular biology from NCBI website. For example, we intro-
duce how to gain our real data (A = 4, L = 35, and N =
1000). First, we access NCBI website, http://www.ncbi.
nlm.nih.gov. Second, the nucleotide database is selected.
Third, the query is “sequence AND 35:35[Sequence
Length]”. Fourth, the first one thousand sequences are
crawled and parsed to form our data set.
The value of A is four for synthetic and real DNA data

in the experiments of DNA data. Additionally, the values
of L are twenty-five, thirty, and thirty-five in the experi-
ments. In Figures 4a-c, DFSG is superior to GenPrefix-
Span for real DNA data. In the experiments, the values of
gap constraint are ten, seven, and five; and the number of
sequences is one thousand. In the figures, the runtime of
two algorithms is shown on the vertical axis, and the
minimum support is shown on the horizontal axis. The
runtime rate is that the runtime of GenPrefixSpan
divided by DFSG’s runtime. The runtime rates are 8.68,

Figure 3 An example of partial DFSG-Generation with the counting matrix.
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11.27, 14.77, 20.94, and 30.18 for real DNA data, as
shown in Figure 4c. The rate grows when the minimum
support gets larger. This means that DFSG has more
superior than GenPrefixSpan for high support thresholds
in mining biological sequences.

The simulated DNA data, which is used in the succes-
sive experiments, followed the reference [1]. The experi-
mental results of the synthetic DNA data show that DFSG
is superior to GenPrefixSpan, as shown in Figures 5a-c.
We simulated the letters for DNA data in the experiments.

Figure 4 Comparison of execution time based on real DNA sequences. a Execution Time (L = 25, A = 4, G = 10, and N=1000). b Execution
Time (L = 30, A = 4, G = 7, and N=1000). c Execution Time (L = 35, A = 4, G = 5, and N=1000).
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The number of letters is four; the lengths of the sequences
are twenty-five, thirty, and thirty-five; the value of the gap
constraint is five; and the number of sequences is three
thousand. According to Figure 5c, the runtime rates are

14.04, 22.88, 28.31, 41.41, and 68.93 for synthetic DNA
data. The rate grows invariably when the minimum sup-
port becomes larger. The performance of DFSG for the
real DNA data is the same as these for simulated DNA

Figure 5 Comparison of the execution time based on synthetic DNA sequences. a Execution Time (L = 25, A = 4, G = 5, and N=3000).
b Execution Time (L = 30, A = 4, G = 5, and N=3000). c Execution Time (L = 35, A = 4, G = 5, and N=3000).
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data in the above experiments. This situation confirms
that DFSG preserves efficiency on real biological data, and
simulated sequences can validate the performance of
DFSG correctly.

Gap constraints, simulated protein sequences, number of
sequences, length of sequences, and scalability
DFSG performance and the performance of GenPrefix-
Span are compared by using gap constraints, number of
sequences, length of sequences, and simulated protein
sequences. Scalability of the DFSG algorithm is also
tested. We raise the value of the gap constraint G, and
the number of letters A equals four steadily for simu-
lated DNA data in the experiments of gap constraints.
DFSG is superior to GenPrefixSpan with variable gap
constraints according to Figure 6a-d. In the experiments,
the lengths of the sequences are forty and fifty; and the
numbers of sequences are one thousand and three thou-
sand. The execution time of DFSG and that of GenPre-
fixSpan is raised since the probability of finding
subsequent frequent items is enhanced, and the number
of sequential patterns is increased when we increase the
value of the gap constraint G.
DFSG is superior to GenPrefixSpan with raised N

according to Figure 7. In the experiments, the numbers
of sequences are four thousand, five thousand, six thou-
sand, seven thousand, eight thousand, and nine thou-
sand; the number of synthetic DNA data is four; the
length of the sequences is thirty; the minimum support
is zero point nine; and the value of the gap constraint is
three. Additionally, DFSG is more scalable than GenPre-
fixSpan, although GenPrefixSpan is scalable [26]. The
runtimes of DFSG seem to be a straight line in Figure 7
as a result of the proportional scale. DFSG runtimes of
Figure 7 are 2.781 s (four thousand sequences), 2.890 s
(five thousand sequences), 2.937 s (six thousand
sequences), 3.015 s (seven thousand sequences), 3.125 s
(eight thousand sequences), and 3.187 s (nine thousand
sequences). The variations of DFSG runtimes are not
obvious in Figure 7. Furthermore, the runtime rates are
37.12, 55.38, 77.24, 102.32, 128.77, and 160.72. The run-
time rate rises when the number of sequences gets lar-
ger. This experiment confirms that DFSG is more
efficient than GenPrefixSpan when the number of
sequences is increased.
According to Figure 8, DFSG outperforms GenPrefix-

Span with increased L. The lengths of the sequences are
forty-five, forty-six, forty-seven, forty-eight, forty-nine,
and fifty; the number of letters is four; the minimum
support is zero point nine; the value of the gap con-
straint is five; and the number of sequences is one

Figure 6 Comparison of the execution time based on synthetic
DNA sequences for the effect of length of gaps. a Execution
Time (L = 40, A = 4, and N=1000). b Execution Time (L = 40, A = 4,
and N=3000). c Execution Time (L = 50, A = 4, and N=1000). d
Execution Time (L = 50, A = 4, and N=3000).
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thousand in the experiments. The DFSG runtime of
Figure 8 rises steadily when the length of the sequences
L is increased that is compared to GenPrefixSpan. As a
result of the proportional scale, the runtimes of DFSG
for this figure seem to be a straight line more if the
maximum value of the sequence length is greater than
fifty. Additionally, the results of the experiment have
already shown that DFSG significantly outperforms Gen-
PrefixSpan as L increases. In the following, we use a dif-
ferent alphabet size to test the execution time of DFSG
and that of GenPrefixSpan. According to Figure 9,
DFSG mines much faster than GenPrefixSpan when the
number of letters A equals twenty for synthetic protein
data. The length of the sequences is one hundred; the
number of sequences is five hundred; and the value of
the gap constraint is twenty in the experiment of syn-
thetic protein data.

The number of sequences N is added from one hun-
dred kilos to five hundred kilos to experiment with DFSG
scalability. In the experiment, the runtimes of DFSG are
36.218, 73.640, 108.390, 152.109, and 206.640 s, and the
numbers of sequences are one hundred kilos, two hun-
dred kilos, three hundred kilos, four hundred kilos, and
five hundred kilos, respectively. In the experimental
results, the execution time of DFSG is scalable when the
numbers of sequences get larger. The growth rate of
DFSG runtime is steady. This experiment confirms that
DFSG has the scalability for large biological data. In the
experiment, the number of letters for the synthetic DNA
data is four; the minimum support is zero point nine; the
value of the gap constraint is three; and the length of the
sequences is thirty. The total experiments show that
DFSG is superior to GenPrefixSpan in various features,
including synthetic DNA/protein data, real DNA data,

Figure 7 Comparison of the execution time based on synthetic DNA sequences for the effect of number of sequences. Execution Time
(L = 30, A = 4, G = 3, and S = 0.9).

Figure 8 Comparison of the execution time based on synthetic DNA sequences for the effect of length of sequences. Execution Time
(A = 4, N=1000, G = 5, and S = 0.9).
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length of sequences, number of sequences, and gap
constraints.

Conclusions
Mining sequential patterns of biological sequences is
important in computational biology. However, traditional
sequential pattern mining methods difficultly cope with
biological sequences whose sequence lengths are long,
and alphabets are small. Furthermore, gap constraints for
motif discovery are also important in computational biol-
ogy. Therefore, DFSG is proposed to efficiently mine
motifs of biological sequences with gap constraints.
DFSG can help biologists discover all-length motifs with
gap constraints, and when mining biological sequences,
DFSG is more efficient than GenPrefixSpan. In our future
works, we will devise efficient or effective algorithms to
help mine biological sequences.
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