de Hijas-Liste et al. BMC Systems Biology 2014, 8:1
http://www.biomedcentral.com/1752-0509/8/1

BMC
Systems Biology

RESEARCH ARTICLE Open Access

Global dynamic optimization approach to
predict activation in metabolic pathways

Gundidn M de Hijas-Liste!, Edda Klipp?, Eva Balsa-Canto'” and Julio RBanga'”

Abstract

considered a single-objective framework.

topologies, non-linear dynamics and constraints.

pathways, Gene expression

Background: During the last decade, a number of authors have shown that the genetic regulation of metabolic
networks may follow optimality principles. Optimal control theory has been succesfully used to compute optimal
enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more
general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems
that are analytically intractable and/or numerically very challenging. Further, these previous studies have only

Results: In this work we consider a more general multi-objective formulation and we present solutions based on
recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of
these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing
complexity taken from the recent literature. We analyze the multimodal character of the associated non linear
optimization problems, and we also evaluate different global optimization approaches in terms of numerical
robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several
examples, and we show how this framework results in more biologically meaningful results.

Conclusions: The proposed strategy was used to solve a set of single-objective case studies related to unbranched
and branched metabolic networks of different levels of complexity. All problems were successfully solved in
reasonable computation times with our global dynamic optimization approach, reaching solutions which were
comparable or better than those reported in previous literature. Further, we considered, for the first time,
multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best
trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary
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Background

Optimality principles have been successfully used to
describe the design, organization and behavior of bio-
logical systems at different levels. Sutherland [1] argues
that optimization can in fact play an even major role,
allowing biology to move from just describing mecha-
nisms to being able to predict, from first principles, how
organisms should be designed. In the context of cell biol-
ogy, mathematical optimization has been the underlying

*Correspondence: ebalsa@iim.csic.es; julio@iim.csic.es

1 Bioprocess Engineering Group, Spanish National Research Council, IIM-CSIC,
C/Eduardo Cabello 6, 36208 Vigo, Spain

Full list of author information is available at the end of the article

( ) BiolVled Central

hypothesis in applications such as flux balance analysis
[2], the analysis of activation of metabolic pathways [3-7],
model identification (including parameter estimation and
optimal experimental design) [8] and optimal stimula-
tion procedures to achieve a desired biological behavior
[9-11].

Here we focus on the problem of enzyme activation
in metabolic networks, which has received substantial
attention in the recent literature. Several authors have
shown that the genetic regulation of metabolic networks
may follow an optimality principle, such as the mini-
mization of the transition time or the maximization of
the production of a given metabolite. In their seminal
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work, Klipp et al. [4] showed how sequential gene expres-
sion appears in unbranched metabolic networks under
the hypothesis of minimum transition time. The sequence
matched the enzyme order in the pathway. This “ust-
in-time” activation pattern was experimentally confirmed
later for the case of the amino-acid biosynthesis sys-
tems of E. coli [5]. These authors also showed that in
the arginine, methionine and serine systems, the ear-
lier the enzyme is involved in a pathway, the shorter
is the response time and the higher the maximal pro-
moter activity of the corresponding gene. Evidences of
temporal distribution of enzymes were also found in the
lysine biosynthesis pathway by E. coli [12]. Chechik et
al. [13] proposed the notion of activity motif to sys-
tematically study the dynamic behavior of metabolic
networks. As a case study they considered the tran-
scriptional response of metabolic genes after a sudden
change in environmental or nutritional condition in S.
cerevisiae. These authors also found that enzymes in
a metabolic chain are induced in the same order they
are used in the pathway in both directions forward and
backward. All these results support the idea that “usz-
in-time” activation in metabolic pathways is a widespread
phenomena.

These works indicate that, starting with a mathematical
model of a given metabolic network, it is in principle pos-
sible to anticipate activation profiles for specific cellular
objectives solving the corresponding dynamic optimiza-
tion problem. Needless to say, the results obtained must
be compared with existing or new experimental mea-
surements. In this dynamic optimization framework, the
objective is to compute time varying control profiles, usu-
ally enzyme concentrations or the corresponding expres-
sion rates, so as to minimize a given cost function, such
as the time needed to reach a given amount of product,
subject to the system dynamics (the model) and alge-
braic constraints, for example in the maximum amount of
enzyme available.

However solving this class of optimization problems for
arbitrary metabolic networks of certain complexity is still
a challenge. So far, the literature reports applications in
very simple scenarios. Oyarzun et al. [6,14] suggested the
application of classical optimal control theory, giving an
analytical proof of sequential activation for unbranched
networks for the case the transition time is to be mini-
mized subject to specific constraints. Almost in parallel,
Bart et al. [7,15] also considered the maximum princi-
ple of Pontryagin to solve related examples. Although
successful for simple unbranched pathways, these works
suggest that the use of indirects approaches from opti-
mal control theory, such as the maximum principle of
Pontryagin or the use of the Hamilton-Jacobi-Bellman
equation, may not be appropriate to deal with general
problems (such as those related to branched and/or large
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networks) due to the complexity of the resulting numeri-
cal problems.

It is also important to highlight that all these authors
have studied enzyme activation in metabolic networks
considering that the metabolism is optimal with respect
to a single-objective. We believe that a more realis-
tic approach is to take more than one objective into
account. Multi-objective optimization has been success-
fully applied in several classes of biological problems
[16], including metabolic engineering [17,18], the heat-
shock response of bacteria [19], and the allosteric reg-
ulation of enzymes [20]. These and other recent works
[21-23] illustrate the importance of studying optimality
as the trade-off between conflicting objectives, such as
economy (cost) and effectiveness (benefit), in order to
obtain results with more biological meaning. It should
be noted that multi-objective optimization problems do
not have a unique solution, but a set of optimal solu-
tions known as the Pareto front. All Pareto solutions
are optimal but represent different trade-offs between
objectives.

Here we consider, for the first time, a multi-objective
formulation to explain activation in metabolic net-
works. It should be noted that several authors [6,14,24]
have considered composed objective functions, such us
combinations of transition time and enzyme consump-
tion, thus obtaining only one of the possible Pareto
solutions instead of a Pareto front. In this work we
adopt a general multi-criteria framework and we pro-
pose the use of advanced numerical dynamic optimiza-
tion techniques to study/predict enzyme activation in
general pathways. The underlying idea is to combine
the control vector parameterization (CVP) approach
with adequate global optimization techniques. This new
methodology can be applied to metabolic networks
with arbitrary topologies, non- linear dynamics and
constraints.

We then illustrate the approach with two sets of prob-
lems. First, a set of single-objective examples of increasing
complexity taken from the literature. The multimodality
of these problems is evaluated by means of multi-start
local deterministic methods. The need of global optimiza-
tion methods arises from the non-convexity of the general
problem, due to the frequent bi-linear terms for the con-
trols, the non-linear character of the systems dynamics,
and the presence of (nonlinear) constraints [25]. As a con-
sequence, the use of standard local optimization methods
results in local solutions. To surmount these difficulties,
we also present a metaheuristic approach which is com-
pared with several other stochastic global optimization
methods. Second, we consider the multi-objective formu-
lation of several problems, illustrating how activation in
metabolic pathways can be explained in terms of the best
trade-offs between conflicting objectives.
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Methods

Problem formulation

The aim of the general multi-objective dynamic opti-
mization problem is to compute the time varying control
profiles and the final time (u(¢),r) so as to minimize
(or maximize) a given set of cost functions (J) subject to
the system dynamics and possibly algebraic constraints.
Mathematically this reads:

min J [x, u] (1)
u(t),tf
Where:
Jilxu
J2[xu
Toul=| "
Jn [x, 0]
Subject to:
DX [x(e)u(eh 0 x (t0) = xo )
dt
h(x(®),u@®)]=0 3)
glx(@®),u(®] <0 (4)
ph[x(%),u(t)]=0 (5)
pglx(), u(t)] <0 (6)

u* <u(®) <u

<

(7)

where:

e The costs functional (1) corresponds, for example, to
the time needed to reach a given state of the system
or the enzyme cost. In a single-objective problem
JIx,u]l =/1[xu];

e x is the vector of state variables, typically metabolite
concentrations;

® u is the vector of control variables: enzyme
concentrations (e) or expression rates (r);

e Equation (2) represents the system dynamics
(dynamic mathematical model of the network);

e Equations (3)—(4) represent equality and inequality
path constraints, such as the total amount of enzyme
available during the process;

e Equations (5)—(6) represent equality and inequality
point constraints, i.e. those that must be verified at a
given time, for example the amount of metabolite at
the end of the process;

e Equation (7) corresponds to the upper and lower
bounds for the control variables, for instance the
minimum and maximum enzyme available through
out the process.

Numerical methods
Roughly speaking, numerical methods for the solution
of dynamic optimization problems can be classified into
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two groups: direct and indirect methods. Indirect meth-
ods solve the optimization problem using the Pontryagin’s
maximum principle. This method is based on the transfor-
mation of the original problem using the necessary opti-
mality conditions of Pontryagin. This results in a two or
multi-point boundary value problem, in the presence the
constraints, to be solved for state and co-state variables.

Direct approaches, such us complete parameterization
(CP, [26]), multiple shooting (MS, [27]) or control vec-
tor parameterization (CVP, [28]) transform the original
problem into a non-linear programming problem (NLP)
by means of the discretization and approximation, either
of the control variables or both the control and state vari-
ables. The main differences among these methods are the
number of decision variables, the presence or absence of
parameterization constraints and the necessity of using an
initial value problem solver. The use of CP or MS results
in larger NLP problems with junction constraints to han-
dle the system dynamics, which requires the use of specific
optimization methods and may be computationally inten-
sive for large scale dynamic systems. Therefore the CVP
method is selected here.

Control vector parametrization

In the CVP approach the time horizon is divided into
a number of p time intervals, with variable or fixed
length. The control variables are then approximated
within each interval by means of low order polynomials.
With this parametrization the original dynamic optimiza-
tion problem is transformed into a non-linear program-
ming problem with dynamic and algebraic constraints.
The non-linear programming problem obtained must be
solved by employing a suitable NLP method and an initial
value problem solver.

Nonlinear programming methods
Nonlinear programming methods are basically classified
in local and global methods. Local methods are designed
to converge to the closest solution to the initial guess.
The iterates are computed by means of the cost func-
tion value or the gradient and/or the Hessian of the
cost function with respect to the decision variables. In
addition there are implementations that are able to auto-
matically handle constraints. In the context of dynamic
optimization, Sequential Quadratic Programming (SQP)
methods, which guarantee feasibility of the solution at
convergence, or feasible SQP methods, which guarantee
feasibility throughout the optimization, have shown to be
efficient in the solution of large-scale constrained NLPs.
Unfortunately, NLPs arising from the application of
direct approaches (such as CVP) are frequently multi-
modal. This is particularly the case in the presence of
non-linear or bi-linear dynamic constraints (as in the
problems considered in this work) or when variable length
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elements are used in the CVP approach. Therefore, local
optimization techniques may converge to local optima. A
multi-start of local methods may help to analyze multi-
modality of the optimization problem. Interested readers
will find illustrative examples in the Additional file 1.

Stochastic global optimization methods are robust alter-
natives for the search of the global solution. However
these methods are well known to be particularly inef-
ficient in the refining of the solutions. In this concern,
Balsa-Canto et al. [29], presented the combination of a
stochastic global solver with a deterministic local method
in a so called sequential hybrid approach for the solution
of dynamic optimization problems. That work highlights
the role of the tuning of the hybrid, i.e. the selection
of the methods and the switching point, in the overall
performance of the method. However several examples
illustrated the benefits of the combination with respect
to the individual solvers in the sense of robustness and
efficiency.

Recent works [30,31] show how the scatter search meta-
heuristic in combination with local methods outperforms
previous sequential hybrid methods in the solution of
complex optimization problems. The key property of this
approach is that the switching points are automatically
selected by the algorithm based on a balance between
quality and diversity among the solutions generated in
every iteration.

Based on the above, the following methods were
selected attending to their previously reported perfor-
mance:

e SRES, the stochastic ranking evolution strategy
method [32]. An evolutionary approach that is able to
handle constraints by means of the stochastic ranking
approach.

e DE, differential evolution [33]. It is based on the
generation of new solutions by adding the weighted
difference between two population vectors to a third
vector. The method was complemented with a death
penalty function approach to handle constraints.

e Sequential hybrids of SRES or DE with different
implementations of successive quadratic
programming methods.

e eSS, scatter search [34] in combination with different
implementations of successive quadratic
programming methods.

Multi-objective optimization methods

In contrast to the single-objective case, the aim in a multi-
objective case is to find the optimal trade-offs between
conflicting objectives. The notion of a single optimal solu-
tion is replaced by the notion of a Pareto front, i.e. a
set of optimal trade-off solutions. All solutions in this
set are optimal in the sense that it is not possible to
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improve one of the objectives without degrading one or
more of the others. The weighted sum or the ¢ —constraint
approach transforms the multi-objective problem into a
set of single-objectives problems whose solutions result in
the Pareto front. However the use of the weighted sum
presents a number of drawbacks such as the impossibil-
ity to recover non-convex area in the Pareto front or the
selection of weigths to obtain a uniform distribution of
Pareto solutions. In view of this, the e —constraint method
[18] was selected here. The underlying idea is to solve a
set of single-objective problems where one objective (/) is
to be minimized while the others (J;) are incorporated as
inequality constraints. Mathematically this reads as:

. ’ 3
un(rgrtlf Jp [x, 1] (8)
Subject to:
Jilxul<e i=1.,n and i#p 9)

The Pareto front is obtained modifying the upper-
bounds of the constraints. Each of the single-objective
problems was solved using control vector parametrization
combined with the eSS scatter search solver.

Results and discussion

This work considers the solution of two sets of exam-
ples. The first set consists of single-objective problems
taken from the literature. All these problems were initially
solved with a multi-start of local methods to analyze their
possible multimodal nature. Since all problems appeared
to be multimodal, a selection of global and hybrid meth-
ods were then used to find the global solution for each
case study. The details are listed in Additional file 1,
showing that scatter search (eSS) offered the best compro-
mise between efficiency and robustness. A second set of
problems considered a more general multi-objective for-
mulation. The ¢—constraint approach and scatter search
(eSS) were subsequently used to solve this second set of
problems, enabling us to obtain the optimal trade-offs
between different objectives. A detailed analysis of the
resulting enzyme activation profiles revealed the “just-in-
time” activation is still present in multi-criteria optimality.
The examples considered are summarized in Table 1.
Results are presented and discussed below.

Three-step linear pathway with mass action kinetics
(LPN3B)

This example was originally formulated by Bartl et al.
[7] and solved by means of the maximum principle of
Pontryagin. The pathway (Figure 1A) consists of three
enzymatic reactions with mass action kinetics, each reac-
tion catalyzed by a specific enzyme (e;). S; corresponds
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Table 1 Summary of the pathways considered together with the objectives used for each example

Label Short description Problem formulation
Single-objective Ref. Multi-objective
LPN3B Linear pathway with three Min. final time [7] Min. final time and intermediate
enzymatic reactions consumption
LPDN4 Linear pathway with four Min. final time plus enzyme [6] Min. final time and enzyme
enzymatic reactions consumption consumption
GDB Branched pathway with four Min. final time [15] a) Min. final time and enzyme
enzymatic reactions consumption
b) Max. concentration of pathway
products
SC Simplified model of the central Max. survival time [34] Max. survival time and min. enzyme
metabolism of Saccharomyces cost
cerevisiae

to the substrate, Sy and S3 to the intermediate metabo-
lites and Sy to the product. Metabolites and enzymes are
expressed in concentration units and time in seconds.

In this work we considered the objective of the mini-
mization of the time needed to reach a certain amount of
product (Equation (10)), when the substrate remains unal-
terable (buffered substrate concentration) as represented
in matrix N. This objective reflects a biological situation
where there is no need to convert all the substrate into the
product but a certain amount is essential.

The mathematical statement of the single-objective
problem is as follows.

Find e over ¢ €[t,, t] to minimize:

J=t (10)

Subject to the system dynamics:

ds
> _N
a0

Where N:

(11)

S O = O
S = o
—_

And:
v,=ki-S;- e
With the following end-point constraint:
Salty) = P(ty)

and path constraint:

3
Z e; <Er
i=1

with: Er = 1M, k; = 1s71i = 2,3,4, S1(tp) = 1 M,
Si(to) = Ofori =2,3,4and P(¢;) = 0.9 M.

(14)

The above problem was solved with several methods,
with the eSS scatter search solver as the best performer.
Detailed results, including a discussion on multimodality,
are given in Additional file 1: Tables S.6 and S.7.

Figure 1B presents the corresponding metabolite
dynamics and optimal profiles of the enzymes for
the single-objective optimization problem presented in
Equation (10). The solution was obtained under the
assumption of no substrate consumption (for example, in
a constant culture medium). The first phase of the process
is devoted to produce S, as fast as possible, the enzyme
is fully activated and since substrate is not consumed a
high amount of S; is produced and accumulated. Similarly
the second and third phases correspond to a full activa-
tion of enzymes ey and e3 respectively. The process time
is ¢y = 4.2 s. It should be remarked that the optimal solu-
tion for this case was achieved by eSS in less than 30 s
of computation in a standard PC. Sequential hybrids of
SRES and DE achieved similar values but requiring longer
computation times.

The optimal solution of the above single-objective prob-
lem (see Equation (10)) results in a significant accumula-
tion of intermediates at the end of the process which may
be harmful for the cell. Thus, we formulated a general-
ized problem so as to find the best compromise between
the time required to achieve a certain amount of product
and the intermediates accumulation. Mathematically the
formulation of this multi-objective problem is:

Find e over ¢ € [£,, 7] to minimize:

t
1=ty [ S+ S0t (15)
0
subject to the system dynamics presented in
Equation (11), and with the constraints presented in
Equations (13)—(14). The obtained Pareto front for the
multi-objective problem (Equation (15)) is presented in
Figure 1C. It can be observed that for process durations
longer than 8 seconds the effect on the intermediate
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Figure 1 Three-step linear pathway with mass action kinetics. A) Schematic representation of the three-step linear pathway. The pathway
converts the substrate (S7) into the product (S4) using three steps, each one catalyzed by a specific enzyme (e;). B) Metabolite dynamics and enzyme
profiles that minimize the time needed to reach a certain amount of product with buffered concentration of substrate (LPN3B) as presented in
Equation (10). C) Pareto front obtained for the minimization of time needed to reach a certain amount of product and the intermediates
concentrations as shown in Equation (15). D) Enzyme profiles for the selected points of the Pareto front. Control variables have been approximated
using p =120 steps with fixed duration. Metabolites and enzymes are expressed in concentration units and time in seconds (s).

Time (s)

concentration is negligible, which means that no further
improvements in the reduction of intermediates concen-
tration can be achieved to satisfy the required amount of
product.

To illustrate the differences in enzyme activation pro-
files for different trade-offs, Figure 1D presents the opti-
mal profiles for three solutions from the Pareto front
(P; and Ps; as extreme points, and Py as a balanced
trade-off between objectives). It can be noticed that the

first enzyme is always fully activated, and its activation
time is reduced when both objectives are considered
(Py and P3). It can also be noted that an intermediate
zone is generated where both enzymes are activated. In
this region S; and S3 are produced and consumed in
order to avoid their accumulation in the pathway. Addi-
tionally it is observed that in the final stage the third
enzyme is fully activated to obtain the desired amount of
product (Sa).
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Four-step linear pathway with Michaelis-Menten kinetics
(LPDN4)
This example considers a four step linear pathway with
Michaelis-Menten kinetics and was originally considered
by Oyarzun et al. [6]. In this case, in order to obtain more
realistic results, enzymes are assumed not to become
activated instantaneously, but to follow first order kinet-
ics. The pathway (Figure 2A) consists in four enzymatic
reactions catalyzed by a specific enzyme (e;) where S; cor-
responds to the substrate, Sy — S3 to the intermediate
metabolites and S; to the product. The objective of the
system is to minimize the enzyme consumption and the
time needed to reach a given steady state.

This single-objective problem reads mathematically as
follows:

Find r over ¢ €[t,, tf] to minimize:

tf n=4
J=| 1+ edt (16)
fo i=1
Subject to the system dynamics:
ds
2 —N 17
it~ an

where the enzyme dynamics is considered to be linear
with the expression rate (r) and A = 0.5.

de Y (18)
—=r—X-e
dt
with:
-1 0 O
1-1 0 O
N= 0 1-1 0
0 0 1-1
and:
ko oo\ S
vy = SO (19)
Ky +Si

with the following end point constraints, which describe
the given steady state.

e(ty) = ess (20)

In addition the following constraints are imposed to
limit the amount of enzymes and their rates:

0<r<1lmMs! (21)

0<e=<E (22)

With: ET = 1mM, kege1 = 1571 kearr = 257, kegrs = 4
s keata =35, Kyy =151,V =02mM/s, S1(ty) =5
mM, S;(ty) = 0 for i = 2,3,4, ess = [0.24 0.26 0.21 0.29]
mMfori=1,2,3,4.
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Note that in this case the expression rates are com-
puted via dynamic optimization and the optimal enzyme
activation profiles are obtained from the Equation (18).

The optimal value /* = 6.154 was obtained using eSS.
Note that this result is in good agreement with the one
previously reported (J* = 6.298) [35]. Figure 2B pre-
sents the optimal metabolite and enzyme dynamics for
the single-objective case (Equation (16)). As expected, the
incorporation of the enzyme dynamics slows down the
entire process. The optimal profiles for the expression
rates follow a switching pattern that matches the pathway
topology, leading to enzyme profiles that follow a sequen-
tial activation in agreement with previous results. The
enzyme profiles show that for the synthesis of one enzyme
the degradation of the previous enzyme is needed. The
constraints imposed in the final amount of metabolites
require a high accumulation of metabolites in the system
and this could be lethal for the system [36].

It is interesting to note that in two previous works [6,35]
a combined objective function including the transition
time and the enzyme cost was proposed, obtaining a single
trade-off solution. In other words, they obtained one of all
the possible Pareto solutions. Here we go a step a further
and formulate and solve the multi-objective optimization
problem in order to obtain the full Pareto front. Mathe-
matically the formulation of the multi-objective problem
is:

Find e over ¢ €[z, t¢] to minimize:

(23)

t:f n=4
1=ty [ (Y-
b =1

Subject to Equations (17)—(18) and with the constraints
presented in Equations (21)—(22).

Due to the final time constraints used to define the
steady state the system keeps several enzymes activated
during the process, which implies an extra effort for the
system as discussed in literature [7]. In this case end point
constraints (Equation (20)) are replaced by a constraint on
the final amount of product:

Satp) = 0.7 (24)

The Pareto front for the multi-objective case
(Equation (23)) is presented in Figure 2C. It can be
noticed that for large times (around 15 seconds) the effect
on the reduction of enzyme concentration is negligible,
which means that the enzyme consumption can not be
further reduced to achieve the desired amount of prod-
uct. In Figure 2D optimal profiles for expression rates
and enzyme dynamics are shown in order to check how
enzyme activation is affected by the different trade-off. P;
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Figure 2 Four-step linear pathway with Michaelis-Menten kinetics. A) Schematic representation of a four-step linear pathway coupled with
enzyme dynamics. It consists in four enzymatic reactions, where the substrate (S1) is converted into the product (S4). B) Metabolite dynamics,
expression rates and enzyme activation profiles that minimize the time needed to reach a given steady state and the corresponding enzyme
consumption, see Equation (16). €) Pareto front obtained by minimizing the time and the enzyme cost needed to reach a certain amount of
product using Equation (23). D) Enzyme profiles for the points Py, P, and P3 of the Pareto front using p = 120 steps with fixed duration. Enzyme and
metabolite concentrations are expressed in concentration units (mM) and time in seconds (s).

corresponds to the minimization of the time and Py and
Ps to different trade-off between objectives.

We also notice that the optimal profiles for the expres-
sion rates follow a switching pattern that matches with the
pathway topology, i.e. is reflected in a sequential activation
of the enzymes. Before activating one enzyme, the degra-

dation process of the previous one has started (i.e. the cell
has only a certain amount of protein available). This situ-
ation is more relevant when the enzyme consumption is
reduced. Note that when the process time increases the
activation time of the enzymes is slightly reduced (this
decrease is more relevant for short process times).
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Glycolysis inspired network (GBD)

The original problem was considered by Bartl et al. [15].
Results achieved for that formulation are discussed in
Additional file 1. Here we propose a more realistic for-
mulation that incorporates the enzyme dynamics. The
enzyme dynamics (Equation (27)) are considered to be lin-
ear with the expression rate (r;). The pathway (Figure 3A)
consists of four enzymatic reactions with one branch
where S; corresponds to the substrate, So — Si to the
intermediate metabolites and S5 to the product. The
hypothesis in this problem is that the pathway activation
minimizes the time needed to transform the substrate
(S1) into a fixed amount of product (S5). Note that the
substrate Sj is not consumed during the process.
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The activation profiles for the single-objective case may
be acquired by computing r over ¢ € [¢,, ] to minimize
the cost function.

J=t (25)
Subject to the system dynamics:
ds
— =N 26
7 v (26)
d
d—: =r—A-e (27)

>
w

Metabolites and optimal enzyme profiles for the single objective case
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Figure 3 Glycolysis inspired network. A) Schematic representation: The pathway consists in four enzymatic reactions with one branch where $;
corresponds to the substrate, S; — S4 to the intermediate metabolites and S5 to the product. B) Optimal profiles for the Glycolysis inspired pathway
with inexhaustible substrate (single-objective case, Equation (25)), obtained with eSS. €) Resulting Pareto front for the minimization of the time and
the enzyme cost needed to achieved a certain amount of product in a branched pathway coupled with enzyme dynamics using Equation (31). D)
Optimal control profiles for enzyme activation for different points of the Pareto front, were approximated using p = 120 steps with fixed duration.
Enzyme and metabolite concentrations are expressed in concentration units (mM) and time in seconds (s).
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Where:
= cati z_ei (28)
Ky + S;
With:
0O 0 0 O
1-1 0 O
N=|0 1-1 0
0 1 1-1
0O 0 0 1

and the following end point constraints:

Ss(tr) = P(tr) (29)
and the following path constraint:
4
Y e <Er (30)
i=1

With Er = 1 mM, P(tf) = 0.75 mM, keayi = 1577,
Ky = 1574, S1(t) = 1 mM, Si(ty) = ei(to) = 0 for
i=23451=055"1

The optimal value (J* = 9.5) was obtained using scat-
ter search (eSS) in less than 50 s of CPU time. Detailed
optimization results are presented in Additional file 1
(Table S.13). The corresponding optimal enzyme activa-
tion profiles for the single-objective case (Equation (25))
are shown in Figure 3B. Again the optimal profiles for the
expression rate follow a switching pattern that matches
with the pathway topology leading to enzyme profiles that
follow a sequential activation profile.

The enzyme profiles show that for the synthesis of
one enzyme the degradation of the previous is needed,
meeting the constraint on the total amount of enzyme
(Equation (30)). As in previous cases, there is a high
accumulation of metabolites, which could be harmful
for the cell. Note that the problem formulation could be
modified so to predict the scenario with no accumulation
of intermediates. In addition, these calculations were
preformed for a fixed X value, but of course the problem
can be easily solved to consider other cases where genes
might have different expression rates and proteins might
have different degradation rates.

We now consider a multi-objective formulation, extend-
ing the objective function and keeping unchanged the
rest of the problem. Mathematically, the multi-objective
problem is formulated as follows:

Find r over ¢ € [¢,, tf] to minimize:

t/‘ 4!
J =, / O e -dt]
to 1

=

(31)

The Pareto front is presented in Figure 3C for the
objectives in Equation (31). For long process times, no
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significant improvement in the enzyme cost is achieved.
The optimal enzyme profiles corresponding to 3 points
in the Pareto front are depicted in Figure 3D. P; corre-
sponds to the single-objective case (time minimization),
and P, and Ps represent different trade-offs between pro-
cess time and enzyme cost minimization. The optimal
profiles for the expression rate follow a switching pat-
tern that matches with the pathway topology. In P; we
observed that for the synthesis of one enzyme the degra-
dation of the previous is needed. In fact, from P and Ps
it can be noted that such situation gains relevance as we
move in the Pareto front.

One interesting and common situation in branched
pathways is that the system could have two different out-
puts (p.e. produce several amino acids in sensible ratios
for protein synthesis), which in practice means that the
cell resources are distributed accordingly. The introduc-
tion of a second output in the single-output pathway was
considered to study the behavior of the system if several
products are generated. This new pathway is presented in
Figure 4A.

The new multi-objective problem mathematically reads
as: find activation profiles by computing r over ¢ €[¢,, ¢/]
to maximize:

J =S5, Sel (32)

Subject to the system dynamics presented in

Equations (26)—(27), with:

cNeoNeoNeN "
SO - = O
OO = = O O
,_.._.,_.,l_.oo

And with the path constraint presented in (30). In
this case the final time was considered constant (¢ff =
15 s). The Pareto front for the problem formulated in
Equation (32) is presented in Figure 4B, where point P;
and P3; stand for single-objective situations were only
one product is produced, and P, is a balanced trade-off.
In Figure 4C the optimal profiles of the selected Pareto
points (P, P, and Ps3) are depicted. In all cases we can see
a sequential enzymatic activation. In P; four enzymes are
activated to convert the substrate (S7) in the product Ss.
In P3 only 3 enzymes are activated to obtain the product
Se- Regarding P», it can be noted that e; and ey are sequen-
tially activated during the early process. Later on, in the
intermediate stage, e4 and e5 are simultaneously activated.
And finally, at the end of the process, only ey is active.
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Pareto front obtained for the maximization of both products of a branched pathway (Ss and Se) using Equation (32). €) Optimal enzyme profiles for
the maximization of the two different outputs of a pathway (P;, P, and Ps3). Control variables have been approximated using p = 120 steps with
fixed duration. Enzyme and metabolite concentrations are expressed in concentration units (mM) and time in seconds (s).

Central metabolism of Saccharomyces cerevisiae during
diauxic shift (SC)
The diauxic shift is characterized by decreased growth
rate and by switching metabolism from glycolysis to
aerobic utilization of ethanol under conditions of glu-
cose depletion. This allows the maintenance of the
cellular redox potential, NADH/NAD and ATP levels,
enabling the cell to survive over longer periods with-
out nutrients, in a so called quiescent state. The idea
is to explain this particular behavior by computing the
enzymatic activation profile that maximizes the survival
time.

This case was considered by Klipp et al. [3,4] using
orthogonal collocation in combination with a genetic

algorithm. The pathway (Figure 5A) consists in a simpli-
fied model of the central metabolism of Saccharomyces
cerevisiae. The system complies six reactions: upper gly-
colysis, lower glycolysis, ethanol formation, ethanol con-
sumption TCA cycle and respiratory chain. The model has
arbitrary units.

Mathematically the single-objective problem is formu-
lated as follows:

Find e over ¢ € [t,, ] to maximize:

J=t (33)
Subject to the system dynamics:
ds

dt
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Where S and N correspond to:

S = [X1, Xo, X3, X4, NADH, ATP, NAD,ADP]T  (35)
[-1 0 0 0 0 0 0 O ]
2 -10 0 0 0 0 O
0 1 -11-10 0 0
N — 0 01 -10 0 0 O
o 0 1 -11-4-1-10
-1-20 0 0 3 0 -1
0 -11-14 11 0
L1 2 0 0 0 -3 0 1 |
And:
vy = e - Xp-ATP
Uy = €2~X2-NAD~ADP
U3z = €3 ~X3 - NADH
Uy = eq - Xy - NAD
vs = e5 - X3 - NAD
v¢ = eg - NADH - ADP
vy = ky - ATP
vg = kg -NAD (36)
With a constraint in the total amount of enzyme:
6
Ze,‘SET (37)
i=1
And:
NADH > NADH, (38)
ATP > ATP, (39)

With: X1(f0) = 1, Xa(to) = 1, X3(t0) = 1, Xu(to) =
10, NADH (ty) = 0.7, NAD(ty) = 0.3, ATP(tp) = 0.8,
ADP(ty) = 0.2, NADH, = 0.5, ATP, = 0.7, k = 3 and
kg = 0.1.

It should be noted that constraints (38)—(39) indicate
that the cells will survive provided the concentrations
of NADH and ATP are above some given critical values
(NADH, and ATP, respectively).

In order to compare our results with the ones reported
in the work by Klipp et al. [4] and the available exper-
imental data, two types of enzyme CVP approxima-
tions were considered: i) a step-wise approximation with
120 constant elements for each enzyme (i.e. 721 deci-
sion variables) and ii) a piecewise linear approximation
with 8 variable length linear elements (i.e. 55 decision
variables).

The optimal value (J* = 95.8) was again obtained using
eSS scatter search. Note that the optimal solution is
highly sensitive to the switching times (details are given in
Additional file 1). The optimal profiles and the metabolite
dynamics for the single-objective problem (Equation (33))
are depicted in Figure 5B, showing a higher activity of
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the lower part of the glycolysis (e2) and in the ethanol
formation (e3), as expected. During the last part of the
process the activity of (es) is increased allowing the for-
mation of NADH. Also there is an increase in the tricar-
boxylic acid cycle (es) and in the respiratory chain (eg)
which compensate the decline in supply of NADH and
ATP.

In the above  single-objective  formulation
(Equation (33)), we can interpret that the system tries
to survive as long as possible without any limitation on
the investment of resources used. In the next case, we
try to find the best compromise between the survival
of the system and the resources used to do that. The
aim in this case is to maximize the survival time with a
low investment on the enzyme cost. We formulate the
optimization problem as a multi-objective problem (with
objectives time and the enzyme cost). Mathematically the
multi-objective problem is formulated as follows:

Find e over ¢ € [t,, tf] to maximize:

(40)

t;f 6
J =l — f > epd]

b =1

The set of solutions for the maximization problem
(Equation (40)) is presented in Figure 5C. P; corresponds
to the single-objective situation above, while P;, P3 and
O are different trade-offs among the objectives. There, we
can observe that the survival time of the system is not
significantly reduced by a decrease on the enzyme con-
sumption until the reduction on the enzyme consump-
tion is over 60%. For low enzyme consumptions (under
60%), the survival time is clearly affected and diminishes
rapidly.

The reduction on enzyme consumption is reflected as
a reduction on the initial value of enzymes and their
dynamics during the process. In Figure 5E optimal pro-
files for e5 obtained for four different points of the Pareto
front are compared. Besides the reduction on the ini-
tial concentration of the enzyme, it can be observed that
in P; and O there is a sharp increase on the activity
of the enzyme towards then end of the process. This
dynamic is significantly reduced in Py, and disappears in
P3, where the enzyme has a constant activation value.
Complete optimal profiles are presented in Additional
file 1.

We computed, for all the Pareto points, the distance
between experimental data (taken from [4]) and model
predictions, finding that point “O” in the Pareto corre-
sponds to the best fit. Figure 5D presents the comparison
between experimental data and model predictions for this
optimal trade-off solution. The numerical profiles are in
good agreement with the general tendency of the experi-
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mental data. e; and e3 slowly decrease the activity whereas
es and es slowly increase their activity arriving to high
activation values. e; keeps an almost constant activation
value along the time horizon.

Conclusions

This work proposes the use of multi-objective optimiza-
tion, combined with an advanced dynamic optimization
method, as a systematic way to predict or explain
genetic metabolic regulation. The presented methodology
can handle very general formulations, including several
objectives, arbitrary network topologies and non-linear
kinetics, large numbers of control variables (enzymes or
activation rates), and general path and point constraints
on controls and states (metabolites concentrations).

The methodology is based on the transformation of
the original multi-objective dynamic optimization prob-
lem into a set of non-linear programming (NLP) problems
by means of the control vector parametrization. The NLP
problems can be solved using the combination of an
initial value problem solver and an efficient global opti-
mizer. The need of global optimization arises from the
non-convexity of these problems.

To illustrate this methodology, two sets of problems
were considered. A first set of single-objective exam-
ples were taken from the literature. The obtained results
are comparable or better than those previously published
and were obtained with a minimum computational cost,
between a few seconds and a few minutes in a standard
PC. Our results show clearly that a hybrid metaheuristic
based on scatter search was the most robust and efficient
solver when dealing with this class of problems.

A second set of multi-objective formulations were con-
sidered, for the first time, to achieve more biologically
meaningful results. The Pareto front which represents
the different trade-offs between objectives was obtained
by transforming the multi-criteria problem into a set of
single-objective problems, each of them solved by means
of the previously mentioned methodology. Interestingly,
the optimal activation profiles computed exhibited the
“just-in-time” behavior in most cases and for both sin-
gle and multi-criteria formulations. By definition, all the
solutions in a Pareto front are equally optimal. However,
if one introduces an additional requirement or constraint
(e.g. fit to experimental data), it is then possible to select
a single solution from the front which meets such addi-
tional criteria (as illustrated with the S. cerevisiae case
study).

The methodology presented here opens up new possi-
bilities, especially with respect to the handling of medium
and large scale complex networks. It will also enable fur-
ther research, including experimental validation, in order
to asses biological optimality in terms of Pareto-optimal
trade-offs.
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Additional file

Additional file 1: Further details on the use of global dynamic
optimization to predict the activation in metabolic pathways. The
Additional file 1 presents a more detailed description of the numerical
approaches used in this work as well as a comparative study of the results
achieved.
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