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Abstract

Background: One of the most important projects in the post-genome-era is the systemic identification of
biological network. The almost of studies for network identification focused on the improvement of computational
efficiency in large-scale network inference of complex system with cyclic relations and few attempted have been
done for answering practical problem occurred in real biological systems. In this study, we focused to evaluate
inferring performance of our previously proposed method for inferring biological network on simple network
motifs.

Results: We evaluated the network inferring accuracy and efficiency of our previously proposed network inferring
algorithm, by using 6 kinds of repeated appearance of highly significant network motifs in the regulatory network
of E. coli proposed by Shen-Orr et al and Herrgård et al, and 2 kinds of network motif in S. cerevisiae proposed by
Lee et. al. As a result, our method could reconstruct about 40% of interactions in network motif from time-series
data set. Moreover the introduction of time-series data of one-factor disrupted model could remarkably improved
the performance of network inference.

Conclusions: The results of network inference examination of E. coli network motif shows that our network
inferring algorithm was able to apply to typical topology of biological network. A continuous examination of
inferring well established network motif in biology would strengthen the applicability of our algorithm to the
realistic biological network.

Background
The investigation of network dynamics in biology is a
major issue in systems and synthetic biology. Recent
advances in high-throughput technologies for comprehen-
sive observation of cells produce a lot of data for analyzing
dynamics of complex system such as gene regulatory net-
works and metabolic pathways. Time-series with dynamic
behavior are one of such data involving enormous amount
of information regarding the regulation of biological net-
work in vivo. However, as such information is entirely
implicit, it requires the development of adequate analytic

and computational methods to reconstruct biological
systems. The key in developing such computational
methods is to build a reliable mathematical model for ana-
lyzing biological networks, and to explore parameter
values in the model within vast searching space. Tominaga
et al. and Maki et al. have developed a novel method [1,2]
inferring conceptual biological networks by the combina-
tion of a dynamical network model called S-system [3]
with a traditional parameter estimation based on simple
genetic algorithms [4,5]. The S-system is based on an
ordinary differential equation, in which the temporal
(time-dependent) dynamic process of system components
are characterized by power-law formalism. The S-system
is suitable for conceptual modeling and describing com-
plex systems with a loop or a cyclic interaction because
the dynamic behavior of the network can be easily
obtained by numerical integration and customized [6].
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The values of interrelated coefficients in the formalism are
directly or indirectly related to the regulation mechanism
in the network model. The inferred network structure
from the inference of parameters provides one of the best
candidates for the biological network structure. However,
S-system requires a large number of parameters that must
be estimated to identify dynamical biological networks;
the number of estimated parameters is 2n(n + 1) (where
n is the number of system components).
We previously proposed efficient procedures for infer-

ring biological network based on experimentally observed
time-series data of mRNA or metabolites [7-10] using
S-system and real-coded genetic algorithms (RCGAs) [11]
with a combination of uni-modal normal distribution
crossover(UNDX) [12] and minimal generation gap(MGG)
[13]. Other groups have also developed several methods
tooptimize parameters using S-system [14-19], Beside of
S-system modeling, a lot of network reconstruction algo-
rithms from time-series have been developed [20-27].
However, most of the works focused on the improvement
of computational efficiency in large-scale network infer-
ence of complex systems with cyclic relations and few
attempts have been done for answering practical pro-
blems occurred in real biological systems. Herrgård et. al.,
Shen-Orr et. al., and Lee et. al. proposed that the gene
regulatory network in Escherichia coli or Saccharomyces
cerevisiae identified by experimental studies is composed
of the limited number of network motif; each motif has
simple form of relationships between transcription factors
and genes [28,29]. Little attention has been paid to evalu-
ate the performance of network inference for such simple
network motifs with dynamical modeling, S-system. In
this paper, in order to evaluate the inferring performance
of our previously proposed network inferring algorithms,
we applied our algorithm to 8 kinds of simple form of
network motifs proposed by Shen-Orr et. al. [29],
Herrgård et. al. [28], and Lee et. al. [30] Shen-Orr et. al.
and Herrgård et. al. suggested repeated appearances of
highly significant motifs. Lee et. al suggested network
motifs based on genome-wide location data.

Results and discussion
Results of network identification
We inferred network candidates 100 times for each
network motif, based on artificial generated time-series
data sets (see Figure 1, 2 and 3). After obtaining 100
network candidates, we calculated precision and recall
(see Figure 4) to evaluate the accuracy and efficiency of
our algorithm from network structural (topological)
point of view. In the case of network inferences for
DOR(Dense overlapping regulation), FF(Feed-forward),
RM(Regulator Module) and TM(Target Module) net-
works, the value of recall becomes around 0.4, which
indicates about 40% of interactions in the network

model are properly reconstructed by our algorithm. The
better case were for RI(Regulatory Interaction), AR
(Autoregulation), and ML(Multicomponent-Loop) net-
work, and our algorithm could reconstruct around 60%
of interactions in the network motif. We also calculated
F-measure to evaluate balance of accuracy and efficiency
of network identification. Also in F-measure, network
identification for RI, AR, and ML network represents
better estimation results compared with DOR, FF,
RM, SIM and TM. On the other hand, the low values of
precision were observed in the all cases, indicating that
network candidates inferred from our algorithms. The
performance of inferring accuracy (precision) was rela-
tively low, namely, the inferred network candidates
contain many false-positive interactions. Figure 5(A)
shows the best case of identified network topology for
SIM (precision : 0.33, recall : 1.0). Figure 5(A) contains
all regulatory interactions in network motif for SIM
(shown in Figure 1(E)). However, this contains many
false-positive interactions, such as self-degradation for
synthetic process, and inhibitory regulation from X2,
X3, and X4 to X1.
However, the lower values of precision were often

observed in our previous works applied to other types of
networks, so that we have already developed a method
to remove the false-positive interactions inferred by par-
allel computing [7,8]. Even though we can apply our
previously proposed method to improve the precision
values, our aim here is to see how both precision and
recall values can be improved by altering the information
content of time-series data.
We thus focus on the inferred network candidates for

SIM since the performance of accuracy and efficiency
(Figure 4(E)) was very low. There is a possibility that the
imbalance between huge degree of freedom in S-system
network modeling and information amount in reference
time-series data yields such low performance of accuracy
and efficiency. In other words, the information content of
the single reference time-series data (shown in Figure 3(E))
is not enough to identify network candidates. To overcome
this situation, we tried to infer network candidates by
testing another kind of time-series data, more strictly,
one-factor disrupted model. We prepared time-series data
for one-factor disrupted model as shown in Figure 6. The
S-system parameters for reconstructing networks are
same as Figure 2 and 3 except the rate constant for the
synthetic process of disrupted factor. We prepared time-
series data for the one-factor disrupted model with the
rate constant for the synthetic process of disrupted factor
i(ai) set to 0.0. We inferred 8 network candidates from
5 time-series data including wild-type (see Figure 3(E))
and one-factor disrupted strain. The comparison
between single and 5 time-series in inferring accuracy
and efficiency is shown in Figure 7. The result shows
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Figure 1 Network motifs. The 8 kinds of network motifs. The nodes shown as X1 to X4 represent regulator or regulon. RI, RM, and TM were
modified by network motifs proposed by Herrgård et al. The structures of RI, RM, and TM were constructed according to the same network
motif proposed by Herrgård et al. The structures of RI, RM, and TM were constructed according to the same concept of network motif proposed
by Shen-Orr et al. The structures of AR and ML were constructed according to the same concept of network motif proposed by Lee al. (A)
Regulatory Interaction (RI): a factor X1 regulates X2, X2 regulates X3, and X3 regulates X4. (B) Regulator Module (RM): a factor X1 regulates a set of
regulons shown as X2 to X4. (C) Target Module (TM): a regulon X4 is regulated by other factors shown as X1 to X4. (D) Feed-Forward (FF): a
regulator X1 regulates X2, and both jointly regulates X4. (E) Single Input Module (SIM): same as RM, a factor X1 regulates a set of regulons shown
as X2 to X4, and also regulates X1 itself. (F) Dense Overlapping Regulation(AR): regulons X3 and X4 were regulated by regulator X1 and X2,
respectively. (G) Autoregulation: X1 regulates X2, X2 regulates X3, X3 regulates X4, and X4 inhibitory regulates X1. (F) Multicomponent-Loop (ML):
X1 regulates X2, X2 inhibitory regulates X3, X3 regulates X4, and X4 inhibitory regulates X1.
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that the performance is remarkably improved compared
with the case in single time-series. We applied the same
data to other motifs (data not shown) and found that the
introduction of time-series data using one-factor disrupted
model can improve the performance of our algorithm.

Conclusions
We applied our previously proposed algorithm to the
network motifs proposed by Herrgård and Shen-Orr. As
a result, the efficiency (recall) of our method exhibited
relatively high in most of network motifs. In particular, in
the Regulatory Interactions (RI) model, we reconstructed
about 68% of interactions in the model. Interestingly, the
performance of network inference for complex regulatory
network including cyclic interactions (AR and ML) was
better than that for simple network analyzed in this
study. It is likely that the abundant information related
to dynamic behavior contained in time-series data for
complex regulatory network constrains the degree of free-
dom S-system modeling, for this reason, the false-positive
or false-negative interactions for complex network are
reduced.
In order to examine how to improve both the accuracy

and efficiency, we attempted to infer the network candi-
dates based on 5 time-series data including time-series

for one-factor disrupted model. In this situation, the
performance of inferring accuracy and efficiency remark-
ably increased. This result suggests that the inferring
performance can be improved by adding other kinds of
time-series data.
Note that the present performance is examined by a set

of data generated from arbitrary given parameter values.
We should test the performance of our method for
various structures of networks with different parameters
as well as for observed data. From practical point of view,
there have been various kinds of data accumulated under
different experimental conditions. The differential infor-
mation content of such data is expected to further
improve the performance of our method. A continuous
examination of inferring well-established network motifs
in biology would strengthen the applicability of our algo-
rithm to the realistic biological network including gene
regulatory networks or metabolic pathways.

Methods
Material
In order to evaluate the applicability of our inferring
algorithm, we prepared 8 kinds of artificial network
models, Regulatory Interaction (RI), Regulator Module
(RM), Target Module (TM), Feed-Forward (FF), Single

Figure 2 S-system representations of 8 kinds of network motif. S-system parameter values for calculating artificial generated time-series
(shown in Figure 3). (A) The S-system representation of RI. (B) The S-system representation of RM. (C) The S-system representation of TM. (D) The
S-system representation of FF. (E) The S-system representation of SIM. (F) The S-system representation of DOR. (G) The S-system representation of
AR. (F) The S-system representation of FF.
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Input Module (SIM), Dense Overlapping Regulation
(DOR), Autoregulation (AR), and Multicomponent-Loop
(ML). Each network model contains a significant net-
work motif in the regulatory network of Escherichia coli
proposed by Shen-Orr et. al. and Herrgård et al [28,29],
and that of Saccharomyces cerevisiae proposed by Lee
et. al [30]. We modified the 8 network motifs to net-
work models consisting of 4 nodes (X1, X2, X3, and X4)
without a loss of each network topology. Figure 1 shows
each network structure analyzed in this paper.
Subsequently, we prepared artificial time-series data

containing 40 sampling points for each network motif
by the numerical integration [6]. The reference time-series
data of 8 network models are shown in Figure 2.

S-system formalism
S-system is a suitable formalism for dealing with gene
expression network or conceptual metabolic pathway
structures. It can sufficiently represent the structure of
organizationally complex system, to capture the essence
of experimentally observed response:

dXi

dt
= αi

n∏
j=1

X
gij
j − βi

n∏
j=1

X
hij
j (i = 1, 2, ...,n) (1)

where n is the number of system components (genes or
metabolites) in the investigating network, Xi is the experi-
mentally observed response (gene expression level for
gene expression network, or concentration of metabolites

Figure 3 Reference time-series. The artificial reference time-series simulated based on 8 kinds of network motif in Figure 1. We prepared these
time-series under following conditions: the number of sampling point is 40, initial value of X1 is 10.0, that of X2 is 7.0, X3 is 3.0, and X4 is 1.0 for
RI, RM, TM, FF, SIM, and DOR. For ML, initial values are X1 = X2 = X3 = X4 = 5.0. We set hii, which represents the interrelated coefficient for self
degradation, at 1.0, and set other hij at 0. (A) The reference time-series of RI. (B) The reference time-series of RM. (C) The reference time-series of
TM. (D) The reference time-series of FF. (E) The reference time-series of SIM. (F) The reference time-series of DOR.
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Figure 4 Network Inferring Performance: Precision, Recall, and F-measure. The resulting accuracy and efficiency for each network motif.

Figure 5 Example of inferred network. (A) Example of inferred network based on time-series of SIM (shown in Figure 2 (E)). (B) Comparison of
reference time-series and calculated time-series by using inferred network (A). (C) Example of estimated S-system parameter set based on time-series
of SIM (shown in Figure 2 (E)).
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Figure 6 Reference time-series of SIM for one-factor disrupted strain. The artificial reference time-series simulated based on same S-system
parameter set shown in Figure 2 except the rate constant for the synthetic process of disrupted factor i (ai). We calculated time-series for
disrupted strain with ai set to 0.0.

Figure 7 Comparison of inferring performance with single and 5 time-series.
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for metabolic pathway’s investigation), ai and bi are appar-
ent positive rate constant, and gij and hij are interrelated
coefficients between Xis.
The first term on the right-hand side of Eq. (1) corre-

sponds to the synthetic process of Xi, and the second
term expresses the degradation process of Xi. The value
of gij(hij) express the interactive effects of Xj to the
synthetic process (degradation process) of Xi. The value
of gij(hij) also determine the structure of the interactions
between Xi and Xj. When the value of gij(hij) is positive,
Xj induces a synthetic process (degradation process) of
Xi. On the other hand, when gij(hij) is negative, Xj

suppresses the synthetic process (degradation process)
of Xi. When the value of gij(hij) is zero, then there are no
effects of Xj on the synthetic (degradation) process of Xj.
The biological network can be inferred by estimating

ai, bi, and hij in the S-system formula. A representation
of S-system parameters to be estimated is shown in
Figure 1.

Real-coded genetic algorithms
The S-system is a formalism of ordinary non-linear
differential equations, and thus the system can easily be
solved numerically by using numerical integration algo-
rithm customized specifically for this formalism [6].
However, when an adequate time-course of relevant
state variable is given, a set of parameter values ai, bi,
gij, and hij, in many cases, will not be uniquely deter-
mined, because it is highly possible that the other set of
parameter values will also show a similar time-course.
Therefore, even if one set of parameter values that
could explain the observed time-course is obtained, this
set is still one of the best candidates that explain the
observed time-courses. Our strategy is to explore and
exploit these candidates within the immense huge
searching space of parameter values.
In this problem, each set of parameter values to be

estimated is evaluated by using following procedure:
Suppose that XCAL

d,i,t is the value of the numerically inte-
grated time-course at time t of state variable Xi in the
d-th data-set, and XEXP

d,i,t represents the experimentally
observed time-course at time t of Xi in the d-th data-set.
Sum up the square values of relative error between XCAL

d,i,t

and XEXP
d,i,t to get the total relative error E;

E =
D∑
d=1

N∑
i=1

T∑
t=1

(
Xexp
d,i,t − Xcal

d,i,t

Xexp
d,i,t

)2

(2)

where D is the total number of data-sets that experimen-
tally observed under the different kind of experimental
conditions such as disruption of genes or inhibition of
kinase activities, N is the total number of experimentally
observable state variables and T is the total number of

sampling points over time in one experimental conditions.
The computational task is to find out a set of parameter
values that minimizes the objective function E. We have
developed the efficient computational technique based on
real-coded genetic algorithms (RCGAs) as a nonlinear
numerical optimization method which is much less likely
to be stranded in local minima. This technique is based on
the combination of the operator called uni-modal normal
distribution crossover (UNDX) [12] with the alternation of
generation model called minimal generation gap (MGG)
model [13]. Furthermore, in order to find the skeletal
structure (small-size system) of the S-system formalism
that explain the experimentally observed response, some
of the parameters (gij and hij), absolute values of which
are less than a given threshold value are to be removed
(reset to zero) during optimization procedures.

Evaluation of identified network
We used the precision and the recall for evaluating the
inferred biological network candidates. The precision is
defined as follows:

precision =
TPall

TPall + FPall
(3)

TPall =
n∑
i=l

TPi (4)

FPall =
n∑
i=l

FPi

where TPi is the number of true-positive interactions
in i-th network candidate, FPi is the number of false-
positive interactions in i-th network candidate, and n is
the number of inferred network candidates. The value
of precision shows the inferring accuracy of biological
network candidates. We also used recall, which indicates
the inferring efficiency of network candidates as follows:

recall =
TPall

TPall + FNall
(5)

TPall =
n∑
i=l

TPi (6)

FNall =
n∑
i=l

FNi

where FNi is the number of false-negative interactions
in i-th network candidates. Both precision and recall
values are defined between 0.0 to 1.0, and the best value
of precision and recall are 1.0.
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For evaluating balance using both precision and recall,
defined as follows:

F – measure =
2 ∗ precision ∗ recall
precision + recall

(7)
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