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Abstract

Background: Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene
and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed
multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to
reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-
control studies with binary phenotypes, several extensions have been proposed. One of these methods, a
generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both
dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of
phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls.

Methods: In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly
analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene
interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend
generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We
applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean
Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the
results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP,
respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from
5466 subjects and compared its result with those of univariate GMDR at each time point.

Results: Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures
and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association
with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate
analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller
standard deviations.

Conclusions: In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use
multivariate GMDR with correlated multiple phenotypes of interests.
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Background
Genome-wide association studies (GWAS) have been
successfully conducted to detect disease susceptibility
genes for common complex human diseases by focusing
on associations between single-nucleotide polymorph-
isms (SNPs) and phenotypes [1]. While traditional meth-
ods for GWAS consider only one SNP at a time, some
common complex human diseases such as diabetes,
hypertension, and various types of cancers are known to
be influenced by multiple genetic variants [2]. In addi-
tion, one of the greatest challenges in GWAS is to dis-
cover gene-gene and/or gene-environment interactions.

Classic logistic regression can be used to analyze the
gene-gene interaction [3]. However, logistic regression
suffers from an overfitting problem in high-order inter-
actions [4]. Multifactor dimensionality reduction (MDR)
method is a nonparametric, model-free, and combina-
torial approach for interaction analysis by identification
of a multi-locus model for association in case-control
studies [5-9]. MDR method reduces multi-locus geno-
types into two disease risk groups: high-risk and low-
risk groups. If the ratio of cases and controls in a com-
bination of genotypes is larger than a pre-assigned
threshold T (e.g., T = 1), the cell of combination is
labelled as “high risk”, otherwise, “low risk”. MDR
method shows greater power for testing high-order
interactions compared with logistic regression analysis
[10]. Several statistical methods have been extended
from MDR approach [11-16]. One of the extended
methods of MDR is a generalized MDR (GMDR) pro-
posed by Lou et al. [16]. GMDR method allows adjust-
ing for covariates and applying to both dichotomous
and continuous phenotypes; it uses the score-based sta-
tistic obtained from generalized linear model of pheno-
types on the predictor-variable and covariates instead of
the ratio of cases and controls in original MDR method.

These GWAS methods are generally implemented in a
univariate framework analysing one phenotype at a time
even though multiple phenotypes of interest are col-
lected from a study population. In particular, pleiotropy
that occurs due to potential genetic correlation between
multiple phenotypic traits plays a role in pathogenesis of
correlated human diseases [17]. Jointly analysing corre-
lated multivariate phenotypes may have more power to
detect susceptible genes and gene-gene interactions by
using more information from data. Classic multivariate
methods such as likelihood based mixed effects model
[18,19] and generalize estimating equations (GEE) [20],
and extended versions of these methods [21,22] can be
applied to multivariate phenotypes of GWAS.

In this study, we have proposed multivariate GMDR
method by extending GMDR method for the multivariate
phenotypes. We construct GEE model with multivariate
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phenotypes to extend generalized linear models. The
GEE approach is exceptionally useful method for the ana-
lysis of longitudinal data, especially when the response
variable is discrete [23]. Using the score vectors from
GEE, we discriminate high-risk from low-risk groups.
The proposed multivariate GMDR method can also han-
dle the repeatedly measured phenotypes.

We apply the proposed multivariate GMDR method
to the Korean Association Resource study on blood
pressure: systolic blood pressure (SBP) and diastolic
blood pressure (DBP). A number of authors have
investigated the genome-wide association studies on
blood pressure and hypertension for Korean popula-
tion [24-26] and for others [27-30]. However, not
much work has been done for gene-gene interaction
analyses. We compare the results of multivariate
GMDR for SBP and DBP to the results from original
univariate GMDR for SBP and DBP, respectively. We
also apply the multivariate GMDR method to the
repeated measured hypertension phenotypes and com-
pare its result with those from univariate GMDR at
each time point.

Methods

Multivariate GMDR

We introduce the generalized estimating equation (GEE)
regarding a multivariate version of generalized linear
model (GLM) which is implemented in GMDR. Let
vi= (i, ---,vi)" be the t x 1 vector of the phenotypes
for subject i (i = 1,---,n), with expectation E(Yi) = ii.
For the multivariate phenotype vector, Vi, we assume an
underlying generalized linear model which can be writ-
ten as

ni=g(n)=XiB+Zy,

where g(-) denotes a known one-to-one link function
that is allowed to change with the characteristics of the
different types of phenotype Vi. X; and Z; represent
design matrices of genotype values and known covariate
values including the unit component, respectively, and f
and ¥ are vectors of their corresponding parameters,
respectively. We assume that Vit has a probability distri-
bution belonging to the exponential family of distribu-
tions formed as

f (Yiz} Oit, ¢) = €Xp {[Yiteit —b (91'1)] [+ c(yius ¢)} ‘

The GEE estimators of § = (87, pT) for marginal mod-
els can be obtained from the solution of a set of follow-
ing generalized estimating equations:

n i T
U<5>=Z<3'?> Vit{y,—m(®)} =0,

i=1
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where dpt;/34 is a matrix of derivatives whose ith col-
umn is dp;/d8y. Vi is constructed as V; = ¢B;/2R (o) Bil/z,
where B; = diag (b” (Qi[)) is a diagonal matrix with main
diagonal elements of variance function, b’ (6;), and R is
a correlation matrix. V; and R are “working” covariance
and correlation to distinguish them from the true covar-
iance and correlation among Y;, respectively. When we
use canonical link function, 90;/9n; is the identity
matrix. Let C; be the matrix of predictor values with X;
and Z; for subject i. By the chain rule,

op; _ Op; 96; om;

= = BI,C;.
a8 00, 0m; 98

Then the score equations for § are

n
U@ = CBV; " {r,— m(3)}.
i=1
The expression, B;V; ' {y; — p;(8)} can be written as a
vector of the residual of each phenotype, Vit. Thus, the
residual score vector for individual i is defined as:

Si1
" Si o a1 -
Si = f =BiV; {y;— i}
Sit

where fi; = g (Zip) and  is estimator obtained from
estimating equations under the null hypothesis
B; B; and V; are calculated using fi;. Based on this resi-
dual score vector, each individual with phenotypes is
discriminated between case and control status. From the

residual score vector for individual, we propose the
t

aggregation for elements of the score vector, Si = Z Sij,

j=1
and use that as a prediction score for each individual. If
the sum of prediction scores over those individuals who
have the corresponding genotype combination is greater
than a threshold value, assign ‘high-risk’ to the cell cor-
responding to the genotype combination. Otherwise,
assign ‘low-risk’ to the cell.

Data

Our primary outcomes are two types of blood pressure,
systolic blood pressure (SBP) and diastolic blood pressure
(DBP), and hypertension diagnosis of the Korean Associa-
tion REsource (KARE) Consortium. The measurements of
blood pressure were dichotomized at 140 mmHg for SBP
and 90 mmHg for DBP, and denoted by SBPg and DBPg,
respectively. We defined the hypertensive case as HP = 1
if SBP > 140 mmHg or DBP = 90 mmHg, and HP = 0,
otherwise. Several genome-wide association studies
(GWAS) have been performed on blood pressure by
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treating blood pressure as a quantitative trait [24-29]. In
this study, we treated blood pressure as a binary trait HP
representing whether the hypertension status is yes or no.
Among 8,842 KARE subjects, 1,291 subjects were removed
in the analysis due to anti-hypertensive therapy and drug
treatments that could influence blood pressure. Addition-
ally, 5 subjects were excluded because of missingness in
SBP and body mass index (BMI). Of the 7,546 subjects
considered in the study, 4,080 (54%) subjects were from
urban community Ansan and the others were from rural
community Ansung. For the study, the average age is 48.4
years for Ansan and 55.0 years for Ansung. There are
three times of bi-yearly measured hypertensive status from
2001 to 2006, denoted by HP;, HP,, and HP3. Among
7,546 subjects, 2,080 subjects did not follow up at time 2
or 3. Subject characteristics are summarized in Table 1.
The genomic DNAs were genotyped using Affymetrix
Genome-Wide Human SNP Array 5.0. The quality control
procedures were adopted such as missing genotype fre-
quency > 0.5% and minor allele frequency (MAF) < 0.01 at
least on area. Finally a total of 7,546 individuals and
344,596 SNPs were included in the analysis of dichoto-
mized SBPy and DBPjg, while a total of 5,466 individuals
and 344,309 SNPs were included in the analysis of repeat-
edly measured hypertension status.

Table 1 Subject characteristics of the KARE.

Phenotype N(=7,546) %
Recruit area

Ansung 3,466 459

Ansan 4,080 54.1
Gender

Male 3,743 496

Female 3,803 504
Systolic blood pressure

> 140 701 9.3

< 140 6,845 90.7
Diastolic blood pressure

> 90 693 9.2

<90 6,853 90.8
Age (years) Mean SD

Overall 514 879

Ansung 550 8.82

Ansan 484 7.51
Body mass index (kg/m?)

Overall 244 3.08
Hypertensive cases N*(=5,466) %
(SBP > 140 or HP; (Time 1) 716 131
DBP > 90) HP, (Time 2) 706 129

HP5 (Time 3) 698 128

Abbreviations: DBP, diastolic blood pressure; KARE, Korean Association
Resource; SBP, systolic blood pressure.
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Results
Preliminary analyses
To compare multivariate analysis with univariate analy-
sis, we first separately fit a logistic regression model for
each dichotomized blood pressure measurement SBPg
and DBPg with covariate adjustment for recruitment
area, age, sex, and BMI. The correlation between SBPy
and DBPg is 0.48. The multivariate analysis with two
binary phenotypes (SBPg, DBPg) was conducted using
the GEE approach. For the repeatedly measured hyper-
tension status HP;, HP,, and HP3, we fit logistic models
for each HP; and fit the GEE model for three HPs
simultaneously. The pairwise correlations range from
0.32 to 0.36. In the GEE model, we assumed two types
of genetic effect: homogeneous genetic effect and het-
erogeneous genetic effect for multivariate phenotypes.
However, when we compared the effect sizes and p-
values of homogeneous model with those of heteroge-
neous model, there was no strong evidence for support-
ing the homogeneous genetic effect. So, we present the
results of the GEE model with heterogeneous genetic
effects for multivariate phenotypes in both of blood
pressures and repeatedly measured hypertension status.
To perform gene-gene interaction analysis using
GMDR analyses, we first selected SNPs with strong
marginal effects in univariate models and among those,
we select the ones with strong effects in multivariate
models. For SBPy and DBPy analysis, we selected the
top 50 SNPs for each SBPy and DBPg. From these 100
SNPs, we chose 35 SNPs using a p-value criterion (< 1
X 10'4) from the GEE model. In a similar manner, we
chose 34 SNPs for HP;, HP,, and HP; by selecting the
top 50 SNPs for each HP; using the same p-value criter-
ion from their GEE model.

Univariate logistic and multivariate GEE analyses of SBPg
and DBPg

We report results of GWA studies of dichotomized SBPg
and DBPg, and their multivariate analyses. For SBPy and
DBPg, the Manhattan plots are given in Figure 1. As
summarized in Table 2, five SNPs for SBPg (rs1549022,
rs2111464, rs12942470, rs2088983, and rs1768145) and
three SNPs for DBPy (rs17045441, rs11866964, and
rs7555790) were selected at the 107 significance level.
For multivariate GEE analysis for (SBPg, DBPg), six SNPs
were selected: rs17045441, rs1378942, rs12942470,
rs1549022, rs927833, and rs2111464. Among these six
SNPs selected from multivariate GEE analysis, four SNPs
were also found by univariate analysis but two SNPs
(rs1378942 and rs2111464) were not. A gene CSK in
which SNP rs1378942 is located has been reported as a
hypertension susceptibility gene in the Korean population
[25,26] and also in East Asians [30].
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Univariate logistic and multivariate GEE analyses of HP;,
HP,, and HP;

We performed association analysis for the repeatedly
measured binary hypertension phenotypes HP;, HP,,
and HPs. First, the logistic regression model was fit for
each HP; and multivariate analysis for (HP;, HP,, and
HP3) was performed by GEE model. Manhattan plots
are given in Figure 2. Nineteen SNPs were selected at
107 significance level (Table 3): four for HP,
(rs17675997, rs2411259, rs4084097, and rs7751214), five
for HP, (rs4908736, rs17677051, rs4867707, rs550214,
and rs11636344), and seven for HPj3; (rs294082,
rs4495407, 1rs10956596, rs6470947, rs4615555,
rs4279577, and rs7465333), and three for multivariate
HPs (rs12054837, rs4084097, and rs17722281). However,
none of the identified SNPs were commonly observed
by all three univariate analyses (Table 3). It might be
due to the fact that the status of subject with hyperten-
sion is very volatile over time (Table 4) even though the
proportion of hypertension risk was stable over time
(Table 1). Thus the signals of association with hyperten-
sion were differently expressed over time. Among three
SNPs from multivariate analysis, SNP rs4084097 was
also associated with hypertension by univariate analysis
at time 1. However, there were no common SNPs
between multivariate GEE analysis and univariate ana-
lyses at times 2 and 3. One hypertension SNP at time 2,
rs11636344, in FBNI gene and another SNP rs17722281
of WWOX gene from multivariate have been previously
found to be associated with hypertension in China
population [31,32].

Univariate GMDR and multivariate GMDR analyses of
SBPg and DBPg
We present GMDR results to discover gene-gene and/or
gene-environment interactions. For univariate GMDR
analysis, logistic regression models for dichotomized
SBPy and DBPy were constructed with area, age, sex,
and BMI as covariates under the null hypothesis of no
genetic effect. For multivariate GMDR analysis, the GEE
model with same covariates was constructed. To reduce
the computational burden, we focused on 35 SNPs
selected from the preliminary analysis. All possible one
and two locus models were fit for 35 SNPs. Through
10-fold-cross validation the best combination of loci
with maximum train balanced accuracy (BA) which is
average of sensitivity and specificity was chosen at each
fold. To choose the final model, we considered cross-
validation consistency (CVC) among a set of best
combinations.

Table 5 summarizes the best model, Train BA, Test
BA, and CVC from univariate GMDR and multivariate
GMDR. For the purpose of comparison, we computed
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Figure 1 Manhattan plots of SBPg and DBPg in univariate and multivariate analyses. (A) SBPg in logistic regression (B) DBPg in logistic
regression (C) Multivariate model with SBPg and DBPg (D) Overlay plot of (A)-(C).

Table 2 Selected SNPs of SBP and DBP from univariate and multivariate analyses.

CHR SNP Gene symbol SBP DBP Multivariate
Beta P-value Beta P-value Betal Beta2 P-value
1 rs7555790 PEX14 0.117 4.16E-03 0.184 4.46E-06 0.046 0.116 235E-05
2 rs2111464 0.200 1.11E-06 0.100 1.28E-02 0.293 0.195 8.77E-06
2 rs1549022 0.207 6.52E-07 0.111 5.89E-03 0.295 0.202 5.23E-06
3 rs1768145 0.169 8.24E-06 0.090 2.01E-02 0.233 0.161 7.95E-05
4 117045441 ANK2 0.065 1.06E-01 0.199 7.69E-08 -0.090 0.058 3.91E-08
4 rs2088983 0.168 6.96E-06 0.090 1.82E-02 0.234 0.162 4.54E-05
15 rs1378942 CSK -0.189 2.50E-05 -0.192 1.85E-05 -0.167 -0.182 3.49E-06
16 rs11866964 ZNF423 -0.089 3.66E-02 -0.206 2.78E-06 0.036 -0.087 3.26E-05
17 112942470 0.186 4.36E-06 0.041 3.12E-01 0.326 0.180 4.25E-06
20 1s927833 LOC100270679 -0.127 2.31E-02 0.074 4.53E-02 -0.343 -0.130 7.43E-06
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the p-values from the logistic models and GEE model
for the SNPs in one-locus model of GMDR methods.
The identified SNPs by GMDR methods also have sig-
nificant p-values from these analyses: 6.51E-07 for SBPg,
4.21E-05 for DBPg, and 3.26E-05 for multivariate pheno-
types. The best two-locus model of DBPy included one
SNP, rs1378942, in CSK and another SNP, rs11866964,
in ZNF423 implying that the interaction between CSK
and ZNF423 genes was identified as a significant contri-
butor to dichotomized DBPg. The test BAs of the one-
locus models (two-locus model) for these SNPs were
0.545 and 0.549 (0.566) for rs1378942 and rs11866964,

respectively. The best two-locus model from the multi-
variate GMDR included rs7555790 in PEX14 gene and
rs11077135 in A2BPI1 gene. The test BA of the one-
locus models (two-locus model) for these SNPs were
0.526 and 0.532 (0.546), respectively. It seems that the
contribution was from the joint effects of two genes
rather than their main effects. The graphical descrip-
tions for test BA are given in Figure 3. The median of
test BA for multivariate GMDR is between median of
SBPg and DBPg in both one and two-locus models. The
distribution of test BA for multivariate GMDR is more
concentrated than those of SBPy and DBPg.
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Table 3 Selected SNPs of longitudinal hypertension from univariate and multivariate analyses.
CHR SNP Gene symbol HP, HP, HP; Multivariate
Beta P-value Beta P-value Beta P-value  Betal Beta2 Beta3 P-value
1 rs4908736 0.111 6.02E-03 0.178 8.83E-06 0.079 5.17E-02 0.110 0.178 0.079 1.21E-04
4 rs17675997 0176  6.16E-06  0.051 2.11E-01 0.049 2.27E-01 0.175 0.051 0.048 1.27E-04
4 rs2411259 LOC152578 0176  5.33E-06 0051 2.06E-01 0.061 1.28E-01 0.174 0.051 0.061 1.13E-04
5 rs12054837 ARSB -0.029 4.83E-01 -0.042 3.18E-01 0.162 2.12E-05 -0.031 -0.043 0.168 2.95E-06
5 rs294082 0.067 1.02E-01 0.087 3.28E-02 0.181 5.80E-06 0.068 0.087 0.181 1.71E-04
5 rs17677051 -0.086 3.79E-02 -0.188  7.84E-06  -0.089 3.16E-02 -0.081 -0.188  -0.093 8.09E-05
5 154867707 -0.088 3.22E-02 -0.189  7.00E-06  -0.091 2.77E-02 -0.083 -0.188  -0.095 6.80E-05
6 rs4084097 0163  9.61E-06  -0.004 9.27E-01 0.092 1.68E-02 0.158 -0.005 0.095 8.05E-06
6 157751214 EPHA7 -0.191 9.16E-06  -0.009 8.26E-01 -0.099 1.85E-02 -0.190  -0008  -0.100 1.39E-05
8 rs4495407 0.038 3.60E-01 0.012 7.74E-01 0.185 8.40E-06 0.036 0.012 0.189 5.59E-05
8 rs10956596 -0.044 2.82E-01 -0.047 2.58E-01 -0.185  8.82E-06  -0.043 -0.047  -0.188 1.23E-04
8 156470947 0.053 1.94E-01 0.023 5.69E-01 0.187 6.69E-06 0.053 0.023 0.190 6.05E-05
8 rs4615555 0.051 2.17E-01 0.030 4.69E-01 0.191 3.81E-06  0.049 0.029 0.194 3.34E-05
8 1s4279577 0.052 2.06E-01 0.031 4.56E-01 0.192  3.44E-06 0051 0.030 0.196 3.26E-05
8 rs7465333 0.050 2.31E-01 0.031 4.57E-01 0.189 6.33E-06 0.048 0.031 0.193 5.75E-05
1 550214 0.081 4.38E-02 0.175 6.09E-06 0.102 1.01E-02 0.077 0.174 0.106 8.32E-05
15 rs11636344 FBNT 0.075 581E-02 0.167 6.51E-06 0.035 3.88E-01 0.073 0.166 0.037 1.06E-04
16 1517722281 WWOxX -0.142 7.68E-04 -0.160 1.52E-04 0.034 4.16E-01 -0.140  -0.161 0.034 7.66E-06

Univariate GMDR and multivariate GMDR analyses of HP;,
HP,, and HP;

The results of the univariate GMDR and multivariate
GMDR are summarized in Table 6 for the repeatedly
measured hypertension status HP;, HP,, and HP;. For
these hypertension phenotypes, 34 SNPs selected from
the preliminary analysis were included to GMDR
mechanisms. All possible one and two locus models
were fit for 34 SNPs. Not surprisingly, all different SNPs
were identified in one-locus model. For the comparison
between GMDR methods and classic method of logistic
and GEE models, we report the p-values from the logis-
tic models and GEE model for the identified SNPs from
GMDR methods in one-locus models: 1.02E-05 for HP,,
1.59E-05 for HP,, 6.33E-06 for HP3, and 8.50E-05 for
multivariate phenotypes. The identified SNPs by GMDR
methods also have significant p-values from the classic
methods. The best two-locus model from multivariate
GMDR included rs7791839 in CCDC129 gene and
rs7168365 in WDR72 implying that the interaction

Table 4 Transition of hypertensive case over time.
HP; Time 1 (716)
Hypertension Normal
HP; Time 3 (288) HP; Time 3 (410)

Hypertension Normal Hypertension Normal

HP, Time  Hyper- 166 154 147 239
2 (706) tension
Normal 122 274 263 4101

Note that numbers within parentheses are the number of hypertensive case
at each time point.

between CCDCI129 and WDR?72 genes was identified as
a significant contributor to the repeatedly measured
hypertension status. Box plots and density plots of test
BA for GMDR and multivariate GMDR of HPs are
given in Figure 4. Similar to the results of dichotomized
SBPg and DBPg, the test BA for multivariate GMDR
had a smaller deviation in the both one-and two-locus
models.

Comparison of univariate GMDR and multivariate GMDR

We presented the results of univariate and multivariate
GMDR by the same phenotypes in the previous two
sub-sessions. However, those comparisons are not sig-
nificantly meaningful to describe the usefulness of mul-
tivariate GMDR. Here, we compared the results from
multivariate GMDR of SBPz and DBPg with the results

Table 5 Comparison of results for SBP and DBP by GMDR
and multivariate GMDR.

No. of Method Best model Train Test CcvC
Loci BA BA
1 GMDR_SBP rs1549022 0.544 0544 6
GMDR_DBP rs11077135 0.548 0547 7
Multivariate rs11866964 0.539 0536 8
GMDR
2 GMDR_SBP rs2111464, 0.566 0566 7
rs12942470
GMDR_DBP rs1378942, 0.566 0566 3
rs11866964
Multivariate rs7555790, 0.551 0546 2
GMDR rs11077135
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Test BA in two-locus model.

from the GMDR of HP; including the same individuals
and candidate SNPs (Table 7). Because hypertension
was defined by SBPy or DBPg, we can directly compare
the performance of multivariate GMDR and univariate
GMDR through those analyses. Multivariate GMDR and
GMDR yielded the same best two-locus model.

Table 6 Comparison of results for longitudinal
hypertension by GMDR and multivariate GMDR.

No. of Method Best model Train Test CVC
Loci BA BA
1 GMDR_ HP; rs11097953 0.542 0543 9
GMDR_ HP, rs11115097 0.545 0546 5
GMDR_ HP3 rs7465333 0.540 0542 5
Multivariate rs7168365 0.529 0528 9
GMDR
2 GMDR_ HP, rs11097953, 0.555 0540 6
rs7751214
GMDR_ HP, rs11115097, 0.566 0566 8
rs17722281
GMDR_ HP3 157791839, 0.563 0563 9
rs6470947
Multivariate 157791839, 0.544 0544 7
GMDR rs7168365

However, multivariate GMDR shows slightly better test
BA than GMDR. Box plots of test BA for multivariate
GMDR and GMDR from those two analyses are given
in Figure 5. The test BA of multivariate model has smal-
lest deviation also.

Conclusions

In this paper, we have developed multivariate analysis
for discovering gene-gene interaction, namely multivari-
ate GMDR. Our multivariate GMDR analysis was devel-
oped by utilizing a GEE approach to multivariate
phenotypes. Many studies emphasized the importance
and the increase of power for multivariate analysis in
GWAS [33-35]. Although MDR method has been devel-
oped in variety of manners [5-9], there have been no
extensions to the multivariate analysis. We proposed
multivariate GMDR analysis by utilizing the GEE model
to calculate the prediction score to be a tool for redu-
cing the multifactor dimensionality. The GEE approach
is an extension of generalized linear models to the longi-
tudinal data and handles both discrete and continuous
phenotypes. Thus, our multivariate GMDR can be
applicable to both discrete and continuous phenotypes.
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Though real GWAS data analysis, we investigated
the properties of multivariate GMDR. Firstly, the
result of multivariate GMDR does not always coincide
with that of GEE approach. That is, the best SNP set
selected by multivariate GMDR does not always have
the smallest p-value from GEE model. In our analysis,
note that the SNP set selected by multivariate GMDR
still tends to have quite a small p-value. Secondly, the
test BAs of the multivariate GMDR is not always lar-
ger than those of univariate GMDR. As shown in Fig-
ures 3 to 5, the distribution of test BAs from the
multivariate GMDR is different from those of univari-
ate GMDR. The test BAs of multivariate GMDR are

more densely distributed with a smaller standard
deviation than those of univariate GMDR. Thus, a
direct comparison of test BAs between multivariate
GMDR and univariate GMDR may lead a misleading
conclusion.

The proposed multivariate GMDR can be extended in
many different ways. The modified version BAs which
takes account for the distributional difference is
expected to improve the performance of multivariate
GMDR. The testing procedure using the modified BAs
under the null distribution would enable us to demon-
strate the increase of power of multivariate GMDR. A
prediction score is defined as the sum of elements of

Table 7 Comparison of results for SBP and DBP by multivariate GMDR and hypertension at time 1 (HP,) by GMDR.

No. of Loci Method Best model Train BA Test BA Ccvc

1 Multivariate GMDR with BPs 1511866964 0.539 0.536 9
GMDR with HP, rs4811719 0.542 0.541 4

2 Multivariate GMDR with BPs rs1338574, rs4811719 0.560 0.557 7
GMDR with HP, rs1338574, rs4811719 0.560 0.554 7
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the score vector from GEE model. We are currently
working on several different weighting schemes for
accounting various relationships between phenotypes.
The weighted prediction score is also expected to
improve the performance of multivariate GMDR. In the
future studies, all these extensions will be evaluated
through extensive simulation studies.
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