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Abstract

Background: Characterization of unknown proteins through computational approaches is one of the most
challenging problems in silico biology, which has attracted world-wide interests and great efforts. There have been
some computational methods proposed to address this problem, which are either based on homology mapping or
in the context of protein interaction networks.

Results: In this paper, two algorithms are proposed by integrating the protein-protein interaction (PPI) network,
proteins’ domain information and protein complexes. The one is domain combination similarity (DCS), which
combines the domain compositions of both proteins and their neighbors. The other is domain combination
similarity in context of protein complexes (DSCP), which extends the protein functional similarity definition of DCS
by combining the domain compositions of both proteins and the complexes including them. The new algorithms
are tested on networks of the model species of Saccharomyces cerevisiae to predict functions of unknown proteins
using cross validations. Comparing with other several existing algorithms, the results have demonstrated the
effectiveness of our proposed methods in protein function prediction. Furthermore, the algorithm DSCP using
experimental determined complex data is robust when a large percentage of the proteins in the network is
unknown, and it outperforms DCS and other several existing algorithms.

Conclusions: The accuracy of predicting protein function can be improved by integrating the protein-protein
interaction (PPI) network, proteins’ domain information and protein complexes.
Background
The function annotation of a protein is an important
challenge in post-genomics due to the critical roles of
proteins in various biological processes. However, it is
expensive and time-consuming to experimentally deter-
mine protein functions. With rapid advances in large
scare genome sequencing technologies, there is an in-
creasingly widening gap between the number of newly
found proteins and the completeness of their annota-
tions, which requires a faster and more effective way to
annotate unknown proteins automatically. Hence, the
protein function prediction through computational ap-
proaches has become a major research topic, which has
drawn much attention from researchers in the areas.
Computationally predicting protein function is based

on the idea that assigning functions to unknown proteins
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according to the known functions of similar proteins.
The most common and reliable methods are using
homology mapping to transfer annotations to newly se-
quenced proteins. One of the way to infer to homology
is detecting sequence similarity by using BLAST [1] and
FAST [2]. Another is to identify protein domains by using
the databases or tools, such as Pfam [3], PRODOM [4],
SCOP [5] and so on. Domains are some compactly struc-
tured components of a protein that can evolve, function,
and exist independently of the rest of the protein chain.
The vast varieties of protein functions can be derived
from the different combinations and cooperation of pro-
tein domains [6]. Therefore, there are methods [7,8]
where the proteins’ internal domain compositions are
compared directly without considering the whole se-
quence. The homology mapping approach is based on the
assumption that homologous proteins have most likely
evolved from a common ancestor and thus must have
similar functions. However the weakness of this kind of
methods is that few un-annotated proteins hit to known
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proteins as the data of sequenced proteins continue to ex-
pand at the exponential rate.
On the other hand, with the increase of large scale

protein-protein interaction (PPI) data generated by two-
hybrid and co-immunoprecipitation techniques, many
researchers have attempted to determine protein func-
tions by using information extracted from the PPI data
[9]. Existing computational methods based on PPI can
be roughly divided into two main categories: direct
methods that straightforwardly utilize the protein inter-
actions and module-assisted schemes that use function
modules to infer protein functions as a whole [9].
Direct methods are based on the fact that about 70%

to 80% of proteins share at least one common function
with their interacting partners [10]. One of the earliest
these methods is neighborhood counting method pro-
posed by Schwikowski et al. [10]. The method counts up
the times of a function occurring in the protein’s neigh-
borhood to estimate the possibility that a given function
can be assigned to an un-annotated protein. However,
this method ignores the background frequency of differ-
ent function annotations. In reference [11], the authors
have tried to improve the original neighbor counting
method by computing the Chi-square statistics as an
indicator of the statistical significance of the function
under consideration. Vazquez et al. have assigned func-
tions to proteins via a global mechanism that maximizes
the number of edges that connect proteins with the
same function in their paper [12]. Recently, an iterative
method has been introduced to make the prediction of
functions iteratively to get a most consistent agreement
throughout the whole network [13]. There are also some
other algorithms for global function assignments de-
scribed in [14-16]. Considering that previous methods
predict the function of an un-annotated protein only
relying on direct neighbors, Chua et al. have investigated
the functional information within both direct and indir-
ect neighbors by giving them different weights [17].
Based on the observation in ref. [17], this group propose
a topological weight, FS-Weight, which estimates func-
tion association between direct and indirect interactions,
to infer protein functions [18] and predict protein com-
plexes [19]. Due to high noise-signal ratio of protein-
protein interaction data, those direct methods which
infer protein functions in terms of protein interactions
may not work well. To overcome this problem, some
researchers [7,16,20-22] either have combined multiple
network information resources, such as expression pro-
files, gene regulatory networks, PPI networks, GO simi-
larity network and so on, or have used a wide variety of
biological characteristics, including sequence patterns,
homology data, previously known functional annota-
tion, protein complex and so on. Lin et al. [23] have
proposed a novel common-neighbor based model and a
Bayesian framework to predict protein functions. Their
studies have shown that two proteins are likely to have
same functions if they share common neighbors, and
the more common neighbors they have, the more likely
they have same functions. Zhang et al. [24] have extended
the concepts of common neighbors to the domain compo-
sitions of proteins’ neighbors, which they introduce as
domain contexts. They believe that similar domain compo-
sitions inside the neighbors may indicate both functional
similarity and evolutionary relationship, and define a do-
main context similarity to assess the function similarities
between proteins. For simplicity, we name their method as
Zhang-DC. However, this method has not considered the
similarity of proteins themselves.
Instead of predicting functions for each protein separ-

ately, module-assisted methods first identify the function
modules or protein complexes, and then annotate func-
tions to all proteins in the function modules or protein
complexes. Although the module-assisted methods vary
in the clustering algorithms for identifying the function
modules or protein complexes, they are based on the fact
that functional module means a group of cellular compo-
nents and their interactions that can be attributed to a
specific biological function [25]. Previous studies [26] have
pointed out that module-assisted methods are most useful
in networks obtained from genomes with few protein an-
notations. It suggests that we can infer protein functions
by using the whole function modules or protein com-
plexes while not only limited to the direct interactions.
With respect to the above issues, we propose a new

algorithm by defining a domain combination similarity
in PPI networks as a measurement of the protein func-
tion similarity, named by DCS. In DCS, the protein
functional similarity combines the domain compositions
of both proteins and their neighbors. Then we propose
another new algorithm DSCP which extends the protein
functional similarity definition in DCS by combining the
domain compositions of both proteins and complexes
including them. Differently from previous homology map-
ping approach, our methods integrate the PPI data infor-
mation and protein complex information. Differently from
previous methods based on PPI data, our methods combine
the domain information of protein itself and take protein
complex information for consideration. We carry out
experiments on data from Saccharomyces cerevisiae. As
the comparisons are shown, our methods can make an
apparent improvement on the performances of func-
tion prediction than other methods, such as neighbor
counting [10], Chi-square [11], Zhang-DC [24], Markov
random field (MRF) model [7] and relaxation labelling
classifier (RLC) [16].
This paper is organized as follows: First of all, recent

advances of function prediction algorithms are introduced
briefly. Then the relevant definitions as well as the new
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method are described in details. In the third section,
the materials used in this paper are given and we
present the results produced by our new algorithms
and a comprehensive comparison between the new al-
gorithms and five other existing algorithms. Finally,
challenges and directions of the future work are dis-
cussed in Conclusions and discussion.
Methods
When we predict the functions for an unknown protein,
firstly the function similarities between proteins are de-
fined. Then we find out a known protein with the high-
est functional similarity value to the unknown protein
from the network, and the functional annotations of the
known protein are then assigned to the unknown pro-
tein. In this work, we propose two algorithms to evaluate
the functional similarity between two proteins. The one
is DCS, the domain combination similarity, which com-
bines the domain compositions of both proteins and
their neighbors. The other is DSCP, which extend the
protein functional similarity definition of DCS by com-
bining the domain compositions of both proteins and
complexes including them.
Domain combination similarity (DCS)
Our measurement of protein domain combination
similarity is consisted of two parts, the context similar-
ity, which indicates the domain similarity of proteins’
neighbors, and the composition similarity, which indicates
s =|DC(PA)∩DC(PB)| =|{

s =|DT(PA)∩DT(PB)| = |{ }| =1

a =|DC(PA)| =|{ }|=6

PA

a =|DT(PA)| = |{ }|=2

Figure 1 Illustration of domain combination similarity. The figure gives
in which different shapes are drawn to represent different types of domain
of two parts: the context similarity, which is presented in the figure as the
which is presented in the figure as the dark black. Domain composition of
Domain context of PA, denoted by DC(PA), is a set of distinct domain types
the proteins’ internal domain similarity. The context
similarity is presented in Figure 1 as the light gray part
plus the dark black part, while the composition simi-
larity corresponds to the dark black part in Figure 1.
These two parts will be added up to get a final estima-
tion of the function similarity between two proteins.
As can be seen in Figure 1, it is the same five kinds of
domain types that are contained by the neighbors of
protein PA and PB in spite of their different distribu-
tions while it is the same one kind of domain type that
is contained by protein PA and PB, which indicates PA
and PB probably share similar functions. To formally
define the domain combination similarity, the follow-
ing variables are introduced.
Given a PPI network, let SN = {P1, P2, …, Pn} represent a

set of all n proteins in the PPI network and NP denotes a
set of neighbor proteins of protein P with P itself included.
Let DT(P) denote a set of domain types in protein

P. Given a protein set S = {Ps1, Ps2, …, Psl}, we define

DT Sð Þ ¼ ∪DT Pið Þ; i ¼ s1;…; sl: ð1Þ
Let DC(P) be a set of distinct domain types in the

neighbor proteins of P , which is called the domain con-
text of P. Consequently we have

DC Pð Þ ¼ DT NPð Þ: ð2Þ
Let M denote the number of domain types in the

whole network, and let a and b represent the number of
domain types in the neighbors of PA and PB, respectively.
}|=5

b=|DC(PB)| =|{

PB

b =|DT(PB)| =|{ }|=2

}|=6

an example of the domain combination similarity of protein PA and PB,
s. The domain combination similarity of the two proteins is consisted
light grey part plus the dark black part, and the composition similarity,
protein PA, denoted by DT(PA), is a set of domain types in protein PA.
in the neighbor proteins of PA (PA included).
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Let s denote the number of common domain types in their
neighbors. Then we can get the following equations:

M ¼ DT SNð Þj j;
a ¼ DC PAÞð Þj j; b ¼jDC PBð Þj;
s ¼ DC PAð Þ∩DC PBð Þj Þj:

ð3Þ

The domain context similarity, fcont , can be defined
as follows.

f cont PA; PBð Þ ¼ − log

M
s

� �
M−s
a−s

� �
M−a
b−s

� �

M
a

� �
M
b

� � ð4Þ

where
m
n

� �
denotes combinatorial numbers.

Let a’ and b’ denote the number of domain types inside
protein PA and protein PB respectively, and let s’ denote
the number of common domain types of PA and PB.
Then we can get the following equations:

a0 ¼ DT PAð Þj jb0 ¼ jDT PBð Þj
s0 ¼ DT PAð Þ∩DT PBð Þj j:

ð5Þ

Similarly to fcont, the domain composition similarity,
fcomp, can be defined as follows:

f comp PA; PBð Þ ¼ − log

M
s0

� �
M−s0

a0−s0

� �
M−a0

b0−s0

� �

M
a0

� �
M
b0

� � ð6Þ

We believe that these two parts should not be treated
equally. Alternatively, they are added together via a
parameter λ, and finally, the domain combination simi-
larity between two proteins PA and PB is defined as
below:

f sim PA; PBð Þ ¼ λ � f cont PA;PBð Þ þ 1−λð Þ � f comp PA;PBð Þ:
ð7Þ

A larger value of fsim(PA, PB) between two proteins PA
and PB will indicate a greater probability that they share
similar functions.
For the convenience of discussion, in the following

sections DCS (Domain Combination Similarity) will be
adopted to calculate the current definition of fsim for
protein function prediction. The pseudo code for cal-
culating the functional similarity fsim(PA, PB) between
two proteins PA and PB using algorithm DCS is pre-
sented below.

Domain combination similarity in context of protein
complexes (DSCP)
We argue that the original manner of taking neighbors
as the domain context in DCS can be further improved by
using the protein complexes information instead. Since the
PPI network is not complete and has false interactions due
to experimental limits and errors, merely considering the
neighborhood can produce bias results. For the sake of
common noises in the interaction data, when calculating
the domain context similarity fcont, we don’t just consider
the neighbors of a protein as in most classical algorithms
but also search for the complexes containing the proteins.
Here it is believed that functionally similar proteins tend to
cluster together and protein complexes are this kind of col-
lections of functionally related proteins [27-31]. There are
many algorithms that try to make use of protein complex
data to infer protein functions [7,32]. Deng et al. [7] have
used an MRF model to integrate multiple sources of data
including the protein complexes while Joshi et al. [32] have
made use of protein complexes by assigned binary interac-
tions to two proteins involved in a same protein complex
and developed an integrated probabilistic method for cellu-
lar function prediction. Consequently, by means of inte-
grating protein complexes to serve as the domain context
scope, it promises to get a better measurement of protein
function similarity.
Let SCP be the set of all proteins inside those com-

plexes containing protein P. Then the previous definition
of domain context of P is adjusted as follows:

DC Pð Þ ¼ DT SCPð Þ: ð8Þ

The formulas defining fcont, fcomp and fsim still remain
the same as before. Again a larger value of fsim indicates
a greater probability of sharing similar functions.
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With regard to the protein complex data, we can use ei-
ther known real protein complexes from assays or protein
complexes predicted by various network clustering algo-
rithms. Since both the known protein complexes and pre-
dicted protein complexes have the limited coverage for the
original proteins in the whole network, we will still use the
neighborhood as the context scope, if a protein is not in-
cluded in any complex. We call the prediction algorithm
based on this new definition as DSCP (Domain combin-
ation Similarity in context of protein complexes). The fol-
lowing pseudo code illustrates the procedure of calculating
the functional similarity by using algorithm DSCP.
Protein function prediction
Given the protein similarity definitions described above,
the functional similarities fsim between each pair of pro-
teins can be calculated conveniently. When predict the
functions for an unknown protein Pu, we find out a
known protein Pm with the highest value of fsim to Pu
from the network, and the function annotations of Pm
are then assigned to Pu. If there exist more than one
protein that are of the same highest fsim to Pu, the first
coming one will be selected as the reference.
To evaluate the performances of a predicting algo-

rithm, the cross validation is generally used [24,33,34].
All the proteins in the PPI network are partitioned into
two subsets, the training set and the testing set. In one
round of cross validation, the functions of each protein
in the testing set are predicted according to the proteins
in the training set. The validation process is performed
multiple times to make sure that each sample will have a
chance as a member of the testing set once. The final
performances are averaged over all rounds. There are
several partition schemes. Some studies [24] use leave-
one-out cross validation which put one protein into the
testing set and the remaining proteins into the training
set, while other studies [33,34] use leave-percent-out cross
validation, which randomly selects a percentage of pro-
teins as the testing set and then puts other proteins into
the training set.
In a binary classifier system, there are four types of

possible outcomes for each prediction, namely, true
positive (TP), true negative (TN), false positive (FP) and
false negative (FN). TP and TN are the correct predic-
tions while FP and FN are the two kinds of wrong classi-
fications. FP is a positive prediction that is in fact
negative and FN is a negative prediction that is actually
positive. Therefore, in some studies [24], there are three
measurements are generally used to assess the qualities
of prediction algorithms: precision (also called positive
predictive value and denoted as PPV), recall (also called
sensitivity or true positive rate and denoted as TPR), F-
Measure and Matthew correlation coefficient (denoted
as MCC and ranging from −1 to 1 with a larger MCC
value indicating a better prediction results). The three
measurements are defined as follows.

PPV ¼ TP
TP þ FP

; ð9Þ

TPR ¼ TP
TP þ FN

; ð10Þ

F−Measure ¼ 2 � PPV � TPR
PPV þ TPR

; ð11Þ

MCC ¼ TP � TNð Þ− FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

ð12Þ

The process of function prediction using leave-one-out
cross validation is described below.
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Results
The Saccharomyces cerevisiae (yeast) protein interaction
networks are widely used as a gold standard data in the re-
search of network-based function prediction algorithms
because the species of yeast has been studied most widely
and thus the available interaction data for yeast is the
most complete and convincible. Here, we also adopt yeast
interaction network to test our new algorithms. The PPI
network data is obtained from DIP database [35]. The an-
notation data of proteins used for algorithm validation is
the latest version (2012.3.3) downloaded from GO official
website [36] as is the same case with the domain data
from Pfam database [3] (26.0). As for the protein complex
information, we used the data of CYC2008 [37] which
consists of 408 protein complexes involving 1,439 proteins
in yeast obtained by reliable manual curation.
The original interaction networks are transformed to

use the UniProtKB/Swiss-Prot entries because the Pfam
domain data use such labelling system. Consequently a
network of 5,088 proteins and 22,277 interactions is ob-
tained after removing the self-interaction and some pro-
teins without UniProtKB/Swiss-Prot entries.
The prediction performance is validated based on

Gene ontology (GO) annotations. The GO system con-
sists of three separate categories of annotations, namely
Molecular Function (MF), Cellular Component (CC)
and Biological Process (BP). The Predictions are vali-
dated separately for each of the three GO categories.
Since the GO terms are organized as a hierarchical
structure, in which a protein that is annotated with a
GO term is also annotated with all its ancestors, using
all GO terms for validation may result in biased conclu-
sions. To avoid too special and too general [24], only
those GO terms that annotate at least 10 and at most
200 proteins will be kept in the experiments. Moreover
we adopt the same way of selecting reliable GO terms as
previous study [38] and ignore the GO terms that are
annotated with evidence code IEA (Inferred from Elec-
tronic Annotation), ND (No biological Data available),
NAS(Non-traceable Author Statement). Therefore, the
final gold standard consists 95, 124, 267 GO terms for
MF, CC and BP respectively.
Moreover, we only use the Pfam-A data because the

Pfam-A data have been manually checked and thus more
convincible while Pfam-B part is automatically generated
by HMM computational methods [3]. In the finally data
sets, among the 5,088 proteins, there are 4,260 proteins
with domain information and 2895, 3868 and 3909 pro-
teins annotated by at least one GO term in MF, CC and
BP respectively.

Parameters determination and data analysis
In our definition of domain combination similarity, a
parameter λ is introduced to adjust the two parts of fcont
and fcomp. With different values of parameter λ, the per-
formances of prediction might differ greatly. As a result,
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Figure 2 The distribution of average PPV, TPR and MCC on different values of λ in algorithm DCS. The figure depicts the distribution of
average PPV, TPR and MCC when different values of λ are selected in algorithm DCS. X-axis represents the different values of λ. Y-axis represents the
values of each performance measure (PPV, TPR and MCC). (a), (b) and (c) illustrate the results based on GO terms in MF, CC and BP respectively.
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we investigate the effect of parameter λ on algorithm
DCS by running 20 times with equal interval of λ from 0
to 1. The corresponding indices of PPV, TPR and MCC at
different value of λ are calculated. The results based on
GO terms in MF, CC and BP are illustrated in Figure 2 (a),
(b) and (c) respectively. Figure 2 shows that the perform-
ance of DCS when λ is either 0 or 1 is inferior to when λ is
set to other values ranging from 0 to 1, which means that
the prediction performance by integrating the context simi-
larity and the composition similarity is better than that by
using only either similarity. For each one of the three GO
annotation categories, in terms of values of PPV, TPR and
0 5 10 15

0

5

10

15

20

25

30

35

av
g

f si
m

GO overla
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MCC reach their peak, DCS remains high performances
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λ = 0.1 as a default value in all the following experiments.
Then, we make a statistic on the average domain com-

bination similarities with regard to different function simi-
larity values which are presented in terms of the overlaps
of the GO terms between proteins. Firstly, the domain
combination similarities between each pair of proteins in
the network are calculated using the definition of DCS
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Table 1 The results of DCS, DSCP and DSCP using protein complexes predicted by DPClus on DIP PPI

Methods Size MF CC BP

#GO PPV TPR F-measure MCC #GO PPV TPR F-measure MCC #GO PPV TPR F-measure MCC

DCS [10–30] 75 0.44 0.37 0.40 0.40 89 0.40 0.39 0.39 0.38 216 0.34 0.35 0.34 0.35

(30–50] 10 0.41 0.36 0.39 0.38 18 0.30 0.25 0.27 0.26 36 0.31 0.30 0.30 0.30

(50–100] 8 0.50 0.42 0.46 0.45 12 0.33 0.30 0.32 0.30 13 0.34 0.33 0.33 0.33

(100–200] 2 0.71 0.62 0.66 0.65 5 0.27 0.24 0.25 0.22 2 0.47 0.46 0.47 0.46

In total 95 0.45 0.38 0.41 0.41 124 0.37 0.35 0.36 0.35 267 0.34 0.34 0.34 0.34

DSCP [10–30] 75 0.44 0.36 0.40 0.39 89 0.49 0.48 0.48 0.48 216 0.38 0.38 0.38 0.37

(30–50] 10 0.37 0.31 0.34 0.33 18 0.36 0.33 0.34 0.33 36 0.37 0.35 0.36 0.35

(50–100] 8 0.50 0.38 0.43 0.42 12 0.35 0.31 0.32 0.31 13 0.40 0.40 0.40 0.39

(100–200] 2 0.73 0.55 0.63 0.62 5 0.30 0.26 0.28 0.25 2 0.55 0.53 0.54 0.53

In total 95 0.44 0.36 0.40 0.39 124 0.45 0.43 0.44 0.43 267 0.38 0.37 0.38 0.37

DSCP_DPClus [10–30] 75 0.44 0.36 0.40 0.39 89 0.41 0.34 0.37 0.36 216 0.34 0.32 0.33 0.33

(30–50] 10 0.37 0.31 0.34 0.33 18 0.30 0.25 0.27 0.26 36 0.30 0.26 0.28 0.27

(50–100] 8 0.50 0.38 0.43 0.42 12 0.32 0.30 0.31 0.29 13 0.35 0.30 0.33 0.31

(100–200] 2 0.73 0.55 0.63 0.62 5 0.26 0.25 0.26 0.23 2 0.49 0.48 0.48 0.47

In total 95 0.44 0.36 0.40 0.39 124 0.38 0.32 0.34 0.34 267 0.34 0.32 0.33 0.32

The GO terms in MF, CC and BP are divided into 4 groups according to the number of proteins annotated by them, respectively. Those GO terms which are
consisted of more than 10 or less than 200 proteins are filtered out because they are either too rare or too general for prediction. This table shows prediction
results of DCS, DSCP and DSCP using protein complexes predicted by DPClus (DSCP_DPClus) based on DIP PPI data, including the number of GO terms in each
group and each category, and the corresponding values of PPV, TPR and MCC. Here, column "size" means the number of protein in each GO term. "#GO" denotes
the number of GO terms.
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with λ set as 0.1. Then they are averaged over different
values of GO overlaps to get a distribution curve. As can
be seen in Figure 3, when the overlap of GO terms in-
creases, which means the function similarity increases, the
domain combination similarities between proteins tend to
increase as well. Consequently, we conclude that our de-
fined domain combination similarity can be a good indica-
tor for the functional relations between different proteins.

The results of function prediction
We test the qualities of our algorithms for predicting
protein functions using the leave-one-out cross validation,
which means for each round there is only one protein in
the testing set. Note that we will filter out those GO terms
whose sizes are smaller than 10 or greater than 200 be-
cause they are either too rare or too general for prediction.
Here, the size of GO term refers to the number of proteins
in each GO term. Moreover, experiments will be imple-
mented separately for MC, CC and BP. Therefore, GO
terms in each annotation category have been partitioned
into four groups based on their positive size. The top part
of Table 1 shows the results of function prediction on DIP
PPI network when using the algorithm DCS.
Next, the algorithm of DSCP is adopted to predict

protein function on the same PPI data sources by using
the experimentally determined protein complexes ob-
tained from CYC2008. 966 of 2895, 1281 of 3868 and
1314 of 3909 proteins that are annotated by a least one
GO term in MF, CC and BP respectively present in at
least one CYC2008 complex. For those proteins belong-
ing to CYC2008 complex, DSCP infers their domain
context by searching for the complexes containing them,
whereas the domain context of the proteins that are not
covered by any one of CYC2008 complexes is derived
from their direct neighbors. The results, as listed in the
middle part of Table 1, are proved to be better than that
of DCS, which suggests that the accuracy of function
prediction can be improved by extending some proteins'
domain context from their direct neighbors to the
known complexes where they belong to.
Moreover, we have also used predicted protein com-

plexes generated by various clustering algorithms includ-
ing the widely used IPCA [27], MCODE [28], CPM [29],
DPClus [30] and HC-PIN [39] for the usage in DSCP.
Here we list the best results of DPClus, in which 62.45%
of the 1808 proteins annotated by GO terms in MF,
60.86% of the 3868 proteins annotated by GO terms in
CC and 61.27% of the 3909 proteins annotated by GO
terms in BP are included in the 965 complexes. The
results are shown in the bottom par of Table 1.
As can be seen, the performances of DSCP decrease

contrarily when using predicted protein complexes even
though the protein coverage increases. This is easy to
understand since clustering algorithms cannot predict
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Figure 4 The precision-recall curves of DCS and DSCP compared to other five existing algorithms. The figure presents the precision-recall
(PR) curves of DCS, DSCP and other five existing algorithms (NC, Chi-square, Zhang-DC, MRF and RLC) based on the average prediction performance
over all testing protein. The horizontal and vertical coordination of the precision-recall curves are the values of recall (denoted as TPR) and precision
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accurate protein complexes because of many false positive
and false negative complex members. Consequently we
use the CYC2008 data for the algorithm DSCP afterwards.
Furthermore, we perform a comparison of our algo-

rithms of DCS and DSCP with algorithm Zhang-DC
[24] which has also used domain context similarity, the
other two classical neighbor counting [10] (denoted as
NC) and Chi-square algorithms [11], MRF [7] which inte-
grates protein complex, domain and PPI for protein func-
tion prediction, and RLC [16] which is a recently proposed
method and possesses good prediction performance. To de-
pict the comparison results, precision-recall (PR) curve is
made used of, whose horizontal and vertical coordination
are the values of TPR and PPV, respectively. The leave-one-
out cross validation is carried out on all these methods to
evaluate their effectiveness. Our methods DCS and DSCP
as well as Zhang-DC infer functions of an unknown protein
from its top K similar known proteins ranked by these
methods. The functions of these known proteins are
regarded as the predicted functions of the unknown pro-
tein. Moreover, the similarity scores between the unknown
protein and the known proteins should be larger than zero.
For NC, Chi-square and RLC, we select top K GO terms
ranked by these methods as predicted functions of an un-
known protein and also ensure that the corresponding
scores are larger than zero (protein-GO term relationship
score for RLC, GO term frequency score for NC and Chi-
Square). Here the parameter K ranges from 1 to 50. MRF
assigns a function to unknown protein if the probability
that the unknown protein has the given function is above a
threshold. The threshold for MRF ranges from 1 to 0
decreased by 0.01. For a given testing protein and each
threshold or parameter K, the TPR and PPV values can be
calculated according to the definition in Equations (9) and
(10). The final PR curves of each comparing method are
plotted based on the average TPR and PPV values over all
testing proteins [40]. Figure 4 shows that the PR curves of
all methods and the digits in legend are the maximum F-
measures for all methods on corresponding GO annota-
tion category (CC, MF and BP).
As shown in Figure 4, DSCP using CYC2008 protein

complex data and DCS achieve the first and the second
maximum F-measures among all comparing methods on
each GO annotation category. For the GO terms in cat-
egory CC, the PR curves of DSCP and DCS are above
that of all comparing methods, which means that our
methods have a higher number of true positives and at
the same time a smaller number of false positives when
selecting different thresholds. For the GO term in cat-
egories MF and BP, the PR curves of DSCP and DCS are
above that of the other four existing methods (NC,
ChiSquere, ZhangDC and MRF) and are also above that
of RLC when inferring functions form a small number of
the most similar proteins. However, the precision values of
DSCP and DCS drop sharply when inferring function from
a large number of similar proteins. Since a lot of functions
of these similar proteins will be assigned to the unknown
proteins, which will introduce many false positives. The
precision values of RLC drop slowly with decrease of the
threshold of protein-GO term relationship score. Because
decreasing of the threshold slightly increase the number of
predicted functions for an unknown protein.



Table 2 The prediction results based on different protein-protein interaction data

Data set Methods MF CC BP

#GO PPV TPR Fmeasure MCC #GO PPV TPR Fmeasure MCC #GO PPV TPR Fmeasure MCC

MIPS DSCP 83 0.49 0.41 0.44 0.44 113 0.43 0.40 0.41 0.40 249 0.37 0.37 0.37 0.36

DCS 83 0.42 0.34 0.38 0.37 113 0.30 0.28 0.29 0.28 249 0.30 0.31 0.30 0.30

Zhang-DC 83 0.24 0.19 0.21 0.20 113 0.21 0.21 0.21 0.20 249 0.23 0.24 0.24 0.23

MRF 83 0.36 0.22 0.27 0.28 113 0.19 0.11 0.14 0.14 249 0.18 0.13 0.15 0.15

RLC 83 0.19 0.32 0.24 0.23 113 0.20 0.37 0.26 0.25 249 0.16 0.37 0.22 0.22

DIP DSCP 95 0.47 0.40 0.43 0.43 124 0.45 0.43 0.44 0.43 267 0.38 0.37 0.38 0.37

DCS 95 0.45 0.38 0.41 0.41 124 0.37 0.35 0.36 0.35 267 0.34 0.34 0.34 0.33

Zhang-DC 95 0.28 0.25 0.26 0.26 124 0.28 0.31 0.29 0.28 267 0.25 0.27 0.26 0.25

MRF 95 0.33 0.24 0.27 0.27 124 0.19 0.12 0.14 0.14 267 0.20 0.13 0.15 0.15

RLC 95 0.18 0.34 0.24 0.22 124 0.19 0.46 0.27 0.27 267 0.14 0.41 0.21 0.22

Biogrid-phy DSCP 103 0.48 0.42 0.45 0.44 130 0.46 0.46 0.46 0.45 299 0.40 0.39 0.40 0.39

DCS 103 0.45 0.41 0.43 0.42 130 0.40 0.44 0.42 0.41 299 0.36 0.37 0.37 0.36

Zhang-DC 103 0.32 0.29 0.31 0.30 130 0.35 0.42 0.38 0.37 299 0.30 0.32 0.31 0.30

MRF 103 0.48 0.26 0.34 0.35 130 0.21 0.14 0.17 0.16 299 0.38 0.13 0.19 0.22

RLC 103 0.15 0.29 0.20 0.17 130 0.16 0.50 0.25 0.25 299 0.25 0.34 0.29 0.25

Biogrid-cpl DSCP 105 0.48 0.42 0.44 0.43 130 0.45 0.46 0.45 0.45 303 0.40 0.40 0.40 0.39

DCS 105 0.43 0.40 0.41 0.41 130 0.39 0.42 0.41 0.40 303 0.36 0.39 0.37 0.36

Zhang-DC 105 0.30 0.26 0.28 0.27 130 0.32 0.38 0.35 0.34 303 0.26 0.31 0.28 0.27

MRF 105 0.74 0.25 0.38 0.43 130 0.52 0.13 0.21 0.26 303 0.45 0.13 0.20 0.24

RLC 105 0.32 0.26 0.29 0.23 130 0.35 0.35 0.35 0.29 303 0.22 0.35 0.27 0.25

This table shows prediction results of five algorithms (DCS, DSCP, Zhang-DC, MRF and RLC) based on four different protein-protein interaction data (MIPS PPI, DIP
PPI, BioGrid physical PPI and BioGrid PPI comprising both physical and genetic interactions), including the number of GO terms of each category (MF, CC and BP)
on each interaction data set and the corresponding values of PPV, TPR, F-Measure and MCC.
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Prediction on different datasets
There are many databases of PPI network data available
online and different datasets vary from each other a lot.
Therefore we have tested our new algorithm DSCP on
four different scale networks that are obtained from dif-
ferent sources of online databases.
To reduce the influence of noise data, we also remove

the duplicated interactions, self interactions and interac-
tions associated with proteins that are functionally un-
known or cannot be mapped to UniProtKB/Swiss-Prot
entries. As a result, the four datasets are MIPS [41] PPI
which contains 4,546 proteins and 12,319 interactions,
DIP PPI used previously in this paper that is consisted
of 5,088 proteins and 22,277 interactions, BioGrid [42]
physical PPI (denoted by BioGrid-phy) which includes
5,759 proteins an 63,084 interactions and the complete
network from BioGrid comprising both the physical
interactions and the genetic interactions (denoted by
BioGrid-cpl), which increases up to 5,985 proteins and
183,228 interactions. The protein complex data used
here in DSCP on all the datasets are the CYC2008 pro-
tein complexes.
Table 2 shows the results of DSCP, DCS and Zhang-

DC when they infer functions from the most similar one
known protein (K = 1). RLC and MRF show the results
when they achieve the maximum F-measure based on
average prediction performance on each testing GO
term. The results in Table 2 prove that DSCP can always
produce the best results followed by DCS on the four
datasets in terms of PPV, F-measures and MCC values.
The difference between DCS and Zhang-DC rises from
whether or not the domain context similarity includes
the similarity of proteins themselves. The improvement
of DCS proves the effectiveness of our strategy. Both
DSCP and MRF utilize protein complex and protein
domain information to predict functions for proteins.
However the F-measure values of DSCP are obviously
higher than that of MRF. For example, on DIP network,
the F-measure values of DSCP are 0.16, 0.3 and 0.23
higher than that of MRF for MF, CC and BP category re-
spectively. It is caused by that MRF infers functions for
a protein from its direct neighbors and highly depends
on the completeness of domain and complex informa-
tion from known proteins. By compared with RLC, its
performance is inferior to DSCP and DCS, and compar-
able to Zhang-DC. Since RLC annotates function for
unknown proteins by integrating GO term similarity and
global PPI network information, it can cover more true



Table 3 The prediction results with different percentages of protein annotations removed

Percent Methods MF CC BP

PPV TPR F-Measure MCC PPV TPR F-Measure MCC PPV TPR F-Measure MCC

10% DSCP 0.75 0.43 0.54 0.41 0.69 0.36 0.47 0.35 0.61 0.37 0.46 0.35

DCS 0.78 0.40 0.53 0.39 0.64 0.31 0.42 0.30 0.55 0.30 0.39 0.29

Zhang-DC 0.70 0.25 0.37 0.24 0.61 0.24 0.34 0.23 0.50 0.23 0.32 0.22

MRF 0.47 0.19 0.27 0.15 0.23 0.20 0.21 0.11 0.25 0.20 0.22 0.13

RLC 0.29 0.38 0.33 0.23 0.29 0.40 0.33 0.24 0.24 0.33 0.28 0.22

20% DSCP 0.76 0.42 0.54 0.40 0.69 0.35 0.47 0.34 0.60 0.36 0.45 0.34

DCS 0.75 0.41 0.53 0.39 0.64 0.30 0.40 0.28 0.55 0.30 0.39 0.29

Zhang-DC 0.71 0.25 0.36 0.24 0.62 0.25 0.36 0.24 0.52 0.24 0.32 0.22

MRF 0.37 0.21 0.27 0.13 0.24 0.19 0.21 0.10 0.26 0.21 0.23 0.13

RLC 0.31 0.36 0.33 0.22 0.32 0.38 0.34 0.24 0.25 0.32 0.28 0.22

50% DSCP 0.78 0.35 0.49 0.34 0.70 0.31 0.43 0.30 0.60 0.31 0.41 0.30

DCS 0.77 0.33 0.46 0.32 0.66 0.25 0.37 0.24 0.56 0.26 0.36 0.25

Zhang-DC 0.74 0.20 0.31 0.19 0.65 0.22 0.33 0.21 0.54 0.21 0.30 0.20

MRF 0.35 0.18 0.24 0.11 0.22 0.16 0.18 0.08 0.22 0.17 0.19 0.09

RLC 0.40 0.29 0.33 0.19 0.40 0.31 0.35 0.21 0.33 0.26 0.29 0.18

80% DSCP 0.84 0.24 0.37 0.23 0.76 0.23 0.36 0.23 0.66 0.23 0.34 0.22

DCS 0.83 0.22 0.35 0.21 0.72 0.18 0.29 0.17 0.63 0.18 0.28 0.17

Zhang-DC 0.83 0.12 0.21 0.11 0.72 0.16 0.27 0.16 0.63 0.15 0.24 0.14

MRF 0.32 0.09 0.14 0.06 0.18 0.08 0.11 0.04 0.16 0.09 0.11 0.04

RLC 0.59 0.17 0.26 0.12 0.58 0.20 0.29 0.14 0.52 0.16 0.25 0.12

This table shows prediction results of four algorithms (DCS, DSCP, Zhang-DC and RLC) by using leave-percent-out cross validation. The percentage is set as 10%,
20%, 50% and 80%, respectively.
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functions and has relative higher TPR values. However
the proportion of positive results are relative lower, which
leads to its lower PPV, F-measure and MCC values. All of
facts prove that our methods propose an effective strategy
for combining protein domain information, protein com-
plexes information and PPI network and outperform other
existing methods in function prediction.

Leave-percent-out cross validation
In the former sections, we used leave-one-out cross
validation to demonstrate the algorithms’ improvements
made on predicting protein functions. However, in prac-
tical applications, there are usually much more proteins
without annotations rather than solely one unknown
protein. As a result, we next used the leave-percent-out
cross validation, which is also a widely accepted validation
method [33,34], to demonstrate the effectiveness of our
algorithms on networks with less function information.
We run our predicting programs of DCS and DSCP,

Zhang-DC [24] and RLC [16] on the network of DIP PPI
1000 times to get the average values of PPV, TPR, F-
Measure and MCC. The percentage is set as 10%, 20%,
50% and 80% respectively and the prediction results are
displayed in Table 3. As can be seen in Table 3, our
methods remain to generate a relatively high F-Measure
and MCC value when the percent of unknown proteins
rises up to 50%. Therefore, DSCP seems to be a suitable
method for annotating unknown proteins.

Conclusions and discussion
In this paper, we have proposed an algorithm DCS for
protein function prediction by using domain combin-
ation similarity to estimate the function similarities
between proteins. In addition, we have used the pro-
tein complexes to expand domain context scope, and
consequently made a desirable improvement to the
final prediction results. Our experiments have demon-
strated that the Pfam domain data is a useful resource
for protein function prediction and its advantages be-
come increasingly obvious as the data grows more
complete. In addition, we have illustrated our new al-
gorithm DSCP to be robust when a large percentage of
the proteins in the network are unknown. In a word,
the algorithm of DSCP described in this paper can be
an effective approach for predicting functions for un-
known proteins. Additionally, the functional similarity
of two proteins measured by our methods DCS and
DSCP can be easily used to weight PPI network and
plugged into NC, Chi-square, RLC and MRF. In the fu-
ture work, we will focus on designing more effective
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method based on the weighted PPI network to predict
protein functions.
Like many other similarity-based algorithms, when

there is more than one known protein with the same
similarity value to an unknown protein, we have met
difficulties in choosing a proper reference. How to a
construct a good similarity definition with the mini-
mum conflicts remains an important problem to be
solved in the future. Besides, in our algorithms the
unknown proteins always refer to the same most simi-
lar protein whichever GO term is being considered.
Mining out the differences between two proteins with
a large similarity by using other biological information,
such gene expression profiles [43,44] can be a way to
get more accurate predictions.
Since proteins can function variously in different

organisms or organs, the protein function prediction
becomes much more complex when the surrounding en-
vironment changes [45]. Moreover, there exist noises in
the high-throughput data [46] and are lack of an appro-
priate evaluating benchmark for different algorithms,
which makes the prediction task even more complex
and difficult. Consequently, there are many obstacles to
overcome and much knowledge remained to be discov-
ered in the field of protein function prediction.
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