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Abstract

Background: The miRNAs are small non-coding RNAs of roughly 22 nucleotides in length, which can bind with and
inhibit protein coding mRNAs through complementary base pairing. By degrading mRNAs and repressing proteins,
miRNAs regulate the cell signaling and cell functions. This paper focuses on innovative mathematical techniques to
model gene interactions by algorithmic analysis of microarray data. Our goal was to elucidate which mRNAs were
actually degraded or had their translation inhibited by miRNAs belonging to a very large pool of potential miRNAs.

Results: We proposed two chemical kinetics equations (CKEs) to model the interactions between miRNAs, mRNAs
and the associated proteins. In order to reduce computational cost, we used a non linear profile clustering method
named minimal net clustering and efficiently condensed the large set of expression profiles observed in our
microarray data sets. We determined unknown parameters of the CKE models by minimizing the discrepancy
between model prediction and data, using our own fast non linear optimization algorithm. We then retained only the
CKE models for which the optimized fit to microarray data is of high quality and validated multiple miRNA-mRNA pairs.

Conclusion: The implementation of CKE modeling and minimal net clustering reduces drastically the potential set of
miRNA-mRNA pairs, with a high gain for further experimental validations. The minimal net clustering also provides
good miRNA candidates that have similar regulatory roles.

Keywords: miRNA, Chemical kinetics modeling, Minimal net clustering

Background
Transcriptional and translational processes are funda-
mental cell mechanisms, involving three main molecular
species: messenger RNA (mRNA) and their associated
proteins, as well as microRNAs (miRNAs).
The miRNAs are small non-coding RNAs of roughly 22

nucleotides in length, which can bind with and inhibit
protein coding mRNAs through complementary base
pairing. A given miRNA can potentially bind and silence
hundreds of mRNAs across a number of signaling path-
ways. These repressive miRNA-mRNA interactions occur
in multiple cellular processes [1-3], and involve two dis-
tinct modalities: they may directly degrade their target
mRNAs, or more often inhibit their translation [4-9].
The best characterized features determining the tar-

gets of a specific miRNA are the conserved Watson-Crick
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pairing to the 5’ region (positions 2–7) of the miRNA,
which are the so-called “seed pairing rules” [3,10-13].
Since seed pairing rules are neither sufficient nor neces-
sary for miRNA-target functions [4,14], they have usually
been combined with microarray or proteomic analysis
to find potential miRNA-target pairs[15-17]. Classical
microarray data analysis relies mostly on massive appli-
cation of correlation analysis and linear statistical tech-
niques to simultaneously acquired gene expression pro-
files. Combined with profile thresholding and heat map
displays, these techniques provide commonly used clues
for qualitative inference.
In [18], Principal Component Analysis and linear corre-

lation had been linked with comparative sequence anal-
ysis to study microarray data recorded during mouse
stem cells differentiation, and to broadly predict potential
miRNA-mRNA interactions.
To go beyond the results of the linear microarray anal-

ysis applied on time-course microarray data in [18], we
have formalized two basic architectures for repressive
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miRNA-mRNA interactions: “TranscriptionDegradation”
(TD) and “Translation Inhibition” (TI).
Traditional chemical kinetics equations had been pro-

posed to model the transcriptional and translational
processes without involving the interaction of miRNAs
[19,20].
We have derived Chemical Kinetics Equations (CKEs)

to model the dynamics of TD and TI motifs, in the
spirit of [20-30]. The equations are algebraically invariant
under affine transformation and allow data condensa-
tion to reduce computational cost. We have implemented
“minimal net” clustering method, which can control the
maximum diameter of the clusters, to condense large data
sets of gene expression.
Modeling by nonlinear CKEs involves complicated

parameter estimation problems to fit the very large set
of expression profiles recorded by microarrays. We have
developed innovative fast algorithms dedicated to CKE
parameter estimation, by optimization of the quality of fit
between model and data.
We validate only the parameterized motifs having a high

quality of fit to data. To reach robust conclusions we apply
a “parameter parsimony” principle, favoring the models
having the smallest number of parameters. And we have
also evaluated the robustness of our parameter estima-
tion algorithm by algorithm by direct testing on simulated
data. These tests did validate our parameter estimation
method is quite robust. This nonlinear approach goes fur-
ther than well-established analysis based on correlation
techniques combined with heat map displays.

Methods
Basic interaction architectures
To validate if an miRNA M does indeed repress a given
gene G, we model the chemical interactions of M and G
within a small network containing the pair (M,G). We
now sketch two basic interaction architectures and their
CKE models.

TranscriptionDegradationMotifs (TD-motifs)
We call “TD-motif” any interaction architecture, as
sketched in Figure 1, involving a single miRNA-mRNA

pair (M,G) where G is in Target(M), and M degrades the
transcription of G. The TD motif includes also two sets
of proteins rep(G) and act(G), namely the transcriptional
“repressors” and “activators” of G, denoted by

rep(G) = {R1, . . .Rk} and act(G) = {A1,A2, . . . ,Aq}
Let g(t), p(t),m(t), ri(t), aj(t), be the expression levels at
time t for the chemical species G, P,M,Ri,Aj. We model
the transcription process by a CKE similar to CKEs pro-
posed in [20,22,25,29,30], but with a complementary term
encoding the repressive impact of miRNA M on its target
mRNA G:

dg(t)
dt

= −βg(t) − vg(t)m(t) + κREP(t)[1 − ACT(t)]

(1)

where β > 0 is the degradation rate of G, v > 0 is the
reaction rate between G and M, κ > 0 is the product
of the transcription rate by the concentration c of DNA
templates, concentration which we assume to be some
constant not depending on time (see [20]).
The percentage 0 ≤ F(t) = REP(t)[1−ACT(t)]≤ 1% is

the fraction of existing DNA templates which are commit-
ted at time t to transcription of the mRNA gene G. Here
the percentages REP(t) and ACT(t) are modeled by the
following products,

REP(t) = REP1(t) × . . . × REPq(t)
ACT(t) = ACT1(t) × . . . × ACTk(t)

(2)

where

REPi(t) = 1
(1 + uiri(t))SRi

ACTj(t) = 1
(1 + wjaj(t))SAj

(3)

The parameters SRi > 0, ui > 0 and SAj > 0,wj > 0 are
the number of binding sites and the affinity constant for
the transcriptional factors Ri and Aj.
Note that the transcription repressors Ri combine mul-

tiplicatively their individual impacts REPi in REP(t), and
that the REPi are analogous to Hill function (see [19,25]);

Figure 1 TD-motif and TI-motif.
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similar remarks apply to the transcription activators. The
multiplicative expressions of REP(t) and ACT(t) are typi-
cal of a so-called “cis-regulatory” function and have been
derived by J. Goutsias [20].
The term κREP(t)[1−ACT(t)] dt is the concentration of

new G molecules synthesized by transcription during the
small time interval [t, t+ dt], while the repressive interac-
tions of M and G eliminates vg(t)m(t)dt molecules of G,
and natural decay destructs βg(t)dt molecules of G.

Translation-InhibitionMotifs (TI-motifs)
We call “TI-motif” any interaction architecture, as
sketched in Figure 1, involving a set M1, . . . ,Mr of miR-
NAs inhibiting the translation of mRNA gene G, by
repressing the expression of the protein P generated by
G. Let (p(t),mi(t), g(t)) be the concentrations at time t
of protein P, miRNA Mi, and mRNA G. In the spirit of
[20,21], we model the translation inhibition dynamics by
the CKE

dp
dt

= −γ p(t) + λg(t)H(t) (4)

where γ > 0 and λ > 0 are the degradation rate and
the translation rate for protein P and where H(t) is the
percentage of G molecules committed at time t to the
translation of G. Thus H(t) encodes the inhibiting impact
of the miRNAs M1, . . . ,Mk on the translation of G, and is
modeled as a product of terms similar to REP(t):

H(t) = H1(t) × . . . × Hk(t) where

Hi(t) = 1
(1 + uimi(t))SMi

(5)

The parameters SMi > 0 and ui > 0 are resp. the
number of binding sites and the affinity constant control-
ling the inhibiting impact of miRNAMi on the translation
of gene G. Note that H(t) decreases when the miRNA
concentrations mi(t) increase.
Our model for TI motif has been inspired by J. Goutsias

[20], and we present below the hypotheses and arguments
justifying the expression of H(t). There is a key difference
between the CKEs modeling TD and TI motifs. For TI
motifs, the concentration of G-molecules committed to
translation is g(t)H(t), where g(t) is the concentration of
G-molecules and H(t) < 100%.
For TD motifs, the concentration of G-molecules syn-

thesized by transcription is κF(t) = αcF(t) with F(t) <

100%, where α and c are respectively the transcription rate
and the concentration of DNA templates, assumed to be
constant in time.

Derivation of chemical kinetics equations
Our derivation of the regulation equation for TI motif
is quite similar to presentation given for TD motifs in

[20], but has several changes in assumptions and formu-
lations. To derive the CKEs (1) and (4), we propose a few
hypotheses.

• Hyp. 1: (TD-motifs) The molecules of the miRNA
repressor of gene G can strongly bind only at one
unique specific site of G- molecules, and once a
single such strong bind occurs, the corresponding G
molecule degrades extremely fast.

• Hyp. 2: (TI-motifs) Each miRNAMj in the set rep(G)

of translation inhibitors of G can weakly bind with G
but only at specific binding sites constituting a set
BINDj of size Sj. The sets BIND1,BIND2, . . . are
pairwise disjoint. Once a G molecule thus binds with
one inhibitorMj, then this G molecule will fail to
translate.

• Hyp. 3: For any given G-molecule, call Xj the random
number of sites in BINDj which actually bind with
one “Mj”-molecule. We assume that the random
variables X1,X2, . . . . are independent.

Hyp.1 is based on the fact that only a small fraction of all
messenger RNAs have more than a single miRNA binding
site and miRNA bound with an mRNA gene G has a lim-
ited effect on the mRNA G, but affects more substantially
the protein P generated by G ([4,31].
Consider first any TI motif involving an mRNA gene

G generating the protein P , as well as a set rep(G) =
{M1,M2, . . .Mk} of k translation inhibitors. We now
derive the CKE (4) for this TI motif. Call p(t), g(t),mj(t)
the concentrations of P,G,Mj and let H(t) be at time t
the percentage of existing G molecules committed to the
translation of G into P. The basic CKE driving translation
of G into P is then, as seen in [20],

dp
dt

= −γ p(t) + λg(t)H(t) (6)

where γ , λ, are the degradation and translation rates of P.
The main point is to compute H(t).
For k = 0, there are no translation inhibitors, and hence

H(t) = 100%. For k = 1, letQ[S] be the set ofGmolecules
with exactly S binding sites bound toM1 molecules, where
0 ≤ S ≤ S1. Let q(S, t) be the concentration of Q[ S]
molecules. We have the forward and backward reactions

Q[S]+M1 ⇀ Q[S + 1] and Q[S + 1]⇀ Q[S]+M1 (7)

By molecular collision theory [23], the concentration
ρ(t) of free M1 molecules which bind at time t on Q[S]-
molecules to produce Q[S + 1]-molecules by forward
reaction 7, is proportional to the product of m1(t)q(S, t)
by the number (S1 − S) of vacant binding sites. Hence, for
some constant c,

ρ(t) = c(S1 − S)m1(t)q(S, t) (8)
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Similarly the concentration τ(t) ofM1 molecules freed by
backward reaction 7 is given by

τ(t) = c̃(S + 1)q(S + 1, t) (9)

for some constant c̃. At chemical equilibrium, we have
τ(t) = ρ(t), and hence

q(S + 1, t) = um1(t)
S1 − S
S + 1

q(S, t)

where u is a new constant. By recurrence on S, this implies

q(S, t) = CS
S1 [um1(t)]S q(0, t) where CS

S1 = (S1)!
S! (S1 − S)!

(10)

This entails

g(t) =
S1∑

S=0
q(S, t) = q(0, t)

S1∑

S=0
CS
S1 [um(t)]S

= [1 + um1(t)]S1 q(0, t)

(11)

The set of G-molecules committed to translation into P
at time t is identical to q(0, t). Thus H(t) = q(0, t)/g(t),
and (11) yields H(t) = 1/[1 + um1(t)]S1 .
Using hypothesis Hyp 3, a recurrence on k extends the

argument just given for k = 1, to prove that for k ≥ 1, the
percentage H(t) of G molecules committed to translation
into P is given by:

H(t) = 1
[1 + u1m1(t)]S1

× . . . × 1
[1 + ukmk(t)]Sk

(12)

which proves CKE (4) for TI motifs.
For TD motifs, the cis-regulation function F(t) in CKE

(1) has been derived in [20]. By using hypothesis 1 and
molecular collision theory, we directly deduce that the
concentration the concentration of mRNA G degraded by
miRNA M is proportional to the product of both con-
centrations of G and M. Thus we justify the miRNA
degradation term −vg(t)m(t).

Invariance by affine profile transformations
Affine profile transformations
Call 
 ⊂ Rq the set of all possible expression level profiles
r(t) indexed by time t1, . . . , tq. To any pair T = (a, b) of
real numbers, we associate an affine profile transformation

r → Tr defined by r(t) → (ar(t) + b)

for all time dates t. Let T be the set of all such affine profile
transformations.
In microarray data sets, expression levels of genes are

recorded via optical analysis of fluorescence intensities,
and hence depend strongly on experimental acquisition
modalities. So relative expression levels between pairs of
recorded chemical species are more meaningful quan-
tities, and graphic displays of microarray data by “heat
maps” often involve logarithms of raw data.

Our microarray data record expression levels which as
a first approximation can be viewed as unknown affine
transformations of concentrations. Since our CKEs (1), (4)
were derived for concentrations, we need to check how
these CKEs and their parameters change under generic
affine profile transformations.

Affine invariance of CKEmodels
Consider first a TD-motif involving an mRNA gene G,
a protein P, an miRNA M, transcription repressive pro-
teins R1,R2, . . ., and transcription activating proteins
A1,A2, . . .. The CKE model (1) links the concentrations
g, p,m, ri, aj ofG,M, P,Ri,Aj. Let ĝ, p̂, m̂, r̂i, âj be the corre-
sponding recorded expression profiles. Assume that each
such recorded profiles r̂ is linked to the concentration
profile 4 by some unknown affine profile transformation
Tr.
From CKE (1), one directly deduces that ĝ, p̂, m̂, r̂i, âj

verify a new CKE having an algebraic form completely
similar to CKE (1), but where the original parameters
β , v, κ , ui,wj are replaced by new parameters β̂ , v̂, κ̂ , ûi, ŵj,
and where the integers SR1, SR2, . . ., and SA1, SA2, . . . ,
remain unchanged.
The new parameters are easily expressed in terms of the

original ones and of the coefficients of the affine transfor-
mations, but this is irrelevant practically since we will use
microarray data to directly compute the new parameters
for a CKE of type (1) linking recorded expression levels.
Similar computations for TI-motifs show that this affine

invariance property also holds for CKE (4). Hence to
model a TD or a TI motif, we can fit a CKE model of type
(1) or (4) to recorded expression profiles, even though the
theoretical model justification involved true concentra-
tions, which are not directly measured by microarrays.
The key assumption is that, for each chemical species

C, the expression levels ĉ(t) of C recorded by microarray
are approximately linked to the concentration c(t) of C by
some affine relation ĉ(t) = a(C)c(t) + b(C), where the
unknown coefficients a(C) and b(C) may depend on the
species C.
The preceding algebraic model invariance under mul-

tiple affine profile transformations strongly suggests that
adequate distances between dynamic profiles of recorded
expression levels should be invariant under affine profiles
transformations, as developed in the next section.

Condensation of expression levels profiles
Microarray data typically record several tens of thousands
gene expression profiles. So computational costs to fit
microarray data to all potential TD-motifs and TI-motifs
would of course be prohibitive. A natural option to reduce
combinatorial explosion is to cluster the observed profiles.
Since our goal is to model expression profiles by ODEs

of type (1) and (4), we need to control the diameters of all
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clusters of expression profiles. This led us to reject hier-
archical clustering as well as K-means clustering, and to
implement in the space of expression profiles a “minimal-
net” clustering technique, inspired by an innovative tech-
nique for automatic generation of prototypes in shape
spaces (see [32]). In view of the preceding section, the
diameters of clusters in the space of profiles should be
measured by a distance invariant under affine profiles
transformations.

Affine invariant distance between profiles
Recall that 
 ⊂ Rq is the set of all profiles r(t) indexed by
time dates t1, . . . , tq. The mean and variance of a profile r
are denoted by

r = 1
q
[r(t1) + . . . + r(tq)] ;

var(r) = 1
q
[(r(t1) − r)2 + . . . + (r(tq) − r)2]

Define normalized profiles nor(r) and profiles correla-
tions corr(r1, r2) by

nor(r)(t) = r(t) − r√
var(r)

;

corr(r1, r2) =< nor(r1), nor(r2) >

where < ·, · > is the usual scalar product in Rp.
We then define a distance D(r1, r2) between profiles r1

and r2 by

D(r1, r2) = √
2 − 2 corr(r1, r2))

For any affine profile transformation T in T ,
one has nor(r) = nor(Tr), and hence D(r1, r2) =
D(nor(r1), nor(r2). Thus for any affine profile transforma-
tions T1,T2 , and any profiles r1, r2 one has

D(T1r1,T2r2) = D(r1, r2)

So the profile distance D is invariant by affine profile
transformations

Minimal net clustering
The set 
 of all profiles is now endowed with a distance D
invariant by affine profile transformations. Call mPR the
large set of miRNA profiles recorded at time t1, . . . , tq by
our microarrays. We fix a maximum radius ε for profiles
clusters. We seek to partition mPR into disjoint clusters
CL1, . . . ,CLr such that each CLj has diameter inferior to
2ε, and we also want the number NN of clusters to be as
small as possible. We have implemented an iterative algo-
rithm to generate this type of minimal net clustering, in
the spirit of [32].
Define a distance function D(x, y), where x, y repre-

sent the observations of the data. Denote by D(x,Y ) the

distance between an observation x and a set Y, where
D(x,Y ) = miny∈Y D(x, y). Let Let [x] denote the clus-
ter containing single point x, and 
 be the set of all
observations, the minimal net algorithm is as follows:

1. step 1, let (x1, y1) = argmaxx,yD(x, y). Then let x1
and y1 become the representatives of two initial
clusters. Let CL1 = [x1] ,CL2 = [x2],
C1 = {CL1,CL2} and R1 = 
 \ C1 representing the
remaining points in 
 excluding the 2 clusters.

2. After step n − 1, we obtain
Cn−1 = {CL1,CL2, . . .CLn} and Rn−1 = 
 \ Cn−1,
where CLj is a cluster that has single point,
j = 1, . . . , n + 1.
In step n, let HD = maxx∈Rn−1 D(x,Cn−1),
representing the maximum distance between
observation x in Rn−1 and set Cn−1. If HD > ε, find
xHD = argmaxx∈Rn−1D(x,Cn−1). Let
Cn = {Cn−1, xHD}, Rn = 
 \Cn. Repeat untilHD ≤ ε.

3. Assume the loop stop at step NN, we have
CNN = {CL1,CL2, . . .CLNN+1}. For an observation
x, find the point yCLk , belonging to cluster CLk in
CNN , that is closest to x, i.e.
yCLk = argminy∈CNN (D(x,CNN )), then assign x to
the cluster CLk .

We apply this minimal net clustering algorithm to the
set of all miRNA profiles recorded by our microarrays. We
define the cluster diameter diam(CL) of cluster CL as the
maximum distance of any two observations in the cluster,
i.e. diam(CL) = maxx,y∈CL D(x, y), where. Compared with
the commonly used clustering method such as K-means
and Hierarchical clustering, the minimal net algorithm
allows us to control the diameter of all clusters by set-
ting the threshold ε representing the supremum radius of
the cluster, while the K-means and hierarchical clustering
is often used to determine the number of of clusters but
not their diameters. If we select a very small threshold ε,
the expression levels of genes in the same cluster can be
considered almost identical.

Parameter estimation for the CKEmodels
Parameters estimation strategy
A generic strategy for parameter estimation in CKEs sys-
tems is tominimize a cost function evaluating the discrep-
ancy between model predictions and experimental data.
Each one of our CKE models has a single output vari-
able, namely the expression level g(t) of mRNA gene G
for a TD motif, and the expression level p(t) of protein P
for a TI motif. The output variable g(t) or p(t) of a CKE
model can be estimated by a function ĝ(t) or p̂(t) once one
knows the profiles of all other molecular species involved
in the model. The estimators ĝ(t) or p̂(t) are respectively
determined by CKE (1) or CKE (4).
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Each CKE models is parameterized by a parameter
vector w of dimension npar. The quality of fit of this
model with recorded profiles data is quantified by the size
ERR(w) of the estimation error defined as follows

ERR(w) = max
t

|f (t) − f̂ (t)|

where the output variable f (t) is equal to g(t) for TD
motifs and to p(t) for TI motifs. The concrete goal is to
find the best parameter vector w by minimization of the
lack of fit ERR(w) over all possible values of w.
There are no magic solutions for such non linear mini-

mization problems. Moreover fast computing was essen-
tial here, since we usually have to solve a very large
number of similar “quality of fit maximization” problems
when dealing with large microarray datasets.
We have tested several generic cost minimization

approaches (see [33-35]) such as “genetic algorithms”, as
well as “gradient descent” to minimize a sum of squared
modeling residuals. These two techniques turned out to
require far too much computing time and were often
unreliable due to their high dependence on initialization
values.
We hence developed our own fast CKE parametriza-

tion algorithms to optimize the quality of fit between
CKE models and microarray profiles data. This optimized
quality of fit, adequately balanced by a systematic empha-
sis on parsimoniously parameterized models, becomes an
essential clue to decide which potential interactions one
should validate betweenmiRNAs,mRNAs, and associated
proteins.

Parameters parsimony requirement
Robustness of CKE parametrization is the main motiva-
tion for our parameter parsimony requirements. Consider
CKE (1) modeling a TD-motif TDM involving nact acti-
vators and nrep repressors for the transcription of mRNA
gene G, and one miRNA M degrading the transcription
of G. Then the number npar of unknown parameters is
npar = 3 + 2(nact + nrep). Each profile g(t),m(t), ai(t),
rj(t) is recorded at t = t1, . . . , tp. The CKE outputs for
TDM are g(t1), . . . , g(tp). Hence each microarray data set
provides (p − 1) equations linking the npar unknown
parameters, since the recorded g(t) should be very close
to the predicted values ĝ(t) obtained by solving the ODE
(1) with initial value g(t1).
Vapnik’s results on model fitting (see [36]) show that

robust accuracy of parameter estimates requires fairly
high values of the ratio of (p−1)/npar . So npar << (p−1)
is a necessary constraint, and we will impose the parame-
ter parsimony requirement npar ≤ (p−1)/4. Indeed when
npar > (tp−1), CKEmodels are overfitted and parameters
are poorly estimated.

CKE Parameter estimation
TI-motifs: plausible ranges for parameters
Consider a generic TImotifTIM involving anmRNA gene
G, its associated protein P, and k translation inhibiting
miRNAs [M1, . . . ,Mk]. Let p(t), g(t),mi(t) be the expres-
sion levels of P,G,Mi. We want to model TIM by CKE
(4).
Parametrized by the vector

w = [γ , λ, u1, S1, . . . , uk , Sk]

which involves (2k + 2) ≤ 8 parameters.
The degradation and translation rates γ and λ of protein

P were unknown for most proteins.
According to results from [31], only a small percent-

age 2% of our 30,000 mRNAs have more than 2 potential
binding sites for miRNAs, and only 0.02% mRNAs have
as many as 7 such binding sites. So in our parameter esti-
mations it is reasonable to restrict the number of binding
sites Sj for miRNAMj to be at most 5.

TI-motifs: optimizing the quality of fit
The inputs of CKE (4) are the initial value p(t1) and the
expression levels g(t),m1(t), . . . ,mk(t) recorded at time
dates t1, . . . , tq.
Discretizing the ODE (4) at time t1, . . . , tq, we get

p(tj+1) − p(tj) = −γ p(tj) + λg(tj)H(tj) (13)

where the percentage H(t) is as recalled above . By sum-
mation this implies, for j = 2, 3, . . . . , q − 1 , the relation

p(tj+1) − p(t1) = −γQ(tj) + λL(tj) (14)

where

Q(tj) =
j∑

n=1
g(tn) ; L(tj) = sumj

n=1g(tn)H(tn)

In view of equation (14), when all expression profiles
involved have been recorded until time tj, one can predict
the still unknown value of p(tj+1) by the following natural
estimator p̂(tj+1),

p̂(tj+1) = p(t1) − γQ(tj) + λL(tj) (15)

The quality of fit of this CKE model with recorded pro-
files data will be quantified by the size ERR(w) of the
estimation error numerically computed as follows

ERR(w) = max
j=1,...,q

| p(tj) − p̂(tj) | (16)

which in view of (15) can be reformulated as

ERR(w) = max
j=1,...,T

| πj + μjγ − νjλ | (17)
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where for j = 1, . . . , q we have set

πj = p(tj) − p(t1)μj = Q(tj)νj = L(tj) (18)

We seek a parameter vector w minimizing the cost func-
tion ERR(w) in the parametric domain defined by

γ > 0 ; λ > 0 ; ui > 0 ; 1 ≤ Si ≤ 5

TI-motif: parameter estimation algorithm
For each i = 1 . . . k, fix an arbitrary integer 1 ≤ Si ≤
5. Call m̄i and H̄i the respective medians over time t of
the functions mi(t) and Hi(t). Since the function Hi(t) =
1/[1 + uimi(t)]Si is monotonous inmi(t), we have

H̄i = 1/[1 + uim̄i]Si (19)

The assumption 0 < Hi(t) < 1 yields 0 < H̄i(t) < 1.We
will discretize the possible values of H̄i(t) by constraining
them to belong to a grid h1, . . . , hs of 1 ≤ s ≤ 99 per-
centage values equally spaced in [0, 1]. Since m̄i is known,
we invert equation (19) to compute a corresponding grid
GRDi of s potential values for ui = 1

m̄i
(( 1

H̄i
)1/Si − 1).

Now for 1 ≤ i ≤ k, select and fix arbitrary values ui in
the grid GRDi. After selecting as restrictive above the set
of parameter vector U = [u1, S1, . . .uk , Sk], the function
H(t) is then completely determined for all t.
Note that the set U of all possible such choices for U is

of cardinal inferior toN = (5s)k . Since we do explore each
one of these possibilities separately, we need to keep the
number N at a reasonable level, so we selected s = 99 for
k = 1 , s = 60 for k = 2, s = 20 for k = 3 etc.
Fix any U in U . Since all recorded profiles involved in

the TDmotif are available at time t1, . . . , tq, we can use the
U value to directly compute all the values H(tj), and then
all the numbers πj,μj, νj defined by (18). We want to find
values of the two last parameters γ > 0 and λ > 0 which
will minimize

ERR(γ , λ) = max
j=1,...,q

| πj + μjγ − νjλ |

This problem is equivalent to minimizing the linear objec-
tive function:

�(γ , λ, z) = z

under the (2q + 3) linear inequality constraints

γ > 0 ; λ > 0 ; z > 0
z − (πj + μjγ − νjλ) ≥ 0 for j = 1, . . . , q
z + (πj + μjγ − νjλ) ≥ 0 for j = 1, . . . , q

This is a classical constrained linear programming prob-
lem, which can be solved by well known fast linear pro-
gramming algorithms [37], to provide the optimal values
γ ∗, λ∗, z∗. Then z∗ = ERR(γ ∗, λ∗) is the minimal value of
ERR(γ , λ).

These optimal values are functions γ ∗(U), λ∗(U), z∗(U)

of the partial vector of parameters U in U . We then select
the optimal U∗ in U as the value of U which minimizes
z∗(U) over U . The optimal parametrization w∗ of our TD
motif is then given by w∗ = [γ ∗(U∗), λ∗(U∗),U∗]. This
new parametrization algorithm is fairly fast and has good
accuracy. On a current laptop PC, our non-optimized
MATLAB code implementation required less than 5 min-
utes of CPU time for the parametrization of a typical
TI-model with 38 time points and 9 parameters [38].
After code optimization and a re-implementation in C, we
expect this CPU time to be reduced to 2 minutes. The
algorithm does not require any knowledge of the parame-
ters ranges except for the number of binding sites S, which
is an advantage for the range of reaction rates of of many
molecules of interest are usually unknown.

TD-motifs: parameter estimation algorithm
The parametrization algorithms just presented also apply
to TD models, as we now sketch. The output variable is
now the expression level g(t) of mRNA gene G.
Discretize the ODE (1) at time dates t1, . . . , tq, to get

g(tj+1) − g(tj) = −βg(tj) − vg(tj)m(tj) + κF(tj) (20)

where F(t) is defined in (1). By summation this implies the
relations

g(tj+1) − g(t1) = −βB(tj) − vV (tj) + κK(tj) (21)

where

B(tj) =
j∑

n=1
g(tn) ; V (tj) =

j∑

n=1
g(tn)m(tn) ;

K(tj) = sumj
n=1 F(tn)

When all expression profiles involved have been recorded
until time tj, one can predict the unknown value of g(tj+1)
by the estimator ĝ(tj+1) ,

ĝ(tj+1) = g(t1) − βB(tj) − vV (tj) + κK(tj) (22)

The quality of fit of this CKE model with the recorded
profiles data is quantified by the size of the prediction error
which is a function ERR(w) of the parameter vector w

ERR(w) = max
j=1,...,q

| g(tj) − ĝ(tj) |

so that

ERR(w) = max
j=1,...,q

| τj + ρjβ + ηjv − θjκ | (23)

where we have set

τj = g(tj) − g(t1) ρj = B(tj) ηj = V (tj) θj = K(tj)

The TD model parameters SRi > 0, ui > 0 and SAj >

0,wj > 0 are the number of binding sites and the affinity
constants for the transcriptional factors Ri and Aj. They
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constitute a partial parameter vector U which we restrict
as above by first imposing a moderate upper bound Smax
on all the integers SRi, SAj. and by selecting, also as done
above, adequate finite grids for the values of the ui and
the wj. This constrains U to belong to a finite set U . The
cardinal N of U is forced to remain at most of order 105,
by adequate constraints on Smax and on the coarseness of
the ui grids and the vj grids.
To minimize ERR(w) , we fix as above an arbitrary U

in U . We can then compute all the numbers τj, ρj, ηj, θj .
Since U is fixed, the error size ERR(w) becomes a func-
tion E(β , v, κ) of the last 3 positive parameters (β , v, κ),
still given by equation (23). As above the minimization of
E(β , v, κ) is equivalent to a constraint linear programming
problem where we want to minimize the linear function
�(β , v, κ , z) = z over the following set of (2q + 4) linear
inequalities

β > 0 ; v > 0 ; κ > 0 ; z > 0
z − (τj + ρjβ + ηjv − θjκ) ≥ 0 for j = 1, . . . , q
z + (τj + ρjβ + ηjv − θjκ) ≥ 0 for j = 1, . . . , q

Solving this constraint linear programming problem
generates optimal parameters (β∗, v∗, κ∗) and a minimal
error z∗, which are all functions of U. One concludes as
above by selecting an optimal U∗ minimizing z∗(U) over
all U in U .

Quality of fit for CKEmodels
Consider any TD motif or TI motif A. We have seen how
to compute a parameter vector w∗ optimizing the quality
of fit between microarray data and our CKE model forA.
This was done by minimizing ERR(w) = maxt | f (t) −
f̂ (t) |, where f (t) is the main output variable ofA, and f̂ (t)
is the estimation of f (t) based on the CKE parametrized
by w.
For the optimal CKE parametrization w∗, the lack of fit

to data can then be evaluated by ERR(w∗). However we
have seen in section ‘Invariance by affine profile trans-
formations’ that when comparing two expression profiles
recorded by microarray, natural distances between pro-
files should be roughly invariant by changes of scale for
these profiles. It would then be tempting to replace the
absolute error of estimation | f (t) − f̂ (t) | at time t by the
relative error of estimation |f (t)−f̂ (t)|

f (t) . But relative errors
become quite large whenever the output profile f ((t) is
close to zero. To avoid such spuriously large error val-
ues, while still preserving scale invariance whenever f (t)
is not close to zero, we define the Smoothed Relative Error
of estimation SRE(t) at time t by the following formula,
where f̄ denotes the mean value of the profile f,

SRE(t) = |f (t) − f̂ (t)|
f (t)

when f (t) > 0.15 f̄ (24)

SRE(t) = |f (t) − f̂ (t)|
f̄

when f (t) ≤ 0.15 f̄ (25)

We finally quantify the Modeling Error MODER for the
optimally parametrized CKE model of motifA by

MODER = max
t

SRE(t)

Results and discussion
Examples of application
We implemented our model of TI on microarray data
of mouse stem cells undergoing RA-induced differen-
tiation, as provided by LC Science Inc, and previously
analyzed by classical techniques in [18]. We took the
recorded expression profiles for proteins/mRNAs GCNF,
Oct4, Nanog and Sox2 at time points (0, 1.5, 3, 6)/(0, 3,
6) and expression levels for 266 miRNAs on days 0, 1, 3,
6 from [38] during ES cell differentiation. These profile
data were interpolated at 19 intermediary time points, by
Piecewise Cubic Hermite Interpolation (PCHIP) and the
number of parameters were limited to be 4, i.e. only 1
upstreammiRNAwas selected for themodel, to satisfy the
parameter parsimony requirement.
For miRNA Mi, the following linear transformation,

which could be viewed as normalization, was done:

m̂i(t) = mi(t) − m̄i(t)
σ (mi)

+ 1

where σ(mi) = √∑
t(mi(t) − m̄i(t))2, t = 0, 1/3, . . . , 6.

Since ‖ mi(t)−m̄i(t)
σ (mi)

‖≤ 1, m̂i(t) is positive for t =
0, 1/3, . . . , 6. Taking ε = 0.15, we applied Minimal
Net clustering (the MATLAB code can be downloaded
through Additional file 1) to the transformed data of miR-
NAs, m̂i(t), i = 1, 2, . . . , 266, and obtained 107 clusters,
in which the maximum cluster contains 14 miRNAs. We
consider that the miRNAs belonging to the same cluster
share the same normalized expression level within a neg-
ligibly small error. For each cluster CLj, j = 1, . . . , 107, we
determine the miRNA MCj which is the representative of
the cluster CLj for the distance D , and we let mcj(t) be
the expression level ofMCj at time t. We callmcj(t) is the
expression level of cluster CLj.
We successively implemented the TI model with only

one repressor miRNA (the MATLAB code can be down-
loaded through Additional file 2). After parametric mod-
eling of our pre-selected 107 TI motifs, and evaluation
of their quality of fit, we have validated only 3 clusters
of miRNAs as translational inhibitors repressing protein
Oct4. If an miRNA in CLj is validated by modeling as a
potential repressor, all other miRNAs belonging to CLj
are also potential repressors and can be validated numer-
ically as well by the form invariability of the model under
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affine transformation. Here we present one of these three
validated miRNAs of Oct4 (see Figure 2), where the cen-
troid of the cluster is miRNA mmu-miR-10a, while the
other 6 miRNAs in the cluster are mmu-miR-203, 330,
342, 470 and 99b. We used TarBase [39] to search all the
experimentally validatedmiRNAs targeting Oct4 (Pou5f1)
in Mus musculus. By TarBase, only mmu-miR-470 has
been experimentally validated and it is also numerically
validated by our TI model.
For protein GCNF, only two miRNAs, mmu-let-7b and

mmu-let-181a, have been experimentally validated by Tar-
Base and both of them belong to the list of the 20 miRNAs
numerically validated by our TI modeling (we presented
the validated cluster containing mmu-let-7b in Figure 3).
Our modeling approach did not validate any miRNA
repressing both proteins Nanog and Sox2, while there
are 3 miRNAs and 1 miRNA experimentally validated as
separate repressors of Nanog and Sox2 respectively.
We here also present one example of TD motif for

downstream factor mRNA Sox2 (Figure 4). With the
assumption that the transcription factors are proteins
Oct4 and Nanog [38], we validated cluster mmu-miR-
134, 30a-3p, 30b, 335, 431, 433-3p, 434-3p, and 487b
as degraders. Although (mmu-miR-134, Sox2) is also an
experimentally tested pair, we will not discuss deep in
detail the validation results of the TD motifs in this
paper. The main reason is that the validation results
of TD motifs depends much on our knowledge of the

transcription factors. More discussion is in the subsection
below.

Discussion
In [38], we pre-selected the potential miRNAs for each
gene/protein by TargetScan 5.0 and miRanda before
applying the two models. The pre-selection of miRNA
candidates were not necessary though it greatly reduced
the computational cost. However, the application of the
CKE modeling was dependant on the target prediction
algorithm, such as TargetScan or miRanda. Therefore,
we introduced Minimal Net Clustering in this paper so
that the data was condensed and the computational cost
could be reduced by a purely numerical method without
biological bias.
Since the results of TD model depend on information

of transcription factors, the modeling validates not only
miRNAs acting as mRNA degraders but also upstream
transcription factors simultaneously. In [38] we numeri-
cally validated proteins GCNF, Oct4 and Nanog as tran-
scription factors for mRNAs Oct4 and Nanog, while Mar-
son et al. and Boyer et al. [40,41] claimed that Oct4
and Sox2 are bounded and act together with Nanog as
transcription factors. Considering the impact of the tran-
scription factors, the TDmodeling may be less convincing
unless the transcription factors are fixed as experimentally
validated. In this paper we presented more details on the
implementation and validation results of the TI model in
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Figure 2 Example of validated TI motif. Example of TI motif repressing Oct4. All expression profiles are over days 0–6. Upper 6 profiles: normalized
expression levels of numerically validated miRNAs in the same cluster: mmu-miR-10a, 203, 330, 342, 470 and 99b. Bottom 2 profiles: Blue line =
recorded levels. Red dash line = predicted levels. “MODER” is the model global relative error of prediction.
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Figure 3 Example of validated TI motif. Example of TI motif repressing GCNF. All expression profiles are over days 0–6. Upper 6 profiles:
normalized expression levels of numerically validated miRNAs in the same cluster: mmu-let-7b, let-7g, let-7i, miR-106b, miR-122a, miR-98. Bottom 2
profiles: Blue line = recorded levels. Red dash line = predicted levels. “MODER” is the model global relative error of prediction.
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Figure 4 Example of validated TDmotif. Example of TD motif repressing Sox2. All expression profiles are over days 0–6. Upper 8 profiles:
normalized expression levels of numerically validated miRNAs in the same cluster: mmu-miR-134, 30a-3p, 30b, 335, 431, 433-3p, 434-3p, 487b.
Bottom 2 profiles: Blue line = recorded levels. Red dash line = predicted levels. “MODER” is the model global relative error of prediction.
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order to focus on the validation of miRNAs and avoid the
influence of assumptions of transcription factors.
TarBase shows that, for protein GCNF the experi-

mentally validated miRNAs are mmu-let-7b and mmu-
miR-181a; for protein Oct4 the experimentally validated
miRNA is mmu-miR-470; for protein Nanog the exper-
imentally validated miRNAs are mmu-miR-134, mmu-
miR-470, and mmu-miR-296; for protein Sox2 the experi-
mentally validatedmiRNA ismmu-miR-134. In this paper,
we have validated by TI modeling and minimal net clus-
tering all the experimentally tested miRNA repressors of
GCNF and Oct4. In our previous work [38], actually none
of these miRNA repressors had yet been studied for mod-
eling for the four proteins because of the restriction of
pre-selection. And only the pair (mmu-miR-181a, GCNF)
was validated by the classical correlation analysis done in
Gu et al. [18] for the 4 proteins GCNF, Oct4, Nanog, Sox2.
Therefore, the TI modeling combined with data con-
densation not only reduced computational cost but also
clearly extended the set of miRNA inhibitors validated by
model fitting to microarray data.
Since each numerically validated miRNA cluster may

contain two or more miRNAs, the miRNAs in the same
cluster could also be considered as potential candi-
date inhibitors for further experiments to validate. For
instance, as Figure 2 shows, mmu-miR-203, 330, 342, 10a
and 99b are potential candidates for protein Oct4 for
they are in the same cluster as mmu-miR-470, which is

validated by both the numerical modeling and experi-
ments.
After the pair (mmu-miR-181a , GCNF) was well vali-

dated by our CKE model, we found that the cluster (see
Figure 5, top left) containing mmu-miR-181a also includes
mmu-miR-103 and mmu-miR-107, which are two known
miRNAs that have the same roles in regulating insulin
sensitivity and promoting metastasis of colorectal cancer
[42,43]. We also checked that miR-103 and miR-107 have
almost the same mature sequences:

mmu-miR-103: AGCAGCAUUGUACAGGGCUAUGA
mmu-miR-107: AGCAGCAUUGUACAGGGCUAUCA

After the pair (mmu-let-7b, GCNF) was well validated
by our CKE model, we observed mmu-let-7g, and mmu-
let-7i are in the same cluster as mmu-let-7b (see Figure 5,
top right). It was claimed that let-7b and 7g reduce tumor
growth in mouse models of lung cancer [44]. We then
checked that indeed these threemiRNAs have very similar
mature sequences, namely

mmu-let-7b: UGAGGUAGUAGGUUGUGUGGUU
mmu-let-7g: UGAGGUAGUAGUUUGUACAGU
mmu-let-7i: UGAGGUAGUAGUUUGUGCUGU

To evaluate the correlation between mature sequence
and expression profile of our set of 266 miRNAs, we
systematically explored all the 266 × 265/2 = 35, 245
pairs (miri,mirj) of distinct miRNAs in this set, i 
=
j, i, j = 1, . . . , 35245. For each such pair we then computed
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Figure 5miRNA clusters and analysis of mature sequences and expression levels. Top left, expression profiles for a cluster of 7 miRNAs. Top
right, expression profiles for a cluster of 6 miRNAs. Bottom left, the blue curve is the quantile curve of expression distances for miRNA pairs with high
alignment scores (NWA > 10), the red curve is the analogous quantile curve for miRNA pairs with low alignment scores (NWA ≤ 10). Note that the
blue curve lies below the red curve indicates that when NWA increases, then expression distance tends to stochastically decrease. Bottom right,
similar to bottom left but the NWA threshold changes to NWA = 15.
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the Euclidean distance between the expression level pro-
files (expression distance in short) and the Needleman-
Wunsch alignment score (NWA) between the mature
sequences of each miRNA pair. We then divided the
35,245miRNA pairs into two groups: GroupHigh includes
the pairs with high alignment score (NWA > 10), i.e.
GroupHigh includes miRNA pairs with similar mature
sequences, and GroupLow includes the pairs with low
alignment score (NWA ≤ 10). We then compared the
distribution of expression distances for all miRNA pairs
in GroupHigh with the distribution of these distances for
miRNA pairs in GroupLow. As seen in Figure 5 (bot-
tom left), the quantiles of these distances in GroupLow
are consistently larger than the corresponding quantiles
in GroupHigh. This is fully confirmed by Kolmogorov-
Smirnov test which yielded the very significant p-value
7 × 10−32. The result still holds when we change the
alignment score threshold NWA = 10 used to define
GroupHigh and GroupLow (see Figure 5, bottom right,

where the NWA threshold is now NWA = 15). We
conclude that miRNAs having similar mature sequences
tend, with high probability, to have similar expression
levels. The above analysis and examples indicate that
miRNAs belonging to the same cluster are good candi-
dates to have similar mature sequence. Since the match
between miRNA mature sequence and target sites is the
main determinant for miRNA targets, miRNAs belong-
ing to same cluster may hence also have similar regulatory
roles.

Robustness of parameter estimation
Estimation algorithms for nonlinear models may yield
parameter estimates that are dependent on the particu-
lar set of data or on initial estimates of parameters. Since
our parameter estimation algorithm is independent from
initial estimates of parameters, we now focus on on the
measurements errors affecting microarray data and on
their impact for parameter estimation. Considering that
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Figure 6 Histogram of re-estimated parameters for a TDmodel. a) the histogram of re-estimated parameter β , degradation rate of Sox2, the
originally estimated β value of the model is below the graph. b) the histogram of re-estimated parameter κ , transcription rate of Sox2, the originally
estimated κ value of the model is below the graph. c) the histogram of re-estimated parameter v, reaction rate of Sox2 and mmu-mir-21, the
originally estimated v value of the model is below the graph. d) the histogram of re-estimated parameter μ1, reaction constant of Sox2 and Oct4,
the originally estimated μ1 value of the model is below the graph. e) the histogram of re-estimated parameter μ2, reaction constant of Sox2 and
Nanog, the originally estimatedμ2 value of the model is below the graph. f) the histogram of re-estimated parameter S1, S2, number of binding
sites of Oct4 and Nanog on Sox2 respectively, the originally estimated S1 and S2 value of the model is below the graph.
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the noises of the microarray data are not negligible, we
have analyzed the robustness of our parameters estima-
tors when one perturbs randomly the observed expression
levels of miRNAs. We have selected an arbitrary vali-
dated model MD, where the corresponding downstream
factor is denoted as D, and has expression levels d(t).
Denote miRNAs M1, . . . ,Mj pertaining to model MD
and call their expression levels m1(t), . . . ,mj(t). Then we
have perturbed the expression levels of the miRNAs by
independent random noises having the recorded stan-
dard deviation σ1(t), . . . , σj(t) and obtained simulated
expression levels sm1(t), . . . , smj(t). After injecting the
perturbed expression levels sm1(t), . . . , smj(t) into the
model MD and get the predicted expression level pd(t)
of D. With pd(t),m1(t), . . . ,mj(t) and expression levels of
other upstream factors, we then applied our parameter
estimation algorithm to re-estimate the model parame-
ters. This procedure was repeated 100 times. Then for
each model parameter, we plotted the histograms of those
100 re-estimated parameter values and compared them
with the parameter values estimated from unperturbed
data of model MD. This analysis showed that our param-
eter estimation algorithm is quite robust. Here we present
the histograms of perturbed estimates of model param-
eters for one TD motif (Figure 6) and one TI motif
(Figure 7).

Conclusion
We have separately modeled by chemical kinetics
equations the 2 distinct modalities of the repressive
actions of miRNAs on post-transcriptional processes of
mRNA genes and the associated proteins. This was
achieved by first defining the formal structure of two types
of interaction architectures (Transcription Degradation
motifs and Translation Inhibitionmotifs ) linkingmiRNAs
to subgroups of mRNA genes. The plausibility of each
one of these potential TD motifs or TI-motifs was then
evaluated by computerized parametric modeling, based
on microarray data, of adequate formal chemical kinetics
equations (CKEs).
We have sketched the formal derivation of 2 spe-

cific CKEs modeling by dynamic ODEs the interactions
between concentrations of different species of molecules
involved in each architecture. This led to a motif valida-
tion strategy based on the quantified quality of fit between
our optimally parametrized models and the correspond-
ing microarray data.
Our computerized parameter estimation is imple-

mented by an innovative fast algorithm that does not
require knowledge of range of molecular reaction rates.
On a current standard laptop PC, our implementation
of parameter estimation for a typical 9-parameters CKE
model requires about 5 minutes of computing time.
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Figure 7 Histogram of re-estimated parameters for a TI model. a) the histogram of re-estimated parameter γ , degradation rate of GCNF, the
originally estimated γ value of the model is below the graph. b) the histogram of re-estimated parameter λ, translation rate of GCNF, the originally
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Our parameter estimation algorithm also provides rela-
tively high-quality optimization for the fit between model
and microarray data, by integrating both global and local
cost minimization techniques, in contexts where plausible
ranges of values for most of the unknown parameters are
not available in the literature. By perturbing the expres-
sion levels of miRNAs and re-estimating the parameters,
we showed that our parameter algorithm has a satisfactory
level of robustness.We believe that our parameter estima-
tion technique with associated evaluation of quality of fit
would be quite applicable as a generic algorithm to simi-
lar problems in chemical kinetics modeling of molecular
interactions.
Modeling very large microarray data is computationally

quite expensive.We have hence sketched clustering meth-
ods to condense large microarray data. This approach has
of course been attempted before our work, but the main
point is that we have carefully studied the mathematical
compatibility of our CKE models with condensation of
the profiles data. Since we have proved that the abstract
form of our CKE models is invariant by arbitrary multiple
affine transformations of profiles data, we have made sure
to constrain the distance of two expression levels profiles
to be invariant by these types of affine transformations.
We have implemented a Minimal Net Clustering algo-

rithm based on this distance, which allows us to control
the radius of the clusters. The number of CKEs to param-
eterize can be strongly reduced after condensation of the
large data sets, and the affine invariance of our CKEs
show that the condensed genes network can then still be
modeled by similar CKEs.
By applying our TI modeling to multiple proteins such

as GCNF, Oct4, Nanog, Sox2, we showed that 3 miRNA-
target pairs experimentally validated can be also validated
by the TI model.
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