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Abstract

Background: The evolution of reproductive self-sacrifice is well understood from kin theory, yet our understanding
of how actual genes influence the expression of reproductive altruism is only beginning to take shape. As a model
in the molecular study of social behaviour, the honey bee Apis mellifera has yielded hundreds of genes associated
in their expression with differences in reproductive status of females, including genes directly associated with sterility,
yet there has not been an attempt to link these candidates into functional networks that explain how workers regulate
sterility in the presence of queen pheromone. In this study we use available microarray data and a co-citation analysis
to describe what gene interactions might regulate a worker’s response to ovary suppressing queen pheromone.

Results: We reconstructed a total of nine gene networks that vary in size and gene composition, but that are
significantly enriched for genes of reproductive function. The networks identify, for the first time, which candidate
microarray genes are of functional importance, as evidenced by their degree of connectivity to other genes within
each of the inferred networks. Our study identifies single genes of interest related to oogenesis, including eggless, and
further implicates pathways related to insulin, ecdysteroid, and dopamine signaling as potentially important to
reproductive decision making in honey bees.

Conclusions: The networks derived here appear to be variable in gene composition, hub gene identity, and the
overall interactions they describe. One interpretation is that workers use different networks to control personal
reproduction via ovary activation, perhaps as a function of age or environmental circumstance. Alternatively, the
multiple networks inferred here may represent segments of the larger, single network that remains unknown in its
entirety. The networks generated here are provisional but do offer a new multi-gene framework for understanding
how honey bees regulate personal reproduction within their highly social breeding system.
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Background
The well-understood theory of kin selection explains how
complex social behaviour can evolve at the gene level
[1-3], yet the theory does not predict which genes pro-
mote the expression of reproductive altruism. The recent
genome sequencing of the honey bee Apis mellifera [4]
and of other eusocial organisms (e.g. [5,6]), is creating
new opportunities to identify genes involved in reproduct-
ive regulation and social coordination. For example, vi-
tellogenin [7,8], major royal jelly proteins [9], insulin
signaling genes [10,11], and ecdysteroids [12,13] are
among a growing set of genes implicated in reproductive
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regulation. Despite these advances from microarray and
quantitative PCR studies, there has not yet been an at-
tempt to link these genes into functional pathways that
explain the phenotypic expression of worker sterility.
Honey bees are a model system for studying the socio-

genomic basis of worker reproductive altruism and ster-
ility [4,14,15]. Like other highly social taxa, eusociality in
honey bees is characterized by a reproductive division in
labour between reproductive and non-reproductive spe-
cialists [16]. The queen caste is sexual and highly fecund,
with well-developed ovaries that each contain ~150-180
ovarioles. The worker caste, by contrast, is non-sexual
and has only rudimentary ovaries with few ovarioles
[17]. Workers are effectively sterile in the presence of a
functional queen, and though this trait has many physio-
logical components, sterility is most commonly measured
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as a function of ovary activation [18]. One approach to
identifying genes integral to the expression of worker re-
productive altruism and sterility is therefore to screen for
genes that control ovary activation [9].
For workers, sterility from ovary inactivation is not ob-

ligate but rather is conditional on social context. As pre-
dicted from kin theory, workers refrain from activating
their ovaries to lay eggs when the indirect fitness pay-off
surpasses a conditional threshold [19]. For individual
workers this threshold is in part dependent on queen fe-
cundity, and is communicated to workers by the queen’s
pheromonal signal [20,21]. When a queen is healthy and
fecund, her daughter workers will generally refrain from
activating their ovaries, but when she is weak or absent,
a proportion of workers may activate their normally
dormant ovaries to lay unfertilized eggs [22]. Because
worker sterility is conditional on the strength of queen
signal, we likewise expect genes regulating ovary activa-
tion to be conditionally expressed – in particular, in re-
sponse to queen mandibular pheromone (QMP).
Previous studies have begun to identify genes differen-

tially expressed as a function of pheromone [8,9,11,23-25],
but as yet no study has systematically compared these
gene lists or compiled them into a network of potentially
interacting genes that collectively function to turn worker
ovaries on and off [12,26]. Inferring a gene network for the
control of worker ovary activation will help determine
how worker sterility is regulated at the molecular level,
and will represent our best example yet of how genes
interact with each other and with their environment to co-
ordinate one of the best-known forms of reproductive
altruism.
Using a network biological approach [27], we first col-

lect studies from the literature that identify genes differ-
entially expressed by workers as a function of queen
signal. Second, from comparable studies we infer, for the
first time, the functional relationship among candidate
genes using co-citation networks. A co-citation network
is a graphical representation of how genes interact with
each other to functionally affect a phenotype. The
graphs infer pairwise interactions between genes if they
are mentioned within the same sentence of a written ab-
stract published in PubMed – the co-citation being used
to suggest a functional relationship between them [28].
Candidate genes identified from microarray studies

alone are typically those with the highest or most con-
sistent expression differences. Network analysis, by con-
trast, builds upon these gene-list outputs to identify
genes of importance via a different criterion – namely,
those with the highest connectivity [29]. Identifying
well-connected ‘hub’ genes within networks can help
pinpoint the crucial junctures that enable network func-
tion [30]. Given the flurry of gene expression analyses
that proceeded the Honey Bee Genome Sequencing
Project e.g. [31-33], there is now worldwide interest in
converting the data generated from these analyses into
provisional networks that describe how worker sterility
is regulated within eusocial bee colonies. Moreover, the
as-yet-unknown network is potentially related to the net-
works that regulate other aspects of honey bee social co-
ordination, such as a tendency to specialize on pollen vs.
nectar among foraging workers [34,35], or the tendency
for individual workers to specialize on within-colony vs.
out-of-colony tasks [26,36].
For honey bees, several studies have suggested a single,

conserved pathway that regulates ovaries in response to
pheromonal cues [8,9,11,37]. In this study we test this
single-pathway hypothesis by generating co-citation net-
works from genes previously implicated in the regulation
of worker ovaries. First, we identify suitable microarray
experiments that derive gene sets related to ovary
activation. We then use the computer software suite
GENOMATIX PATHWAY SYSTEM (GENOMATIX, Munich) to
evaluate whether co-citation networks can adequately ex-
plain variation in this trait. From the networks inferred,
we test whether worker ovary activation is best explained
by a single, conserved pathway that is retrieved by differ-
ent studies, or whether variation in this trait is better ex-
plained by multiple networks that vary with regard to the
age, population or pheromone treatment of workers. This
latter scenario would suggest that no single pathway ex-
plains the conditional expression of worker sterility, and
that multiple pathways are utilized by workers under dif-
ferent circumstances, in different populations or at differ-
ent phases in a worker’s life. Finally, our analysis will
allow us to test the extent to which any inferred net-
works show homology to those known from Drosophila
or other insects, as predicted from recent sociogenomic
theories [35,38].

Methods
Meta-analysis and network construction
In October 2012, we compiled microarray data from the
literature by searching the WEB OF SCIENCE using the fol-
lowing search criteria: [TOPIC = honey bee OR honey-
bee OR Apis mellifera] coupled with [TOPIC = gene
expression OR microarray] and [TOPIC = steril* OR
ovar*], whereby the latter terms capture topics such as
sterile, sterility, ovary, ovarian, etc. We also searched for
analyzed microarray data directly using the search func-
tion of ArrayExpress online databases (www.ebi.ac.uk/
arrayexpress) with the filter [Species =Apis mellifera].
To circumscribe studies that most closely identify

genes that regulate ovary activation, we included data
sets from studies that met the following criteria. Studies
must have i) reported normalized gene-expression differ-
ences between ovary-active and ovary-inactive adult
workers, ii) controlled for genetic and environmental
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background through standardized rearing conditions, iii)
used queen mandibular pheromone [39] as the principle
cue for manipulating ovaries, and iv) quantified the level
of ovary activation via an explicit scoring scheme. Stud-
ies that were generally on-topic but that did not have a
pheromone-untreated control group [24], did not use
queen mandibular pheromone [12,25] or did not expli-
citly score ovaries [25] are valuable in their own right
but were excluded from our meta-analysis.
Prior to up-loading acquired microarray data into

GENOMATIX PATHWAY SYSTEM, we first generated stan-
dardized gene lists. This pre-processing step enabled
comparison between studies that used different sets of
microarray probes. For studies using the complimentary
DNA (cDNA) platform described in Whitfield et al.
[40], we converted expressed sequence tag (EST) acces-
sions to the corresponding gene accession from Version
2.0 of the Official Gene Set [41]. We then manually
curated and identified the single best significant (E-
value < 10-5) BLASTp match in Drosophila melanogaster
[Version 5.10; [42]]. Bee ESTs that did not correspond to a
coding sequence in the fly were, out of necessity, excluded
from downstream analysis (a minority of genes, see
Results). For studies using the honey bee oligonucleotide
microarray, in which probes are already linked to the
Official Gene Set (array described at ArrayExpress under
accession A-MEXP-755), we simply used BLASTp to dir-
ectly assign the most likely D. melanogaster homologue.
The meta-data matrices that we used as input for pathway
analysis therefore consisted of fly homologues that corres-
pond to the differentially expressed bee genes. The data-
base and pathway analysis algorithms of PATHWAY SYSTEM
software are optimized for the fly and we simply trans-
ferred the direction and magnitude of bee gene expression
changes to the fly homologues. We uploaded gene lists
and expression profiles to GENOMATIX PATHWAY SYSTEM.
The algorithm uses a gene recognition strategy described
by Frisch et al. [43] to scan the PubMed database for
genes mentioned together and it subsequently builds the
network by adding interactions with the highest number
of co-citations first. To minimize falsely implied connec-
tions between genes and increase the reliability of the net-
works, we applied the ‘function word’ filter recommended
by Jensen et al. [28] in which edges are only drawn be-
tween genes if the sentence linking them explicitly implies
a functional interaction. For example, gene x ‘inhibits’,
‘phosphorylates’, ‘is the target of ’, gene y, etc. Finally, be-
cause gene-data loss occurs when converting ESTs to offi-
cial bee genes, genes to fly homologs, and finally at the
level of co-citation in the literature, we applied a series of
Chi-square tests for independence to determine whether
the gene composition of networks at each stage of analysis
were an unbiased sample of the original gene expression
dataset.
Within network analysis
For each network we first used the Universal Protein Re-
source UniProt; [44] to assign each network gene a cel-
lular function (e.g., kinase, cofactor, etc.). Specifically, we
queried the UniProtKB database (gene name AND or-
ganism: “Drosophila melanogaster [7227]”) for all genes
and distinguished these types of protein products visu-
ally using graphical symbols based on what is assigned
under “General Annotation” of each gene name.
Second, we analyzed our networks above the level of

the gene, via enrichment analysis as implemented in
FUNCASSOCIATE software [45]. Here, we used a Fisher’s
exact test (with a Monte Carlo False Discovery Rate
simulation; adjusted family-wise error rate α = 0.05) to
determine the most common functions and pathways of
each network. To do this, we first calculated the number
of genes expected to have particular Gene Ontology
(GO) functions for a random network of the same size,
assuming the random network samples genes relative to
their true frequency in the (Drosophila) genome. We
then compared this null expectation to the actual num-
ber of genes observed for the same functions in each of
our networks. If our inferred networks are biologically
functional, then we expect an over-representation of
genes for that GO function.
For each network we also identified the highest con-

nected (‘hub’) genes, and plotted the degree distribution
(see Additional file 1: Figure S1), where the degree is the
number of connections per gene [29]. For the single
most connected gene in each network, we verified its
implied interactions by querying genes against the Dros-
ophila Interaction Database (DroID version 2013_02 data-
base, http://www.droidb.org). This database is searchable
for experimental evidence from protein-protein inter-
action studies, genetic interaction studies, transcription
factor-gene interaction studies, and miRNA-gene inter-
action studies, if any.

Between-network analysis
Because the input studies to our meta-analysis are vari-
able with respect to populations of bees, experimental
detail, and even array platform (Table 1), we expect our
co-citation networks to vary. As a proxy for topograph-
ical convergence between inferred networks, either be-
tween studies for a given worker age or within studies
for a different bee age, we determined the number of
genes found to occur in more than one network. We
then noted whether these recurring genes comprised the
highest connected genes of any networks.

Results
We included six studies that represent 14 different
microarray experiments in our meta-analysis (Table 1).
These studies are comparable in that they screen for

http://www.droidb.org


Table 1 Studies included in the meta-analysis

Study Experimental platform Tissue type Age of
workers2

DEGs DEGs after
conversion

Number of
potential
networks

Grozinger et al. [23] Wild type bees in cages with QMP1 Brain 1 287 181 4

2 1080 469

3 1242 540

4 391 334

Thompson et al. [9] Anarchist vs. wild type bees in colony with live queen Brain 4 20 13 2

Abdomen 20 12

Grozinger et al. [10] Wild type bees in cages with QMP Brain 10 221 103 1

Thompson et al. [8] Anarchist vs. wild type bees in colony with live queen Brain 4 7 2 2

Abdomen 5 2

Cardoen et al. [11] Wild type bees in colony without queen Whole body 18 1292 1077 1

Backx et al. [46] Wild type bees in cages with QMP Brain 4 564 338 4

6 782 527

8 623 428

10 534 387

We included a total of n = 14 meta-datasets that we sourced from the independently published studies listed. For each meta-dataset we provide summary information
on the experimental platform, the type of tissue and the age of workers. We also provide the number of differentially expressed genes (DEGs) that we converted to fly
homologs prior to network construction.
1QMP, queen mandibular pheromone; 2Days post-eclosion.
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genes differentially expressed as a function of worker
ovary activation in the presence or absence of queen
pheromone, and therefore generate data that is suitable
input for our proposed network analysis. From the set of
input studies we can now potentially construct networks
that describe the interactomes within brain, abdominal
or whole body tissues, and do so across a range of
worker ages from 1-day to 18-days post eclosion. On
average, 52% (1884 of 3625) of ESTs identified from
cDNA microarrays corresponded to Official Gene Set
bee genes. Of all bee genes, including those from oligo
arrays, roughly 78% (4409 of 5675) had unambiguous
fruit fly homologs, and 19% (830 of 4409) of these genes
had sufficient co-citation data to be incorporated into
networks. Summary statistics for these genomic data are
provided in Additional file 2: Table S1.

Networks from brain tissue analysis
From the 14 different data sets, we successfully gener-
ated 9 networks. The remaining five data sets from
Thompson et al. [9], Thompson et al. [8], and Grozinger
et al. [10] (Table 1) were not amenable to network ana-
lysis due to either the small number of DEGs identified
(≤ 20 per experiment) and the even smaller subset that
were suitable for downstream analysis via homology to
the fly, or due to the small number of co-citations found
in the literature. Eight out of nine networks were derived
from worker brain tissue. Figure 1 shows the set of net-
works inferred from the DEG sets of Grozinger et al.
[23], which correspond to workers of different ages. In
each data set, we infer a single main network that incorpo-
rates a majority of genes, with only a minority of genes ex-
cluded from the main network to form minor connections
among themselves, or to remain unconnected as single-
tons. Some networks reveal genes that are potentially of
functional importance – for example, dlg1 in Network 1C
or arm in Network 1D are particularly well connected.
From the Grozinger et al. [23] study, the networks we
infer also vary in size, in this case ranging from n = 24-135
genes. The networks we infer from other brain tissue data
sets showed comparable topologies. Figure 2 shows the
networks derived from 4-, 6-, 8-, and 10-day old bees, as
inferred from the DEG sets identified by Backx [46]. These
networks vary in size from 34 to 63 genes and the highest
connected genes include the immune-related transcription
factor Rel [47] in Network 2A, the oogenesis related sig-
naling protein bsk [48] in Network 2B, and abd-A in Net-
work 2C, a transcription factor implicated in abdomen
and gonad development [49].

Network from whole body tissue analysis
The single experimental data set that was derived from
whole body tissue (head + thorax + abdomen) yielded an
expansive co-citation network, as expected given the tis-
sue heterogeneity (Figure 3). This network corresponds
to workers that are 18-days of age, and is inferred from
the DEG set identified by Cardoen et al. [11]. This data-
set corresponds to the oldest aged workers included in
our meta-analysis, and the inferred main network con-
sists of 323 genes with only three genes that remain



Figure 1 Predicted co-citation networks from Grozinger et al. [23] gene lists for 1-, 2-, 3-, and 4-day-old workers (A-D, respectively).
Each node is a gene and each edge is a potential interaction between two genes. Pink genes are up-regulated in workers exposed to queen
mandibular pheromone (as determined in the original study), and blue genes are correspondingly down-regulated. Genes highlighted with a
circle are enriched for biological processes pertaining to ‘reproduction’ (GO:0000003).

Mullen et al. BMC Systems Biology 2014, 8:38 Page 5 of 13
http://www.biomedcentral.com/1752-0509/8/38
disconnected. A His2AV gene (His2Av) is shown to have
as many as 24 functional connections.

Genes of functional importance
Eight out of nine networks (all except Network 2D) con-
tain highly connected genes that show between four
(Hsp83; Network 1A) to twenty-four (His2Av; Network 3)
interactions (Figure 4). GO analysis suggests that these so-
called hub genes function to regulate gene expression
(Rel, abd-a, arm, and His2Av), are involved in signaling
(dlg1, bsk, Rho1), or are molecular chaperones (Hsp83). It
is worth noting that six of these functionally important
genes (bsk, abd-A, Hsp83, Rho1, dlg1, and arm) are impli-
cated by GO analysis to function in reproduction (GO
analysis is available as Additional file 3: Table S2). These
highest connected genes are clearly relevant to our trait of
interest, worker sterility.
In addition to co-citation support in the literature, we

found experimental support for several of the hub gene
interactions. DroID analysis confirmed that fully 32% of
co-citation interactions (24 of 74) are associated with
protein-protein interactions, transcription factor-gene in-
teractions, genetic interactions, or combinations thereof,
in flies and other model organisms (Summary of DroID
analysis is available as Additional file 4: Table S3). All hub
genes had at least one confirmed interaction, and one gene
(Hsp83) had all of its four interactions experimentally con-
firmed. This level of cross-validation suggests that connec-
tions we have inferred from PATHWAY SYSTEM analysis are
biologically robust.



A B
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Figure 2 Predicted co-citation networks from Backx et al. [46] gene list for 4-, 6-, 8-, and 10-day-old workers (A-D, respectively).
Description of symbols and topography is as for Figure 1, with the exception of a colour code change: genes ranging from yellow to pink are up-
regulated in ovary in-active bees and genes ranging from yellow to green are down-regulated in ovary active bees.
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In general there was little overlap between the hub
genes identified from our network meta-analysis and the
most-differentially expressed genes prioritized from the
individual microarray studies (see Additional file 5:
Table S4). For example, the genes Eip93F and Klp67A
(in Figure 3) and Smr (in Figure 2C) have large expres-
sion differences on the microarray, yet they tend to be
found at the periphery of the networks with few con-
nections instead of near the centre as highly connected
hubs. Furthermore, highly connected hub genes such as
His2Av (in Figure 3) and dlg1 (in Figure 1C) were not
exceptionally differentiated on the microarrays. Our net-
work analysis has therefore identified a new list of
candidate genes important to worker sterility that was
previously overlooked by the array studies themselves.

Network enrichment analysis
The networks inferred here show evidence for functional
enrichment for genes related to multiple biological pro-
cesses. Sixty terms were enriched in all networks, includ-
ing oogenesis (GO:0048477), neuron differentiation (GO:
0030182), and response to chemical stimulus (GO:0042221),
among others (Table 2). These networks were also
enriched for genes related to ‘reproduction’ (GO:
0000003), but even here the number and identity of these
genes depended on the age of the bee and the type of



Figure 3 Predicted co-citation network from Cardoen et al. [11] gene list for 18-day-old workers. Description of symbols and topography
is as for Figure 1, with the exception of a colour code change: genes ranging from yellow to green are up-regulated in ovary in-active bees and
genes ranging from yellow to purple are down-regulated in ovary active bees.

Rho1 

Figure 4 Degree of the highest connected gene of each network. Black hubs are from networks created with brain gene expression and
grey hubs are from networks created with whole body gene expression.
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Table 2 Enrichment analysis of gene networks

Category GO term GO number NG1 Average O/E

Ovary Activation Reproduction GO:0000003 250 3.06

Female gamete generation GO:0007292 171 4.40

Oogenesis GO:0048477 171 4.46

Brain and Behaviour Neuron differentiation GO:0030182 208 6.35

Response to chemical stimulus GO:0042221 194 4.55

Signaling Signal transduction GO:0007165 253 3.17

Cell communication GO:0007154 332 3.05

Foraging/Flight Related Compound eye development GO:0048749 109 4.83

Locomotion GO:0040011 141 5.02

For each network that we inferred (Networks 1-3) we found the GO terms that are most likely to represent the network’s biological functions. Sixty biological
processes were significantly enriched among all nine networks (P < 0.01). Nine selected processes, the number of genes associated with these processes, as well
as the observed/expected ratios averaged over all networks, are presented.
1The total number of genes found in all networks associated with the GO term.
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tissue (Table 1). From this analysis, we reveal a total of
170 different genes involved in reproduction in our
networks.
Several pathways were also enriched across multiple

networks. All but one network (Network 2C) were
enriched for functional constituents of the ‘cell surface
receptor signaling pathway’ (GO:0007166). Three (Net-
work 2A, 2B, 3) were enriched for ‘insulin receptor sig-
naling pathway’ (GO:0008286), one (Network 2C) for
‘dopamine receptor signaling pathway’ (GO:0007212),
and one (Network 1B) for ‘steroid hormone-mediated
signaling pathway’ (GO:0043401).

Gene overlap among networks
There was visually little gene overlap among the net-
works, and no single gene was found in all nine net-
works. Yet, a significant proportion of genes (136 of 824,
or 17%) were found in more than one network, with 10
of these genes found to span all four networks inferred
from the Backx [46] study. Moreover, we found 34 genes
to span all four networks inferred from the Grozinger
et al. [23] study. In total, we found 96 genes to span at
least two networks across all of the different studies.
The most recurring genes, Src42A and Hsp83, were
found in five of the nine networks. The hub genes of
four networks were also re-occurring genes; Hsp83 is
found in five networks, Rho1 and dlg1 in four, and Abl
in two.

Co-citation network bias
The networks derived in this study vary in size. Network
size is correlated with DEG list size (r = 0.827, P < 0.01).
Other factors that influence network size include the
proportion of DEGs with fly homologues, and the pro-
portion of these with co-citation information currently
available in PubMed. A majority of networks (6 of 10)
showed no statistical bias with respect to proportion of
genes up- or down-regulated, compared to the original
data sets from which the networks were inferred (χ2

tests, P > 0.05 in each case). The remaining networks did
however include a disproportionate number of genes
up-regulated (χ2 = 13.58-24.4, d.f. = 3, P <0.001 in all
cases), either upon conversion to fly homologues (Net-
works 1B) or upon retrieving co-citation links from
PubMed (Networks 1D, 3 and 4). This biased sampling
of some DEG sets simply reflects the information cur-
rently available within the PubMed database.
Discussion
In this study we have generated the first gene networks
that describe variation in ovary activation among honey
bee workers. As such, these networks may be useful for
understanding how worker reproductive altruism and
sterility is regulated at the physiological and molecular
level. The networks presented are derived from a func-
tional analysis of gene sets previously identified from
microarray studies (Table 1). One pattern to emerge
from this meta-analysis is that each network is generally
inclusive, with a majority of annotated genes forming
linkages into single, main networks (Figures 1, 2, 3). This
level of connectivity, together with the substantial size of
some networks, suggests that the underlying DEG sets
are biologically informative, and that the networks do re-
flect functionally interacting genes [50]. Moreover, each
network, though highly variable in terms of gene mem-
bership, is enriched for biological processes related to
reproduction, including oogenesis and other functional
terms that are consistent with reproduction and repro-
ductive regulation (Table 2). Our meta-analysis has
therefore yielded a set of graphical hypotheses that po-
tentially describe adaptively complex and biological
functional networks that worker bees use to regulate
personal reproduction within a social context.
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Co-citation networks
The eight networks derived from brain tissue varied sub-
stantially in gene membership, size and topology. The
smallest network (n = 24 genes) describes how workers
that are very young, only 1-day post eclosion, respond to
queen pheromone at the molecular level (Figure 1A).
This network is neither fully connected nor very large,
but does show balanced expression between genes up-
or down-regulated, and does identify a single most-
connected gene that encodes a heat-shock protein
(Hsp83). Bees this young may therefore show insufficient
gene activity in response to pheromone to meaningfully
assemble this activity into a functional network. None-
theless, our identification of Hsp83 is significant because
this gene has previously been singled-out in relation to
honey bee caste differentiation [51,52], oogenesis [53],
and is a marker for changes in queen reproductive status
[10,54]. All of these implied changes reflect a potential
role in reproduction and reproductive divisions in
labour.
Bees just one and two days older, however, show evi-

dence of massively coordinated expression (Figures 1B,
1C). These co-citation networks are markedly more com-
plex, and thus are more informative with respect to infer-
ring function and identifying hub genes. The bias against
up-regulated genes in this network suggests that the ori-
ginal gene set contained important elements to
reproduction, but that have no GenBank homologue in
the fly. The highest connected gene in Network 1B is
Rho1, a protein that regulates signaling pathways in devel-
opment [55]. Another highly connected gene in this net-
work is Abl, which functions in neural development in
honey bees and influences behavioural maturation [56].
Finally, caged 4-day old workers, at the age just prior to
ovary activation [9], yield a relatively small co-citation net-
work (Figure 1D). Here, the highest connected gene arm
encodes a transcriptional activator in the wnt pathway to
regulate the expression of many genes [57].
Figure 2 shows the four networks inferred through co-

citation analysis of genes identified by Backx et al. [46].
The 4-day old bee co-citation network (Network 2A) is
comparable in size to that inferred from Grozinger
et al.’s [23] study (50 vs. 35 genes), but shared only one
gene in common (sima). The highly connected genes bsk
and abd-A have previously been implicated in reproduc-
tion in honey bees [48] and Drosophila [49] and their
position as hubs suggests that they may be functioning
similarly in our networks. The role of a central immune
gene (Relish) in Network 2A is unclear, but other honey
bee studies have also found immune genes to be differ-
entially expressed between reproductives and non-
reproductives [10,58], and networks modeling honey bee
behaviour also contain transcription factors that code
for immune genes as major hubs [59].
Figure 3 shows the single network inferred through
co-citation analysis of genes identified by Cardoen et al.
[11]. This network depicts a putative molecular mechan-
ism through which the oldest workers included in our
meta-analysis turn their ovaries on and off in response to
pheromonal cues. This is the only co-citation network
included in our meta-analysis that is derived from whole
body tissue, as opposed to brain tissue (Table 1). This
network is well connected, with only three genes separ-
ate from the main component, suggesting that the ma-
jority of these genes are indeed functioning together.
This network showed some bias towards up-regulated
genes in comparison to the initial DEG list, again during
the detection of co-cited genes. The gene His2Av is not
obviously related to reproduction but we have identified
this gene silencer as a very well connected gene (24 in-
teractions) and thus may be important to sterility. This
gene is connected to those directly implicated in
reproduction, including eggless. The gene eggless has a
role in Drosophila oogenesis [60], so the identity of
His2Av and its neighbours within our co-citation net-
work for worker ovary activation and sterility warrants
further attention.

Highest connected genes
Candidate genes identified through microarray analysis
highlight those that are highly differentially or chronic-
ally expressed, whereas those identified through network
analysis instead feature genes that are highly connected.
In our networks, the highly differentially expressed genes
tend to have few connections and perhaps serve as the
end result genes that directly affect worker phenotype.
Highly connected hubs, on the other hand, tend to func-
tion early on in biological pathways as the initial genes
that co-ordinate the expression of several other down-
stream target genes [61]. We see this feature in our net-
works; all but one hub gene (Hsp83) have functional
roles involved in or upstream to gene expression (e.g.,
the transcription factors Rel and abd-A and the signaling
proteins Rho1 and bsk [59]).

Testing candidate pathways for ovary activation
The networks generated in this study provide an oppor-
tunity to test previous ideas on the make-up of pathways
for ovary activation in honey bees. One pathway that has
been implicated in reproductive regulation is the insu-
lin/insulin-like signaling (IIS) pathway. The IIS pathway
acts upstream of ecdysteroid and juvenile hormone regu-
lation to control solitary insect reproduction [62] and is
required for insect vitellogenesis [63]. In social Hymen-
optera, it appears to have a critical influence in the
evolution of eusociality, as it has been specifically impli-
cated in both reproductive division of labour between
castes [32,38] and age-related division of labour within



Mullen et al. BMC Systems Biology 2014, 8:38 Page 10 of 13
http://www.biomedcentral.com/1752-0509/8/38
the worker caste [64]. Our enrichment analysis has iden-
tified significant elements of the IIS pathway in some of
our networks. Network 2A (adjusted P < 6.00E-03), Net-
work 2D (P < 1.00E-03), and Network 3 (P < 7.00E-03)
were enriched for ‘insulin receptor signaling pathway’
(GO:0008286). Six key genes involved in this pathway
and its regulation were present in the three networks,
including the ligand Ecdysone-inducible gene L2, the re-
ceptor chico, the signaling molecules Pten, dock, and
Tsc1, and the target transcription factor foxo [65]. This
representation of genes involved throughout the entire
pathway, as well as the enrichment across networks from
different studies suggests the IIS pathway is strongly im-
plicated in the control of worker sterility.
In addition we have identified elements of two other

pathways, the dopamine receptor signaling pathway
(GO:0007212, adjusted P <0.001) and the steroid hor-
mone mediated signaling pathway (GO:0043401, adjusted
P <0.01). The dopamine pathway has been implicated in
caste differentiation [66] and ovary inactivation in the
presence of QMP [67]. Honey bees have three dopamine
receptors, Amdop1, Amdop2, and Amdop3 expressed in
their brains and ovaries. The genes DopR and DopR2 were
present in Network 2B and correspond to the Amdop1
and Amdop2 dopamine receptors. Workers of different
ages and behavioural repertoires vary in their expression
of all three dopamine receptors in response to queen
pheromone [68]. The homovanillyl alcohol (HVA) compo-
nent of QMP, one of the principle cues that induced
worker sterility via ovary inactivation, binds to the
Amdop3 receptor [69], but QMP also modulates the ex-
pression of the other two receptors indirectly [67]. More-
over, HVA up-take is accelerated as workers transition
between reproductive and non-reproductive states [70,71],
suggesting that dopamine signaling is involved in repro-
ductive response thresholds.
Finally, ecdysteroids involved in the steroid hormone

mediated pathway have been implicated in bee brain
function and oogenesis [13]. Network 1B contains an ec-
dysone receptor (Ecr) and the ecdysone-induced proteins
Eip78C and Hr46 [72]. Ecdysone receptor is needed for
ovarian differentiation in Drosophila [73]. Ecdysteroids
are therefore also potentially important to ovary signal-
ing, consistent with Wang et al. [12] who demonstrated
that Ecr is expressed in queen and worker ovaries, and
Hr46 affects female ovary size. Network 1B is derived
from some of the youngest workers included in our ana-
lysis (2-days old). If steroid hormone pathways are im-
portant to ovary activation, then they would appear to
act very early, prior to the visual development of ovaries.
Insulin, ecdysteroid and dopamine signaling pathways

have been previously implicated in honey bee [32,65,74]
or insect [75,76] reproduction, but our study is the first
to statistically test their functional presence via gene
representation within empirically derived networks. Our
convergence onto these three pathways with known re-
productive function suggest that Apis employs a mech-
anism similar to that used by unrelated non-social
insects, up-holding a major prediction of the so-called
reproductive ground plan hypothesis.

A single conserved network for ovary activation?
At first glance, the networks derived here appear to be
variable in gene composition, hub gene identity (Figure 4),
and the overall interactions they describe (Figures 1, 2, 3).
This apparent lack-of-convergence onto a single co-
citation network, despite them being inferred from essen-
tially similar datasets (Table 1) suggests that honey bee
workers can use different networks to control personal
reproduction, perhaps as a function of age, environmental
circumstance, or both. Given that workers use different
sensory modalities to interact with and respond to
changes in their environment, including their social envir-
onment [58,77], it is conceivable that workers may use al-
ternate or redundant pathways to control aspects of
reproduction within colonies. Alternatively, a single path-
way governing ovary activation in response to social cues
seems more parsimonious [35,78]. If so, the multiple net-
works inferred here may represent segments of the larger,
complete network that is still unknown. Different social
and environmental signals may activate different suites of
genes within this comprehensive network, explaining why
the studies that vary in age, pheromone treatment, social
structure, and environmental conditions have all captured
different gene sets, with some degree of overlap.

Conclusions
The networks identified here represent hypotheses for
how workers regulate their ovaries to control reproduc-
tion. Within the context of their eusocial colonies, this
reproductive machinery is of direct significance to socio-
genomic theory that postulates the existence of ‘genes
for altruism’ [79,80]. These genes have rarely been found
[81] but the networks presented here, together with
other efforts to describe how genes interact with each
other and with their cellular, physical and social environ-
ment [12,26], provide a starting point from which we
can begin to test ideas on the role of specific genes on
reproductive phenotypes, including the prospect of find-
ing genes for worker sterility. One approach might be to
use functional genomic experiments that perturb hub
genes or their neighbours, and then monitor worker
phenotype. In particular it will be useful to measure how
knock-outs affect worker phenotypes related to reproduc-
tion, including response to queen mandibular pheromone,
ovary activation and egg laying, as well as other measures
of social divisions in labour such as nurse-to-forager tran-
sitions or forager specializations. Finally, we suggest that
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future studies incorporate co-expression information and
honey bee protein interactions, so that networks can then
be made from Apis genes directly without the need for
conversion to Drosophila, and would not rely on the
somewhat haphazard availability of co-citation data in
PubMed. Eventually it will then become possible to ex-
pand the networks beyond mRNA expression to incorpor-
ate regulatory and metabolome data and thereby provide
an even more functional description of the mechanism
that regulates ovarian physiology and reproductive altru-
ism in honey bee workers.
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