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Abstract

The problem of predicting sets of components of heteromeric protein complexes is a challenging problem in
Systems Biology. There have been many tools proposed to predict those complexes. Among them, PPSampler, a
protein complex prediction algorithm based on the Metropolis-Hastings algorithm, is reported to outperform other
tools. In this work, we improve PPSampler by refining scoring functions and a proposal distribution used inside the
algorithm so that predicted clusters are more accurate as well as the resulting algorithm runs faster. The new
version is called PPSampler2. In computational experiments, PPSampler2 is shown to outperform other tools
including PPSampler. The F-measure score of PPSampler2 is 0.67, which is at least 26% higher than those of the
other tools. In addition, about 82% of the predicted clusters that are unmatched with any known complexes are
statistically significant on the biological process aspect of Gene Ontology. Furthermore, the running time is
reduced to twenty minutes, which is 1/24 of that of PPSampler.

Background

Protein complexes are essential molecular entities in the
cell because intrinsic functions of an individual protein
are often performed in the form of a protein complex.
Thus, it is helpful to identify all protein complexes of an
organism for elucidation of the molecular mechanisms
underlying biological processes. However, reliable pro-
tein complex purification experiments are rather labor-
ious and time-consuming. Thus it has been expected to
provide reliable candidates for true protein complexes
by computational prediction methods.

Most computational approaches to predict the compo-
nents of protein complexes are designed based on the
observation that densely connected subgraphs in a pro-
tein-protein interaction (PPI) network are often over-
lapped with some known protein complexes. One of the
differences among those methods is the search strategies
to find good clusters of proteins. For example, MCL [1]
is considered to be a clustering algorithm, in which clus-
ters are formed by repeatedly executing an inflation step
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and a random walk step. RRW [2] and NWE [3] execute
random walks with restarts and generate predicted pro-
tein clusters using the resulting stationary probabilities
of the random walks. Note that the stationary probabil-
ity from a protein to another which are both within a
densely connected subgraph is likely to be high.
COACH [4] finds extremely dense subgraphs which are
called cores, and predicts protein clusters by extending
cores with additional proteins out of the cores.

Our previous method, PPSampler [5], is designed
based on the Metropolis-Hastings algorithm, in which a
partition of all proteins is generated as a sample accord-
ing to the probability distribution which is specified by a
scoring function of a partition of all proteins. The entire
scoring function consists of the following three scoring
functions denoted by fi, f5, and f3. The main part of f; is
equivalent to the total sum of the PPI weights within
predicted clusters of size two or more. The second scor-
ing function of f, is designed based on the constraint
that the frequency of sizes of predicted clusters obeys a
power-law distribution. This constraint is derived from
the observation that the frequency of sizes of known
complexes obeys a power-law distribution in CYC2008
[6] and CORUM [7], which are databases of protein
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complexes of yeast and human, respectively. Thus f,
evaluates the difference between a given power-law dis-
tribution and the distribution of sizes of clusters in a
partition. The third scoring function of f; is the gap
between the number of proteins within predicted clus-
ters of size two or more and a target value of that num-
ber. It should be noted here that f, and f;3 can be
considered to be regularization terms to encourage
sparse structures (see, for example, [8] for sparse struc-
ture). PPSampler is reported to outperform other pre-
diction methods, including MCL, RRW, NWE, and
COACH, in our previous work [5]. Especially, the F-
measure score of PPSampler is 0.536, which is at least
30% better than those of the other methods.

In this paper, at first, we have improved the scoring
functions, fi, f5, and f3, of PPSampler in order to predict
protein complexes more accurately. The first scoring func-
tion of f1 is refined by replacing the sum of the weights of
PPIs within a cluster with a generalized density of the clus-
ter. The remaining scoring functions, f, and f3, are also
newly modeled, using Gaussian distributions. The result-
ing scoring functions are called g;, g>, and g, respectively.
Notice that g, and g3 are also regularization terms to
encourage sparse structures. Secondly, the new entire
scoring function is formulated as the negative of the sum
of g1, g, and g5 although that of PPSampler is the negative
of the product of f;, f5, and f;. Lastly, the proposal distribu-
tion, which proposes a candidate state given a current
state, is also improved to enable a more efficient random
walk over the states. Note that the second and third modi-
fications enable the algorithm to run faster.

The resulting method is called PPSampler2. Hereafter
PPSampler is called PPSamplerl to distinguish clearly
between it and PPSampler2. The F-measure score of
PPSampler2 is 26% higher than that of PPSamplerl. In
addition, about 82% of the predicted clusters that are
unmatched with any known complexes are statistically sig-
nificant on the biological process aspect of Gene Ontology.
Furthermore, the running time is drastically reduced from
eight hours to twenty minutes. Interestingly, it turns out
that the two new scoring functions of g; and g; make g,
the scoring function based on a power-law distribution,
unnecessary in the sense that, without g, PPSampler2
always returns almost the same results as with g,. This
would be due to the effect of the generalized density of g;.

Methods

Search by sampling

PPSampler2 is designed based on the Metropolis-Hast-
ings algorithm [9] (see Figure 1), which is a Markov
chain Monte Carlo (MCMC) method [10]. MCMC is
known as a class of algorithms for generating samples
from particular probability distributions. Suppose that f
(C) is a scoring function to be minimized, where C is a

Page 2 of 12

Input:
T, temperature parameter;
L, number of iterations;
Yy, initial state;
Q (C"|C), proposal distribution;
F1C), scoring function of a state C;
Output:
sequence of L states sampled;
Procedure:
C' = Cp; /* The current state is the initial state. */
for £ =1to L:
Let " be the candidate for the next state proposed according to Q(C'|C);
_P(E)R(CIc) FOY
P(C)Q(CC) T )
Let R be a real number chosen uniformly at random from [0, 1];
if 7 > R then C' = C";

where P(C') oc exp

Figure 1 Metropolis-Hastings algorithm. Let f(C) be a scoring
function of a state C whose optimal value is the minimum value of f.
The Metropolis-Hastings algorithm generates L random samples from
_f©

a probability distribution P (C) « exp ( T ) where T is a parameter

called temperature.

state in a domain of states, D. A target probability distri-
bution is determined from f{C) by the following way:

P(roexp(—f(f)),

where T is a temperature parameter. Note that there
exists the relationship that the higher the probability,
the lower the score. Thus, by sampling, a minimized
score and the corresponding state can be found. To
exploit the Metropolis-Hastings algorithm, in addition
to D and f{C), a proposal distribution, denoted by Q(C'|
C), which is a probability distribution of C' € D given C
€ D, should be also specified. The formulations of them
for PPSampler2 are given in the subsequent sections
after that of a PPI dataset.

Weighted protein-protein interaction network

A PPI network is often used as an input to protein com-
plex prediction tools. It can be defined as an undirected
graph, G = (V; E), where V is a set of proteins under con-
sideration, and E is a subset of V x V\ {{x, u}|u e V},
representing a set of PPIs. Notice that any self-interac-
tions, {u, u}, are excluded in E. Suppose that each PP, e,
has a weight, w(e) € R, representing the reliability of the
interaction of e. Note that the higher the weight of an
interaction, the more reliable the interaction. For a pair of
proteins, e, not in E, the weight of e is defined as w(e) = 0.

States

The domain of states we use here is the same as in [5],
which can be explained as follows. Let C be a partition
of V. Namely, C can be represented as

Vi,ci £ 0
s Cn g V Ulflfncl = V/
Vi j(#i), ciNei=0

C = Cl, «-.
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An element of C is called a cluster of proteins. All
partitions of V are states in D. In the subsequent sec-
tion, the formulation of the score of C is given explicitly.

Scoring functions
In our previous work [5], the entire scoring function,
which is denoted by f'(C) in this paper, for a partition
C is formulated as the negative of the product of three
different scoring functions, f1(C), f2(C), and f5(C), i.e., f'
(C) = —f1(C)-/5(C)-f3(C). These three scoring functions
are formulated as follows. The first scoring function of
fi is designed to return the total sum of the PPI weights
within predicted clusters of size two or more in C. The
second scoring function of f, evaluates the difference
between a given power-law distribution and the distribu-
tion of sizes of clusters in C. The third scoring function
of f3 is the gap between the number of proteins within
predicted clusters of size two or more in C and a target
value of that number.

The new entire scoring function, f{C), proposed in this
work is given as the negative of the sum of three new
scoring functions, g1(C), g2(C), and g5(C), ie.,

f(©O) = —(31(C) +&(C) +g(0).

As can be seen, fis changed from the product of three
terms in the previous work. The motivation is to increase
the acceptance rate of proposed states. For current and
candidate states, C and C’, the term of —-(AC") - {C)),
which is calculated in the Metropolis-Hastings algorithm,
can be expected to be higher than -(f'(C") - f'(C)) due
to the difference between the forms of fand f".

The three new scoring functions, g;(C), g2(C) and g3
(C), use the same source data as f1(C), f2(C) and f3(C),
respectively, but are refined in the following way.

Scoring function g,(C)

We define g1 (C) = ) _ 81 (c) where
0 iflc] = 1,

—00 else if |c| > N or
_ JuecVu(#u) ec,
gl (C) - W({u, U}) - 0/
w(w,v) otherwise,
u,v(Fu)ec \/|C|

where N is a parameter specifying the upper bound on
the size of a cluster in C. The above function, g(c), can
be interpreted as follows. If ¢ is of size one, g;(c) is set
to be zero. This means that ¢ has no influence to g;(C).
Next, g1(c) is negative infinity if the size of c is greater
than N, or if ¢ includes a protein which has no interac-
tions with the other proteins in c. In this case, P(C) goes
to zero. Otherwise, g;(c) is equal to the total sum of the
weights of all interactions within ¢ divided by the posi-
tive square root of the size of c.
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Note that the scoring function of the previous work
[5] corresponding to gi(c) is fi(c). The difference
between g;(c) and fi(c) appears only in the last case of
the three cases, in which the score of a cluster, c, is for-

mulated as ZW(#“)GCW
is furthermore divided by the factor of \/|c|, the result-
ing term is equivalent to the scoring function defined
w(u, v)

above, g1 (0) = Zu,v(#u)ec Vel

The new scoring function, g;(c), can be considered to
be a density measure. Actually, density measures are used
in many previous works to infer protein complexes. For
example, Wu et al. [4] uses a typical density measures

(4, v) in the previous work. If it

cl(c] —1
x/| I ; ), where x is the number of interactions

lel (lel = 1)
2

within ¢. Namely, its denominator, , is equiva-

lent to the possible maximum number of edges in a sub-
graph with |c| nodes. Note that because the PPI network
used in their work is supposed to be unweighted, the
numerator is just the number of edges in

c. However, it can be observed that the larger a clus-
ter, the relatively lower the value of the above measure.
Namely, the larger a cluster, the severer evaluation it
suffers. Then, Feng et al. [11] eased this peculiarity by

—1
adopting |c| as the denominator instead of el (|C:|Z ).

Namely, the resulting measure is In this work, in

X
lel
addition to the denominators mentioned above, which
are el (lel = 1) and |c|, more gradual functions, /||
and log, |c|, have also been evaluated. Then, it turns
out that /|c| and log, |c| give similar F-measure scores
which are higher than those of the others. Thus, /|| is
selected as the denominator in PPSampler2.

Scoring function g,(C)

The second scoring function, g,(C), evaluates how
much closer the relative frequency of clusters of a size
in C and a predefined target relative frequency of the
size, which is given as a parameter. We denote by y (i)
the relative frequency of clusters of size i in C for size i
=(2,3,..., N). In addition, we denote by (i) a pre-
defined target value of the relative frequency of clusters
of size i in C. Note that w(i) is set to be a power-law
function

1
N
Zj=21_y

where 7 is the power-law parameter and its default
value is set to be 2. This default value is an approxima-
tion of the value, 2.02, of the regression curve obtained
from the relative frequency of CYC2008 complexes of
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size i = (2, 3, ..., N ) by minimizing the sum of
squared errors at sizes i. The sum of the squared errors
is small (0.0014).

For a cluster size, i, wc(i) is evaluated by the normal
distribution of mean (i) and standard deviation o3,
which defined by the formula:

. N2
p(Ye @ ¥ (i), 02) o exp {— e v } -

2
202,1.

The joint probability of wc(2), wc(3), . . ., wc(N)
giVen l//(z), l//(g), ey I//(N) and O = (0-2,2, 0-2'3, ey 02’
~ ) is formulated as the product of the above N - 1
formulas:

N N -2
P(WC(Q)/¢c(3)/~~-,WC(N)W/(H)O(FIQXP[—WCO) v o)

i=2 203,
N N 12
) exp{—z(‘”c“)z Uzw M) ’
i=2 2,i
= exp {2 (O)}

where

N N )2
6@ -~ 3 W@ v @)
i=2

2
202,14

In this way, the function of g>(C) is derived (see Fig-
ure 2). Note that the term corresponding to the normal-
izing constant is omitted because it is a constant for any
C. In this work, 6}, is set to be 1000 x 1.17". This
implies that the larger a cluster, the more severely it is
evaluated in g.

Scoring function g3(C)

The third scoring function, g3(C), is also derived from a
normal distribution. The number of proteins within the
clusters of size two or more in C is denoted by s(C), i.e.,

s©= > .

ceCs.t. |c|>2

vel,

ORI

e

L
o 2 i N

Figure 2 Scoring function, g,(C). For each cluster size, i =2, 3,., N,
wc(i) is evaluated by the Gaussian distribution of mean (i) and
standard deviation o, which is shown sideways on the vertical line
of size i.
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Let A be a target value of s(C). The value of s(C) is
evaluated by the normal distribution of mean A and
standard deviation o,,

C) —1)?
(s (C)Ih 02) o exp{—(s( )P }
20;
= exp {g3 (C)}
where

(OREINE

2
20;

& (0 =~
In this work, 022 is set to be 10°.

Proposal distribution

A proposal distribution, Q(C’|C), provides the transi-
tion probability to a candidate state C'e D given a
current state C € D. The proposal distribution we use
here is obtained by improving that of PPSamplerl.
The differences between them will be pointed out
in the following explanation of our new proposal
distribution.

At first, a protein, u € V, is chosen uniformly at ran-
dom. Thus, the probability of choosing u is |\1,|.The ran-
domly chosen protein u is removed from the cluster
including « in C, and then the destination of u is deter-
mined by the following probabilistic procedure. As a
result, a conditional probability is associated with the
resulting state.

(i) With a constant probability 3, the chosen protein,
u, forms a new singleton cluster. The resulting state C’
has the following conditional probability

B

Q(CC) = -

(ii) Suppose that the chosen protein, i, is added to an
existing cluster in C, which is chosen probabilistically by
the following way. All the proteins v € V' \ {y} that
share interactions with u are sorted according to the
weights w({x, v}) in decreasing order. The ith protein in
the resulting list is denoted by v;. Namely, we have the
following relationship:

w({u, n) = wlu, ) = .. =w({y v}),

where d,, is the degree of u in the PPI network. Note
that in the proposal distribution of PPSamplerl, all
proteins v € V'\ {u} are sorted and used in the subse-
quent procedure. In the next step, the probability of
choosing a cluster, ¢ € C, is set to be the probability
proportional to

1
Z i2'

is.t.viec,{u,v}eE



Widita and Maruyama BMC Systems Biology 2013, 7(Suppl 6):S14
http://www.biomedcentral.com/1752-0509/7/56/514

Note that the term corresponding to i12 is 1 in PPSamplerl.
As a result, the resulting proposal distribution in this
case is

Q(CIC) o 1=5 > 12
2 i
is.t.viec,{uv;}eE

The value of 8 is set to be f = 1/100 as in [5].

Notice that the reduction of the running time of
PPSampler2 is realized by the combination of the two
factors. A factor is that the scoring function, f, is chan-
ged from the product of three terms to the sum of
them. Another is that the new proposal distribution pro-
poses states which are likely to have higher probabilities.

Initial state

The initial state is the same as that of PPSamplerl,
which is the following partition. Let # and v be the pair
of proteins with the highest PPI weight among all of the
given PPI weights. Then the cluster consisting only of u
and v is created. In addition to it, each of the remaining
proteins forms a singleton cluster. It is trivial that the
probability of this state is not zero.

Output of PPSampler2

PPSampler2 returns as output the state, C, with the
highest probability among all the states sampled. After
removing all the clusters of size one in C, the remaining
clusters are all treated as predicted complexes.

Matching statistics

Performance measures

To evaluate predicted clusters by known complexes,
three measures, precision, recall, and F-measure are
used. To use the three measures, a matching criterion
for two sets of proteins is required to determine
whether a predicted cluster is matched with a known
complex. For two sets of proteins, s and ¢, the overlap
ratio between s and ¢, denoted by ov(s, t), is formulated
as follows:

[sNt

Vsl - 1t

0 otherwise.

ifsntl >2
ov(st) = iflsnel =

Thus, it is one if s and ¢ are identical to each other.
We say that s and ¢ are matched if ov(s, t) = 1, where n
is a predefined threshold. Notice that, in the case where
s and ¢ share only one protein, the overlap ratio turns to
be zero. Otherwise, the overlap ratio is equal to the
ratio of the number of common proteins between s and
t to the geometric mean of the sizes of s and .

On the other hand, if s and ¢ share less than two pro-
teins, the overlap ratio is defined as zero. The reason to
do that can be explained as follows. The typical value of
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7N in the literature is \/0.2 = 0.4472 (see, for example,
[12]). However, with this threshold, if s and ¢ are both
of size two and share only one protein, they are deter-

mined to be matched because =0.5 > 0.4472.

1
V22
Notice that this case tends to happen by chance. Sup-
pose that there are many known complexes of size two.
In this situation, by predicting many clusters of size
two, a known complex of size two can be matched with
such a predicted cluster by sharing only one protein.
The overlap ratio define here is designed to avoid this
unfavorable situation. Note that 7 is set to be /0.2 in
this work.

Here we suppose that C is a set of predicted clusters
of proteins by a protein complex prediction algorithm
and K is a set of known complexes. The precision of C
to K with 7 is defined as

Np: (G, K, n)

recision (C, K, n) =
g cl

where
Npe (C, K, n) = l[{clce C,Fk e K, ov(c, k) = n}l,

which is the number of predicted clusters in C
matched with at least one known complex in K with an
overlap ratio threshold 7. In a similar way, the recall of
C to K with 1 is defined as

Nie (C, K, 1)

recall (C,K, n) = K|

where
Nk (C, K, n) = l{klk € K,3c € C, ov (k, ¢) = n}l,

which is the number of known complexes in K
matched with at least one predicted cluster in C with an
overlap ratio threshold 7. The F-measure of C to K with
7N is defined as the harmonic mean of the corresponding
precision and recall. Namely, we have

precision (C, K, ) - recall (C, K, n)

F(C,K,n) =2. . ‘
( ) precision (C, K, n) + recall (C, K, n)

Notice that all clusters of size one are completely not
counted in this matching statistics. Hereafter, a pre-
dicted cluster of any tool means a set of two or more
proteins predicted as a protein complex.

Statistical significance by Gene Ontology

The Gene Ontology (GO) provides a unified representa-
tion of gene and gene product attributes across all spe-
cies [13]. Thus, GO is often exploited to find some
biological coherence of a newly found group of proteins,
like functional modules and protein complexes. For a
predicted cluster, if a more specific GO term annotates
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more proteins in the predicted cluster, the term would
be a better biological characterization of the cluster.

Such a term can be identified by comparing the statis-
tical significances of a cluster by GO terms. The statisti-
cal significance of a predicted cluster, ¢, by a GO term,
¢, can be calculated by the hypergeometric distribution
in the following equation:

b <IM|> (|V|| |— IMI)
i cl—i
—value = 1 —
TR
lcl
where ¢ contains b proteins in the set, M, of proteins
annotated by ¢, and V is the set of all proteins in the
whole PPI network [14]. In this work, the p-values (with
Bonferroni correction) of predicted clusters are calcu-
lated by the tool, “Generic gene ontology (GO) term fin-
der” (http://go.princeton.edu/cgi-bin/GOTermFinder),
whose implementation depends on GO:TermFinder

[15]. The p-value cutoff used in this work is set to be
the default value of 0.01.

Result

In this section, we report the results of performance
comparison, carried out in a similar way as [5], of
PPSampler2 with the following public tools, MCL [16],
MCODE [12], DPClus [17], CMC [18], COACH [4],
RRW [2], NWE [3], and PPSamplerl [5]. The outputs of
these algorithms are evaluated by the known protein
complexes of CYC2008 and GO terms.

Materials

The set of all PPIs with their weights in WI-PHI [19] is
given as input to the above algorithms. It contains 49607
non-self-interactions with 5953 proteins (393 self interac-
tions are excluded). The average degree of the proteins is
16.7. Every interaction of them is assigned a weight
representing the reliability of the interaction. The weight
of an interaction is determined from datasets derived
from high-throughput assays, including tandem affinity
purification coupled to mass spectrometry (TAP-MS)
and the yeast two-hybrid system, and a literature-curated
physical interaction dataset, which is used as a bench-
mark set. The log-likelihood of each dataset is calculated
with the benchmark set. The weight of an interaction is
formulated as the sum of, over those datasets, the pro-
duct of the socio-affinity index [20] of the interaction on
a dataset and the log-likelihood of the dataset. The
resulting weights are ranged from 6.6 to 146.6. The
higher the weight of an interaction, the more reliable.
Note that among the above algorithms, MCL, RRW,
NWE, PPSamplerl, and PPSampler2 exploit the weights,
and the others do not.
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The gold standard dataset of known complexes used
here is the complexes of the CYC2008 database [6].
Recall that this database have 408 curated heteromeric
protein complexes of S. cerevisiae. It is pointed out in
our previous work [5] that among those complexes, 172
(42%) and 87 (21%) are hetero-dimeric and trimeric
complexes, respectively.

Configuration setting

The default values of the parameters of PPSampler2 is
given in Table 1. Later, the robustness of PPSampler2 to
some of those parameters will be examined. With the
default parameter set, ten executions of PPSampler2
have been carried out. To compare performance, the
three performance measures, precision, recall, and F-
measure, are calculated. For PPSampler2, they are aver-
aged over ten executions. All the results of the other
methods, except those for predicted clusters of size four
or more, are obtained from [5]. Recall that the thresh-
old, n, of the overlap ratio is set to be /0.2 = 0.4472.
Note that PPSampler2 normalizes PPI weights by divid-
ing by the maximum one.

Performance comparison for all predicted clusters

At first, all the predicted clusters of size two or more
are evaluated with all the known protein complexes.
The matching results of the above algorithms are shown
in Table 2. The row of #protein gives the number of
proteins within predicted clusters. It can be seen that
the number varies with the individual algorithm. It
ranges from 1626 to 5869, which are 27.3% and 98.6%
of the total number of proteins of WI-PHI (5953),
respectively. By this measure, the algorithms can be
grouped into two groups. One is the group using many
proteins over 4000, which includes MCL, DPClus, CMC,
COACH, and RRW. The other group, including
MCODE, NWE, PPSamplerl, and PPSampler2, uses
about 2000 proteins. The row of #cluster shows the
number of clusters predicted by each algorithm. It also
varies with the individual algorithm. The lowest value is
156 given by MCODE, and followed by 350 (PPSam-
plerl), 402 (PPSampler2), and 720 (NWE). The other

Table 1 Default parameter values of PPSampler2.

Parameter notation & value
Temperature T=10"
number of iterations L=2x10°
maximum cluster size N =100
probability of making a new single cluster 8 = 0.01
parameters of g, y=2
03;=1000 x 1.1
parameters of gs A = 2000
o} = 10°
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Table 2 The matching results of all predicted clusters.

MCL MCODE DPClus CcMC COACH RRW NWE PPSampler1 PPSampler2
#protein 5869 2432 4888 5868 4094 4240 1626 2001 2009.90 + 030
#cluster 880 156 925 978 1353 1984 720 350 402.10 £ 520
Avg. size 6.67 15.59 6.91 20.65 13.29 2.14 2.26 5.72 500 + 0.06
Npe 206 27 192 79 416 196 204 188 24840 + 2.37
Nie 246 31 219 84 253 204 212 218 302.70 + 3.00

#protein gives the number of proteins within predicted clusters. #cluster shows the number of predicted clusters. Avg. size provides the mean of the sizes of

predicted clusters.

tools have about one thousand or more clusters. The
row of Avg. size provides the mean of the sizes of pre-
dicted clusters. The algorithms can be classified into
three groups. One is the group of RRW and NWE
whose average size is about two. The second one is the
middle-sized group, including MCL, DPClus, PPSam-
plerl, and PPSampler2. The size is about five to six. The
large-sized group consists of MCODE, CMC, and
COACH. The last two rows show the values of N, and
Ny, respectively. Those numbers lead to precision,
recall, and F-measure, which are graphically represented
in Figure 3.

The (average) precision score of PPSampler2 is 0.618,
which is 15% higher than the second best, given by
PPSamplerl (0.537). In addition, the third best is 0.307,
achieved by COACH, which is only 50% of the best.
Thus, PPSampler2 outperforms the other algorithms in
precision.

In recall, PPSampler2 outperforms the others, too.
The recall score is 0.742, followed by 0.620 and 0.603
given by COACH and MCL, respectively. Thus, the best
score is 20% and 23% higher than them, respectively.
Note that the recall score of PPSampler2 is 39% higher
than that of PPSampler1, 0.534.

3

o
o

1

o

precision recal F-measure

Figure 3 Performance comparison for all predicted clusters.
The error bars of PPSampler2 show the standard deviations.

\

In F-measure, PPSampler2 achieves the highest score,
0.674. 1t is 26% higher than the second highest, 0.536,
given by PPSamplerl. Note that PPSamplerl needs
about eight hours to achieve that F-measure score. On
the other hand, PPSampler2 can obtain its F-measure
score in twenty minutes. Namely, PPSampler2 runs 24
times faster than PPSamplerl. Thus, PPSampler2 is
superior to PPSamplerl in prediction accuracy as well
as running-time. Furthermore, the third highest F-mea-
sure score, achieved by COACH, is 0.411. Thus the F-
measure of PPSampler2 is 64% higher than it. This indi-
cates how high PPSampler2 outperforms the others.

It would be interesting to see which known complexes
are successfully detected by PPSampler2. All of the
known protein complexes perfectly detected by PPSam-
pler2 and not by the other tools are extracted. For each
of those known protein complexes, the best overlap ratio
obtained by each algorithm is given in Additional file 1.
The number of such complexes is 35, and the sizes of
them are widely ranged from 2 to 25. Interestingly, MCL
finds all of the complexes approximately but except the
first one. This can be related to the common feature
between MCL and PPSampler2 that the structure of their
solutions is modeled as a partition of all proteins.

Size-dependent performance comparisons

As mentioned before, it can be found that 172 (42%) of
the 408 curated heteromeric protein complexes in the
CYC2008 database are heterodimeric protein complexes,
and 87 (21%) of them are heterotrimeric protein com-
plexes. Totally, 259 (63%) of the 408 complexes are
complexes of size two or three. They can be said to be
the majority of the known protein complexes. Thus, the
performances on those hetero-dimeric and trimeric
complexes will be dominant in the performance on the
set of the 408 complexes. Then the performances on
those small-sized complexes are evaluated. In addition,
the performance on the remaining predicted clusters,
i.e., those of size four or more is also considered,
because many prediction algorithms have been evaluated
by known complexes of size four (or three possibly) or
more (see, for example, [3,21]). Thus, it is interesting to
see how good the performance of PPSampler2 w.r.t. the
range of sizes is.
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Table 3 The matching results on size two.

MCL MCODE DPClus CcMC COACH RRW NWE PPSampler1 PPSampler2
#protein 462 6 2 12 0 3648 1264 258 219.20 + 658
#cluster 231 3 1 6 0 1824 632 129 109.60 + 3.29
Npe 7 0 0 0 0 122 129 39 4530 £ 1.90
Ny 79 5 58 32 71 60 83 57 103.20 £ 3.03

The performance measures specialized for this purpose
are almost the same as ones formulated in [5]. For the
set, C, of all clusters predicted by an algorithm, we
denote by C|; the subset of C whose elements are of size i
and by C]|; the subset of C whose elements are of size i
or more. For the set, K, of all known protein complexes,
we denote by K|; the subset of K whose elements are of
size i and by K], the subset of K whose elements are of
size i or more. For each of the sizes of i = 2 and 3, the
precision and recall for size i are defined as precision

<C|i, K, \/O.Q)and recall (C, Kl;, \/0.2), respectively. The

corresponding F-measure is the harmonic mean of these
precision and recall. In the similar way, the precision and
recall for size four or more are defined as precision
(Cls4, K, Jo,z)and recall (C, K|sq4, x/0.2),respectively.
Note that K is again set to be the set of all protein com-
plexes in CYC2008.

The matching results on size two is shown in Table 3.
It can be seen that only several clusters of size two are
predicted by MCODE, DPClus, and CMC, and that no
clusters of size two are generated by COACH. This out-
come is thought to be due to their strategies that put
priority on generating reliable large clusters. The perfor-
mance for this case is given in Figure 4. Clearly, PPSam-
pler2 outperforms the others in precision, recall, and

mMCL
W MCODE
m DPClus
mcme
B COACH
RRW
- NWE
W PPSamplert

0.200 PPSampler2

F-measure

precision recall

Figure 4 Performance comparison on heterodimeric protein
complexes.

F-measure. Especially, in recall, PPSampler2 is signifi-
cantly improved from PPSamplerl, whose rank is
seventh.

The matching results on size three is shown in Table 4.
More or less, all the algorithms predict clusters of size
three. However, the four algorithms, MCODE, DPClus,
CMC, and COACH, have low scores in N,,. This result is
reflected directly to precision, shown in Figure 5. Their
scores of precision are quite low. Notice that the four
algorithms are known to predict less or no clusters of
size two. Thus, they seem to be vulnerable to small-sized
clusters. The best score of precision is achieved by NWE,
followed by PPSampler2. In recall, PPSampler2 is the
best performer, and the score of NWE is not high. As a
result, in F-measure, the top two algorithms, PPSampler2
and NWE, are comparable.

The matching results on size four or more is shown in
Table 5 and the performance is given in Figure 6. In
precision, the best algorithm is NWE, followed by
PPSampler2. In recall, PPSampler2 and COACH are
comparable. In F-measure, PPSampler2 is the best, fol-
lowed by PPSamplerl. Thus, it turns out that even for
these large sizes, PPSampler2 is shown to be empirically
superior to the other algorithms.

Evaluation by Gene Ontology
It is reasonable to suppose that the list of protein com-
plexes recorded in databases are still incomplete. This
assumption indicates potential protein complexes.
Under the assumption, statistically significant clusters by
GO which are unmatched with any known complexes
are good candidates for potential protein complexes.
The number of statistically significant clusters
unmatched with any known complexes is shown in
Table 6. The row of #unmat. shows the number of pre-
dicted clusters unmatched with any known complexes.
Each of the following rows gives the number of statisti-
cally significant ones among the unmatched clusters on
the corresponding GO aspect, biological process (BP),
cellular component (CC), or molecular function (MF). It
can be found that the proportions of such clusters given
by PPSampler2 are 82%, 51%, and 55% on the biological
process, cellular component, and molecular function
aspects of GO, respectively. The most related aspect to
protein complexes would be biological process as they
are considered to work in particular biological processes
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Table 4 The matching results on size three.
MCL MCODE DPClus cmMC COACH RRW NWE PPSampler1 PPSampler2
#protein 456 162 120 616 60 309 162 180 24780 + 1356
#cluster 152 54 40 216 20 103 54 60 82.60 + 452
Npe 13 6 3 5 0 45 43 32 4760 = 418
Nie 55 4 38 16 52 48 50 48 69.80 + 0.60
1 ) in every aspect of GO. Especially, in the biological
> process aspect, the extended precision of PPSampler2 is
g z 92%. This implies that most of the predicted clusters by
PPSampler2 are biologically meaningful.
07
I

mMCL
® MCODE
m DPClus
mCMC
mCOAC

RRW
uNWE
m PPSampleri

PPSampler2

1

F-measure

0.1 I
precision recal

Figure 5 Performance comparison on heterotrimeric protein

complexes.

in the form of protein complexes. In fact, 82% of the
predicted clusters unmatched with any known com-
plexes are determined to be statistically significant on
the biological process aspect of Gene Ontology. Those
predicted clusters are good candidates for potential pro-
tein complexes.

Figure 7 shows extended precision by an aspect of GO.
The total height of a bar is equal to the fraction of the
sum of the number of clusters matched with at least one
known complex and the number of statistically signifi-
cant clusters unmatched with any known complexes to
the number of all predicted clusters. This measure is
called the extended precision by an aspect of GO. The
lower part of a bar is proportional to the number of sta-
tistically significant clusters unmatched with any known
complexes. The upper part is equivalent to the precision.
It can be seen that PPSampler2 outperforms the others

Table 5 The matching results on size four or more.

Random clusters

The evaluation of randomly generated clusters of pro-
teins is also carried out to see how meaningful the eva-
luation of clusters predicted from the original PPIs is. A
random partition of all proteins is generated by shuffing
the input PPIs in the following way. The text file of WI-
PHI has three columns, corresponding to an interactor,
the other interactor, and their weight. Each column is
permutated randomly. PPSampler2 is applied to the
resulting random PPIs with the default parameter set.
This process is repeated three times and their perfor-
mance scores are almost the same. Thus, one of them is
picked up and is summarized as follows.

The number of proteins within predicted clusters of
size two or more is 2012. The number of those pre-
dicted clusters is 731, and among them only one clus-
ter is matched with a known complex. Thus, the
precision score is 0.001. The number of complexes
matched with some predicted clusters is also one.
Then the recall score is 0.002, and the resulting
F-measure score is 0.002. The numbers of statistically
significant clusters on the GO aspects, biological
process, cellular component, and molecular function
are 53, 25, and 34, respectively, and their fractions to
the number of predicted clusters are 7.3, 3.4, and 4.7%,
respectively. Thus, these results imply that the pre-
dicted clusters from the original PPIs of WI-PHI are
very meaningful.

Robustness
In this section, we assess the robustness of PPSampler2
to some important parameters of it.

MCL MCODE DPClus cMC COACH RRW NWE PPSampler1 PPSampler2
#protein 4951 2264 4799 5795 4052 283 200 1563 154290 + 15.27
#cluster 497 99 884 756 1333 57 34 161 209.90 + 281
Avg. size 9.96 2287 7.09 25.84 1345 5.00 588 9.71 735+ 0.10
Npe 186 21 189 74 416 29 32 117 15550 + 4.36
Nie 112 22 123 36 130 9% 79 113 129.70 + 1.90
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Figure 6 Performance comparison on protein complexes of

size four or more.
A\

The first parameter is A, representing a target number
of proteins within clusters of size two or more, used in
the scoring function, g;. The values of A applied here
are ranged from 100 to 6000 with 100 increments in
between. For each of them, a single execution of
PPSampler2 is carried out. The resulting performance is
shown in Figure 8. The precision line almost monotoni-
cally decreases according to the decrease of A. On the
other hand, the recall line increases up to about 0.8
when the value of A moves up to 3000 from 100, and is
then saturated at the same level thereafter. This obser-
vation on recall would imply the incompleteness of
known complexes of CYC2008. If more true complexes
were available, the recall line would continue to increase
more and the precision line would decline more gradu-
ally. Recall that an F-measure score is calculated from
those of precision and recall. As can be seen, the F-mea-
sure line has a unique peak and the F-measure scores at
A =1100, . . ., 2800 are more than 0.6. Thus, the fol-
lowing implication can be obtained. When candidates
for yet-to-be-discovered protein complexes are needed
to be obtained, the value of A should be set to be larger
to some extent.

The second parameter to be considered here is L, the
number of iterations of PPSampler2. Recall that the

MCL (pracision)

W DPClus (precision)
W OPClus (sig. unmat.)
CMC (precision)

WCVIC (sig. unmat.)

COACH [precision)

04 W ecision)
03 pri
0 ler1 (precision)
PPsampler1 (sig. unmat.)
0 PPsampler? [precision)
PPsampler2 (sig. unmat.)
o

biological process cellular component molecular function

Figure 7 Extended precision by GO. The total height of a bar is
equal to the fraction of the sum of the number of clusters matched
with at least one known complex and the number of statistically
significant clusters unmatched with any known complexes to the
number of predicted clusters. The lower part of a bar is proportional
to the number of statistically significant clusters unmatched with
any known complexes. The upper part is equivalent to the
precision.

default value of L is set to be 2 x 10°. The following
values are used as L: 10i for ' = 2, . . ., 6,j x 10° forj =
2,4,...,20,and k x 10" for k = 3,4, ..., 10. The
result is shown in Figure 9. As can be seen, every line is
saturated from L = 2 x 10° Thus, the default value of L
is set to be that value.

PPSampler2 without regulation of frequency of sizes of
predicted clusters

Recall that the scoring function, g,(C), regulates the fre-
quency of sizes of predicted clusters in C so that it
obeys a power-law distribution. As we mentioned in the
Background section, even without g,, PPSampler2 can
generate almost the same outputs as with g,. Perfor-
mance comparison of PPSampler2 with and without g,
can be found in Figure 10. The latter case is also aver-
aged over 10 outputs. The performances of the other
algorithms are again shown there as a reference. It can
be confirmed that in every performance measure, both

Table 6 Statistically significant clusters unmatched with any known complexes.

MCL MCODE DPClus CcMC COACH RRW NWE PPSampler1 PPSampler2
#unmat. 674 129 733 899 937 1788 516 162 158
BP 203 41 220 356 611 322 215 107 130
CcC 137 33 155 267 530 214 142 70 80
MF 150 34 163 276 510 191 127 75 87

The row of #unmat. shows the number of predicted clusters unmatched with any known complexes. Each of the following rows gives the number of statistically
significant ones among the unmatched clusters on the corresponding GO aspect, biological process (BP), cellular component (CC), or molecular function (MF).
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Figure 8 Robustness of PPSampler2 to A. The scores of precision,
recall, and F-measure are plotted on the horizontal axis representing
values of A.

are comparable although the score without g, is slightly
lower than that with g,.

It is interesting to see how much the frequency of

sizes of clusters predicted by PPSampler2 without g,
obeys a power-law distribution. Among the ten outputs
of PPSampler2 without g,, the most typical one, whose
F-measure score is the closest to the mean of the ten F-
measure scores, is picked up. The regression curve to
the frequency of sizes of the predicted clusters of the
output is shown in Figure 11. The expression of regres-
sion curve is 295.9 x i % with a small root-mean-
square error (RMSE) 5.999 where i is a cluster size.
Thus, we can say that even without g,, PPSampler2 can
generate clusters whose size distribution obeys a power-
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Figure 9 Robustness of PPSampler2 to L. The scores of precision,
recall, and F-measure are plotted on the horizontal axis
representing values of L.
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Figure 10 Performance of PPSampler2 without g,.

law distribution. Probably, this outcome is realized due
to the scoring function of a cluster ¢,

Q@©= Y

uv(#u)ec

w(u, v)

Vel

Suppose that instead of /|c|, the denominator was
|C|(|;|’1), which is the total number of possible interac-
tions within ¢. Under this assumption, gi(c) is equivalent
to the mean of the weights of all pairs of proteins within
c. This fact implies that clusters of size two with an
interaction whose weight is higher than those of the
neighboring interactions are likely to be formed because
for such a size-two cluster, if a neighboring protein is
added to the cluster, the averaged weight is lower than
that of the size-two cluster. Thus, if the denominator is
lel(fel-1), g1 cannot make the frequency of sizes of pre-
dicted clusters obey a power-law distribution. On the
other hand, if the denominator of g; is 1/|c|, clusters are
allowed to be larger to some extent. Namely, even if the
weights of neighboring interactions are lower than that
of an interaction of a size-two cluster, g; can become
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Figure 11 Regression curve to the frequency of sizes of the
predicted clusters. The horizontal axis represents the cluster size.

The vertical axis shows the frequency of clusters of a particular size.
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larger by adding another proteins. This would be the
mechanism of finding a set of clusters whose size distri-
bution is a power-law distribution.

Conclusions

We have proposed a new protein complex prediction
method, PPSampler2, by improving the scoring func-
tions and proposal distribution of PPSamplerl. The per-
formance of PPSampler2 is superior to other methods.
Especially, 92% of the predicted clusters are either
matched with known complexes or statistically signifi-
cant on the biological process aspect of GO. Namely,
most of the predicted clusters by PPSampler2 are biolo-
gically reliable. Thus, PPSampler2 is useful to find good
candidates for potential protein complexes.

Additional material

Additional file 1: Example of known protein complexes perfectly
detected by PPSampler2. All of the known protein complexes perfectly
detected by PPSampler2 and not by the other tools are extracted. For
each of those known protein complexes, the best overlap ratio obtained
by each tool is given.
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