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Abstract

Background: During embryogenesis, signaling molecules produced by one cell population direct gene regulatory
changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest
events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the
ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell
types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the
responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here,
we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos
of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred
networks to predict spatial gene expression patterns.

Results: We use two inference models with different underlying assumptions that incorporate existing network
information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance
of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct
the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known
dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes.
Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but
interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial
patterns, yet they are complementary for the patterns that they do capture.

Conclusion: The presented methodology of gene network inference combined with spatial pattern prediction
provides an additional layer of validation to elucidate the regulatory circuits controlling the spatial-temporal dynamics
in embryonic development.
Background
Detailed gene regulatory networks (GRNs) in a number of
invertebrate species have provided an unprecedented global
overview of the genetic program controlling development
in sea urchin, Drosophila, and C. elegans [1-4] and have
revealed a number of important and conserved regulatory
cassettes employed in a diversity of developmental con-
texts [5]. While generation of such networks will be also
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extremely valuable in understanding the mechanisms
governing cell fate specification in vertebrate systems,
similar work in vertebrates is challenging as the number
of cell types, genome organization and genes involved in
regulating the biological processes are significantly more
complex.
In all triploblastic metazoans, establishment of the

primary germ layers (endoderm, mesoderm and ectoderm)
occurs early, during blastula and gastrula stages. In the
Xenopus blastula the presumptive germ layers are arranged
along the vegetal-animal axis with endoderm arising from
the vegetal cells, mesoderm in an equatorial ring and the
ectoderm on the top overlying the blastocoel cavity. This
simple spatial arrangement in developing embryos, taken
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together with a low complexity in terms of numbers of
different cell types and the ease in manipulating gene
expression, makes the amphibian Xenopus ideally suited
to study GRNs in early vertebrate development.
Xenopus developmental biologists have spent nearly 20

years in generating a prototype GRN describing the
mesendoderm [6,7]. Despite this effort, these GRN dia-
grams are very incomplete and provide only a limited
preview of the in vivo condition. New alternative approaches
are urgently needed to generate GRNs that incorporate
more genes and have predictive features. In this paper,
we present a novel method to elucidate gene regulatory
circuits from aggregate gene expression measurements
in embryos of the frog Xenopus tropicalis using gene
network inference algorithms and then test the ability
of the inferred networks to predict spatial gene expression
patterns.
The primary methodologies for gene network inference

include probabilistic graphical models [8-11], information-
theoretic approaches [12,13], ordinary differential equations
(ODEs) (among which include linear ODEs for steady-state
data [14-17], linear ODEs for time series data [15,16,18-21]
and nonlinear ODEs for time series data that adopt heur-
istic search strategies [22-26]) and linear regression models
[11,20,27,28]. There are numerous reviews of these methods
and other approaches [29-34].
In this work, we examine gene expression profile changes

of hundreds of genes at several developmental stages after
loss-of-function analyses. We then employ two inference
models with different underlying assumptions, a linear
ODE model for steady-state data and a linear Markov
model for time series data, to elucidate the core dorsal
mesoderm and endoderm regulatory circuits. Both models
incorporate sparseness control on the network connections
and prior network information, and they can be solved
with the same optimization framework. Using one inferred
network in combination with known dorsal-ventral ex-
pression pattern images of a subset of genes, we define
an optimization problem to predict spatial patterns for
all genes in the network. The spatial pattern prediction
provides an additional layer of validation for the regulatory
circuits controlling the spatial-temporal dynamics in
embryonic development.
We model the gene network using ordinary differential

equations (ODEs) that describe gene regulation as a func-
tion of other genes:

dxi tð Þ
dt

¼ Fi x1 tð Þ;…; xp tð Þ� �
where xi(t) is the concentration of mRNA for gene i
measured at time t, dxi(t)/dt is the rate of change for the
mRNA concentration of gene i, and p is the number of
genes. Each function Fi represents all of the various
processes and factors that affect the amount of mRNA
for gene i. Previously, we presented a linear steady-state
ODE model for gene network inference that incorporates
regularization terms for sparseness and prior network
information [17]. We showed that inclusion of prior
knowledge about the network structure in the inference
process increased performance, that incorrect connections
in network structure knowledge did not hurt performance,
and that a mixture of correct and incorrect connections
given as prior knowledge performed better than giving no
prior network information.
We employ our steady-state ODE model to gene ex-

pression data from the Xenopus embryo. Since the linear
steady-state ODE model assumes that observations are
made when the experimental system is at a steady-state
equilibrium, the model cannot directly incorporate tem-
poral dynamics for the multiple developmental stages
present in our data. One technique to account for such
dynamics is to approximate the derivatives for the variables
(i. e., dxi(t)/dt), but this approximation can be inaccurate for
the long time intervals typical in biological data. An alterna-
tive approach proposed by Linde et al. [21,35] is to consider
a first-order Markov model where the gene expression at
time k is a linear function of its regulators at the previous

time k–1, i.e., xki ¼
Xp
j¼1

Wijx
k−1
j , and W is the linear gene

interaction matrix. However, this model suffers from an
issue typical of gene network inference models, which is
that the number of genes is greater than the number of ex-
perimental observations. Therefore, the system is underde-
termined and the model tends to produce a dense gene
network that overfits the data. Linde et al. utilize a heuristic
search strategy to produce sparse networks, however it is
not integrated into the optimization problem and thus it
is hard to gauge the effectiveness of the heuristic [21,35].
Various regularization techniques, which are integrated into
the optimization problem, have been introduced to prevent
overfitting and to perform variable selection including ridge
regression [36], LASSO [37-39], and elastic net [40]. Ridge
regression tends to achieve better prediction performance
through a bias-variance tradeoff among all the variables,
while LASSO specifically enforces sparseness by excluding
poor predictor variables, and elastic net combines the
two techniques. In our prior work, we applied LASSO in
our linear steady-state ODE model to produce a parsimoni-
ous regulatory network that is optimal as tested by cross-
validation, and we showed how the LASSO regularization
operator could be extended to incorporate prior network
information [17]. In this paper, we extend the Markov
model to include regularization terms that enforce sparse-
ness of the inferred gene network and allow incorporation
of prior network information. We apply the model to
simulated data from test networks and present results on
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the model’s ability to recover the network from differing
number of observations and mixtures of correct and incor-
rect connections provided as prior network information.
We apply both models to the aggregate gene expression
data of the heterogeneous cell types in the Xenopus embryo,
and then compare the ability of each model to recover the
core regulatory circuits.
Advances in bioimaging and image analysis are allowing

gene expression data to be mapped and studied within a
spatial context for organisms and tissue [41-45]. This has
led to the recognition and challenge of using spatial gene
expression data to reconstruct the regulatory circuits re-
sponsible for those spatial patterns, such as in a recent
case study of reverse engineering the well-studied gap
gene network responsible for segmentation in the embryo
of D. melanogaster [46-49]. Our research is the first
attempt to our knowledge to apply similar techniques
for Xenopus. One of the challenges is quantifying gene
expression from spatial pattern images [50], however
we take a simpler approach by categorizing the spatial
pattern based upon the assessment of a biological expert.
Given a set of spatial gene expression image obtained
from Xenbase [51], we transform the expression along the
dorsal-ventral axis of the embryo into a one-dimensional
representation. We then define an optimization problem
that takes an inferred gene network, either from the steady-
state ODE or Markov model, and a subset of spatial data
to predict the spatial patterns for the remaining genes.
We characterize the performance for each model in
their ability to predict the spatial expression for genes
with known patterns, and we discuss hypothesized spatial
patterns for genes where no such data exists. Our approach
suggests that a single modeling method is not sufficient
to capture all aspects of spatial gene expressions, and
the differences in the underlying assumptions for each
model may provide insights about the spatial-temporal
dynamics in embryonic development.

Results and discussion
Simulation results
We generated a set of time series simulation data to test
the Markov model. Five random networks containing
p = 10 nodes with 2–3 uniform randomly selected incom-
ing edges were generated for a total of exactly 25 edges
in the network; each edge had a weight drawn from the
normal distribution N (0, 100). A large variance was used
to avoid generating simulation data with big values, de-
scribed in more detail below. Each network was verified
to be nonsingular.
For each random network, we generated 15 observations

where each observation contained 4 consecutive time
points (i.e., kmax = 3 in (Eq. 1.3)). Specifically, the time
series data xk in each observation were generated as
following: y4 was randomly drawn from the standard
normal distribution, x4 was generated by adding noise to
y4, i.e., x4 = y4 +N (0,0.3), then

xk ¼ W −1 ykþ1 þ N 0; 0:1ð Þ� �þ N 0; 0:3ð Þ;
yk ¼ W −1ykþ1;

where k = 3, 2, 1, xk represents the k th time-point data
in one observation and yk represents the k th time-point
ideal data without noise in one observation. Here, two
kinds of noise were added: the intrinsic noise (e.g., stochas-
tic fluctuations in the underlying biological process) was
drawn from N (0,0.1) and the extrinsic noise (e.g., measure-
ment errors) was drawn from N (0,0.3). The weight of each
edge in the randomly generated networks was drawn from
N (0, 100). The large variance can help avoid generating
data with large values that can skew the inference process
and produce numerical errors. Using a small variance tends
to generate large values in W–1, thus each time point
will produce increasingly larger values for yk and xk.
The generated random networks and time series data
used in producing the simulation results are provided
in Additional file 1.
For our experiments that utilize existing network infor-

mation, we provide a Boolean matrix W0, where an entry
W 0

ij ¼ 0 indicates a directed interaction from gene j to gene

i, while W 0
ij ¼ 1 for all other edges.

Using leave-one-out cross-validation, we find the values
for the regularization parameters, α (sparsity) and β
(prior network), for each gene that minimizes the
cross-validation error. A proportional error is calculated
to measure the algorithm’s performance throughout this
section. Since we introduce noise into the simulated
data, the cross-validation error will vary with the num-
ber of observations. Therefore, in each simulation run
we divide the minimal cross-validation error by the min-
imal least-squares error obtained using linear regression
without any regularization terms. This normalizes the
error relative to the minimal possible error achievable
through linear regression. Then we take an average across
all the random networks to produce the final proportional
error.
Inference error decreases as the number of
observations increases
We first examined the effect of the number of obser-
vations on the prediction performance (Figure 1). As
would be expected, as more observations are provided
to the inference algorithm, performance improves and the
error approaches the minimal possible error achievable
through linear regression. More observations serve to
provide better estimates for the edge weights in each
random network.
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Figure 1 Inference error versus number of observations. The
proportional error (i.e., inference error) denotes the minimal
cross-validation error divided by the minimal least-squares error of the
linear regression without any regularization terms and averaged over
five random networks. The proportional errors decrease with more
observations and stabilize when there are enough observations.
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Providing valid edges as prior network information
increases performance
Although providing more observations will increase pre-
diction performance, only relatively few observations are
usually available compared to the large number of genes.
Here, we demonstrated that providing existing edges could
enhance prediction performance especially in the situation
of few observations. Zero to twenty-five (i.e., the number of
all edges in each random network) randomly chosen prior
edges were provided respectively to the inference algorithm
(Figure 2). For a fixed number of valid edges, we generated
five random networks and five sets of random valid
edges for each network. The proportional errors were
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Figure 2 Inference error versus number of random valid edges provid
cross-validation error divided by the minimal least-squares error of the line
random networks and five random sets of valid edges. Zero to 25 (i.e., the
respectively. (A), (B) and (C) are the results of 4, 5 and 6 observations, resp
provided. Prior connections appear to be more important when only a few
averaged over the five networks and five sets of valid
edges. It was found that the errors decrease when more
valid edges were provided. This effect was related to the
number of observations and prior connections appeared
to be more important when only a few observations were
available.

Providing invalid edges as prior network information does
not affect performance
As a contrast, we also examined the effect of providing
incorrect edges. Zero to ten incorrect edges were randomly
chosen respectively as the prior information (Figure 3).
Providing invalid network edges only (without valid edges)
had little effect on the errors, especially when many obser-
vations were available. The reason is that if the invalid
edges do not help to reduce the minimal cross-validation
error, the prior network information will be ignored [17].
The errors became smaller as the number of observations
increased, which was consistent with the results in Figure 1.

Consistent performance is maintained with a mixture of
valid and invalid edges in prior network information
Since the prior network information may contain both valid
and invalid edges, it is important to examine the effect of
providing both kinds of edges on network performance.
The proportional errors were averaged over five random
networks with randomly chosen mixed edges (Figure 4).
We observed that when there were more valid edges (e.g.,
valid = 20), the errors were generally smaller as a whole.
Even when the valid edges were mixed with invalid edges,
the errors did not become much larger. It was probable
to achieve smaller errors with invalid edges than without
invalid edges. However, this is not very surprising. For ex-
ample, considering an extreme case in which all the valid
edges are provided and all the other edges are chosen to
be invalid edges, then W0 = 0, i.e., there are no prior edges
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Figure 3 Inference error versus number of random invalid
edges (without valid edges) provided. The proportional error
(i.e., inference error) denotes the minimal cross-validation error divided
by the minimal least-squares error of the linear regression without any
regularization terms and averaged over five random networks. The red,
blue and green curves represent 4, 6 and 10 observations, respectively.
Providing invalid network edges only has little effect on the errors,
especially when many observations are available. The errors become
smaller as the number of observations increases, which is consistent
with the results in Figure 1.

Zheng et al. BMC Systems Biology 2014, 8:3 Page 5 of 18
http://www.biomedcentral.com/1752-0509/8/3
to be punished in the optimization problem. As a conse-
quence the least-squares is easier to be over fitted and
smaller cross-validation errors are easier to be produced.
Comparing Figures 4A and 4B, we could also see that the
effect of valid edges was related with the number of obser-
vations. When there are only a few observations available,
the valid edges appear to be even more important, e.g., the
Figure 4 Inference error versus number of random invalid
edges. The proportional error (i.e., inference error) denotes the
minimal cross-validation error divided by the minimal least-squares
error of the linear regression without any regularization terms and
averaged over five random networks. The blue, green and red curves
represent 0, 5 and 20 random valid edges, respectively. 4 and 2
observations are considered in (A) and (B), respectively. When there
are more valid edges (e.g., valid = 20), the errors are generally smaller
as a whole. When only a few observations are available, the valid
edges appear to be even more important. The cross-validation errors
are in a large scale (i.e., 105) in (B), because they are divided by the
least-squares errors, while fewer observations are easier to be over
fitted with small least-squares errors (e.g., 10-6 ~ 10-4).
curves in Figure 4B separate more with each other than
those in Figure 4A. Based on the observation, we
hypothesize that if many observations are available, the
effect of valid edges on the errors will be weakened.

Comparison of the ODE model and the Markov model
Based on the above observations, three common conclu-
sions can be obtained from the ODE model (Eq. 1.2) and
the Markov model (Eq. 1.3): (1) the proportional errors
decrease as the number of observations increases; (2) pro-
viding invalid edges alone does not affect the prediction
performance; (3) providing valid edges is generally helpful
to improve the performance especially when only a few
observations are available. The difference is that the ODE
simulation data [17] is separated into two groups and their
noise is drawn from N (0,0.3) and N (0,0.1) respectively,
while all the Markov simulation data contains both the
above noise simultaneously which generates larger noise
in the above simulations and weakens the effect of prior
valid edges.

Inference of Xenopus tropicalis embryonic regulatory
network
We generated NanoString probes for 177 Xenopus tropicalis
genes (see Additional file 2), choosing to target mostly
transcription factors and secreted signaling factors that
are expressed in early embryos as these are important
developmental control genes. We performed four morpho-
lino antisense oligonucleotide (MO) experiments to knock-
down the expression of vegt, sox17, ctnnb1 (β-catenin) and
foxh1 proteins in X. tropicalis. Total RNA was isolated
from embryos at four different developmental stages
(blastula stage 9 and gastrula stages 10, 11 and 12.5) and
subjected to gene expression profiling analysis using the
Nanostring nCounter system. Experiments were repeated
three times to obtain biologically independent data sets.
The NanoString data from the MO experiments is provided
as additional files (see Additional files 3 and 4). Reproduci-
bility of Nanostring data in these triplicate samples showed
R2 = 0.98, indicating that the data are of high quality and
reproducible (data not shown). The expression data for
each gene is normalized by its maximum expression data.
Since the time interval is relatively long (i.e., in hours
instead of minutes), we assumed this process as a dynamic
equilibrium and used the steady-state ODE model (Eq. 1.2)
and Markov model (Eq. 1.3) to infer gene regulatory
networks. As a balance of the amount of available data
and the size of the to-be-inferred network, we chose 36
out of 177 genes to infer the interactions between the
36 genes. 36 genes were chosen for analyses because of
the availability of their spatiotemporal expression patterns
and known transcriptional activities [7]. In addition, there
were 46 prior gene interactions available for us [7]. The
inferred network from the ODE model and Markov model
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are in Figures 5 and 6, respectively. Table 1 lists the prior
connections and the connections in the inferred ODE
network and Markov network which were consistent
with the prior connections.
The inferred network from the ODE model contains

694 edges and 34 out of 46 (p-value = 0.006) prior con-
nections are correctly inferred. The full list of inferred
connections from the ODE model are in Additional file 1:
Table S1. The inferred network from the Markov model
contains 410 edges and 32 (p-value = 0) edges are consistent
gata6

foxa4a

FoxH1.1

foxa1

t

bmp4

ventx1.2

gata5

sox17a

lhx1

myc

xbp1

nodal3
sox21

Hnf1beta
msx1

mespb

ventx2.2

Figure 5 Inferred network from the linear ODE model. Positive interact
The strength of connections is indicated via the thickness of lines connecti
threshold 0.25 is applied, i.e., all the edges with the weights smaller than 0
with the prior information. The full list of inferred con-
nections from the Markov model are in Additional file 1:
Table S2. Details for p-value calculations are provided in
Additional file 1. 25 connections are shared among the
connections in the inferred ODE network and Markov
network (details are in Table 1). The Markov network is
more sparse than the ODE network, e.g., the average degree
of all nodes is 11.39 for the Markov network and 19.28 for
the ODE network. There are 172 common connections
among all the connections in both networks.
frzb

sox17b.1

nodal6

Bix1.2

ctnnb1

foxa2

myod1

wnt11

otx2

Myf5

Sox7
VegT

mix1

hhex

gata4

FoxH1.2

mixer

gsc

ions are shown in blue and negative interactions are shown in red.
ng the genes. The interactions vary from −1.2921 to 1.4132 and a
.25 are discarded.



Figure 6 Inferred network from the linear Markov model. Positive interactions are shown in blue and negative interactions are shown in red.
The strength of connections is indicated via the thickness of lines connecting the genes. The interactions vary from −1.1317 to 2.5607 and a
threshold 0.2 is applied, i.e., all the edges with the weights smaller than 0.2 are discarded.
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The cross-validation procedure calculates values for the
regularization parameters, α (sparsity) and β (prior network)
such that the cross-validation error is minimized. However,
the resultant network does not necessarily contain all of
the connections provided in the prior network as with our
study where 34 (ODE) and 32 (Markov) of the 46 prior
networks connections are in the inferred network. This
can occur for a number of reasons, for example: 1) the
prior network information may be incorrect and thus
excluded, 2) the experimental data may lack a discriminatory
signal that the algorithm can use to infer the connection,
3) the cross-validation error may be too stringent by
excluding connections with minimal support, or 4) the
non-linear dynamics of the prior network connection
may not be sufficiently captured by the linear model. If
cross-validation for the sparsity control parameter α in
(Eqs. 1.2 and 1.3) is not used, α can be varied to produce
more or less prior network connections. In the ODE model,
by setting α = 0.006 then 42 prior network connections are
obtained, while α = 0.0 provides all 46 prior connections.



Table 1 The 46 prior connections and the connections
inferred from the linear ODE model and Markov model

Prior information Linear ODE
model

Linear Markov
model

sox17a regulates hnf1b Inferred Inferred

sox17a regulates foxa4a Inferred Inferred

sox17a regulates foxa1 Inferred Inferred

sox17a regulates foxa2 Inferred Inferred

sox17a regulates gata4 Inferred

sox17a regulates gata5 Inferred

sox17a regulates gata6 Inferred Inferred

sox17a regulates bix1.2 Inferred

sox17b.1 regulates hnf1b Inferred Inferred

sox17b.1 regulates foxa4a Inferred

sox17b.1 regulates foxa1 Inferred Inferred

sox17b.1 regulates foxa2 Inferred Inferred

sox17b.1 regulates gata4 Inferred

sox17b.1 regulates gata5 Inferred Inferred

sox17b.1 regulates gata6 Inferred Inferred

sox17b.1 regulates bix1.2 Inferred Inferred

sox7 regulates sox17a

sox7 regulates sox17b.1

gata4 regulates sox17a

gata4 regulates sox17b.1 Inferred

gata5 regulates sox17a Inferred

gata5 regulates sox17b.1 Inferred Inferred

gata6 regulates sox17a Inferred

gata6 regulates sox17b.1

bix1.2 regulates sox17a Inferred Inferred

bix1.2 regulates sox17b.1 Inferred

vegt regulates mix1 Inferred

vegt regulates mixer Inferred

vegt regulates sox17a Inferred

vegt regulates sox17b.1 Inferred Inferred

foxh1 regulates otx2 Inferred Inferred

foxh1 regulates lhx1 Inferred Inferred

foxh1 regulates mix1 Inferred Inferred

foxh1 regulates mixer Inferred Inferred

foxh1 regulates bix1.2 Inferred Inferred

foxh1 regulates t

foxh1 regulates ventx2.2 Inferred

foxh1 regulates sox17a Inferred Inferred

foxh1 regulates sox17b.1 Inferred

foxh1 regulates frzb Inferred Inferred

foxh1 regulates gsc Inferred

foxh1 regulates hhex Inferred Inferred

foxh1 regulates msx1 Inferred Inferred

Table 1 The 46 prior connections and the connections
inferred from the linear ODE model and Markov model
(Continued)

ventx2.2 regulates ventx1.2 Inferred Inferred

ventx1.2 regulates myf5 Inferred Inferred

t regulates myf5 Inferred

The blank stands for missing edges in the inferred networks. There are 34 and
32 connections same as the prior information in the networks inferred from
the linear ODE model and Markov model, respectively. Among these
connections, 25 connections are shared. Note that the prior information we
provide to the algorithm is only the existence/non-existence of interactions,
not including their information about activation or inhibition.
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Likewise for the Markov model, setting α = 0.0117 provides
35 prior connections, α = 0.008 provides 40 prior con-
nections, and α = 0.0 provides all 46 prior connections.
However, for such cases the cross-validation errors are
not as good as the one obtained through the learning
algorithm on the sparsity parameter. For example, the
cross-validation errors are 0.5179, 0.5162 and 0.5129
respectively in the above three settings of α for the Markov
model, while the optimal cross-validation error we obtained
was 0.5014. Furthermore, increasing the value of the
sparsity control parameter may decrease the number of
prior connections by enforcing more sparsity and elim-
inating connections that are least consistent with the
experimental data. Therefore, the number of prior network
connections within the inferred network should not be
considered as a strict measure of the accuracy of the algo-
rithm, instead it is a relative indication of the information
provided within the experimental data that is consistent
with the prior network, while taking into account the
trade-off of generalization versus over-fitting by the in-
ference algorithm.

Inference of the core dorsal endoderm circuit
Both inference models recovered the core circuitry con-
trolling dorsal endoderm specification including direct
regulation of hnf1β, foxa1, foxa2, foxa4a, gata5, gata6
and bix1 by sox17; direct or indirect regulation of gata4
by sox17; as well as the direct or indirect regulatory
feedback of gata4-6 and bix1 onto sox17. Both models
predicted vegt regulation of sox17. However, the two
models predict the regulation of two sox17 genes, sox17a
and sox17b, which are paralogs, to be different. The ODE
model usually does not differentiate regulatory action of
sox17a and sox17b: both are regulators of hnf1β, foxa1,
foxa2, gata4, gata5, gata6 and bix1. The Markov model
infers that both sox17a and sox17b are regulators of hnf1b,
foxa1, foxa2, foxa4a and gata6. However, the Markov
model sometimes splits the regulatory action of sox17a
and sox17b: sox17b is a direct regulator of gata5 and bix1
while sox17a is not. Given the differing model assump-
tions with the ODE model assuming steady-state and the
Markov model assuming temporal change, the predictions
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could suggest that sox17a and sox17b have different
temporal actions in the context of the feedback loop
with gata4-6 and bix1 [52], even though sox17a and
sox17b are similar in their expression and activity [53].
One hypothesis is that sox17b is the primary driver of
temporal change for the feedback loop, while sox17a
stabilizes those changes. Better understanding of the other
factors involved in the feedback loop could help resolve
this difference.

Inference of the core dorsal mesoderm circuit
Both inference models recovered the core circuitry control-
ling dorsal mesoderm specification with foxh1 being a dir-
ect regulator of mix1, mixer, lhx1, bix1, otx2, sox17, frzb,
msx1 and hhex. Both models predicted ventx2 regulation
of ventx1 and ventx1 regulation of myf5 in the ventrolateral
mesoderm. The Markov model also predicted foxh1 regu-
lation of gsc in the dorsal mesoderm, and ventx2.2 in the
ventrolateral mesoderm. Only the ODE model was able to
predict Vegt regulation of mix1 and mixer. Both inference
models recovered some core dorsal mesoderm circuit with
slightly different gene sets.

Inference of Xenopus tropicalis embryonic spatial
gene expression
The inferred network can be applied to predict gene spatial
patterns. Given known spatial gene expression patterns for
some genes, the network and those patterns can be used
to predict the unknown patterns for the other genes in
the network. The source of publications of the 28 genes
with known spatial expression patterns and links to their
pictures from Xenbase are included in as additional files
(see Additional files 5 and 6). Typical spatial expression
patterns of ventx2, gsc, bix1 and gata4 in Xenopus embryos
are illustrated in Figure 7. The ventx gene is expressed
ventrally, gsc is expressed dorsally, bix1 is expressed both
ventrally and dorsally, and gata4 is expressed in the vegetal
region. We classified the known expression patterns of 28
genes (shown in the last column in Table 2) among our 36
total genes, as dorsal (d), ventral (v), both dorsal and ventral
(b), middle or vegetal (m) and uniformly expressed (u).
We used these partial known patterns with the regulatory
networks inferred above to predict the expression patterns
of all the genes, including unverified patterns. We abstracted
the complex embryo by regarding the dorsal-ventral division
as a one-dimensional interval, which was further partitioned
into three regions. Based on this representation, we defined
ODE and Markov spatial prediction models for steady-state
data and time series data, respectively.
We first considered the prediction performance of the

ODE spatial prediction model. Our approach is to provide
different data sets of known gene expression patterns to
train the program, and then to observe the performance
of the model in predicting the expression of the remaining
genes. In Figure 8 we plotted the percentage of correctly
predicted patterns as the number of pre-defined patterns
varies. For each fixed number of pre-defined patterns,
the percentage was averaged over 20 sets and 100 sets
of randomly chosen genes with pre-defined patterns
(Figure 8A and B, respectively). As expected, the percent-
ages of correctly predicted patterns are more stable when
they are averaged over more sets of randomly chosen
genes. Also, the prediction percentages show an increasing
trend as more pre-defined patterns are provided.
We sequentially chose expression patterns of all possible

combinations of 27 genes out of the total 28 genes and
used them as constraints in an optimization problem to
predict the remaining gene expression pattern. 11 (i.e.,
39.3%) gene expression patterns were correctly predicted
based on the 28-gene network inferred from the ODE
model. The performance is better than random, which is
expected to be 20%. The correctly predicted genes were:
bmp4, foxa1, gata4, gata6, gsc, hhex, lhx1, otx2, sox17b.1,
ventx1.2 and ventx2.2. We also used all the 28 known
patterns as constraints to predict the expression patterns
of the remaining 8 genes based on the 36-gene network
inferred from the ODE model. The predicted patterns are
shown in Table 3.
In the Markov spatial prediction model, we supposed

the known spatial gene expression patterns were observed
at a particular time point t2 and they were evolved from a
few gene expression patterns at a time point t1. It was
found that two gene expression patterns (e.g., bmp4 and
ctnnb1) at t1 could result in 11 (i.e., 39.3%) correctly pre-
dicted gene expression patterns at t2 using the inferred
network from the Markov model for the 28 genes. The
correctly predicted genes were: bmp4, foxh1.1, frzb, gsc,
hhex, mix1, msx1, otx2, vegt, ventx1.2, ventx2.2. Expression
patterns of 11 genes (i.e., 39.3%) at t2 were correctly
predicted when using the same two genes at t1 and the
36-gene network inferred from the Markov model for the
36 genes. The prediction results are listed in Table 2.
The ODE and Markov spatial prediction models were

applied to steady-state patterns and time series patterns,
respectively. The models were able to predict the spatial
patterns for some of the key genes involved in mesen-
doderm specification including vegt, sox17, gata4,
ventx and gsc when only provided a subnetwork of genes.
However, the majority of the predictions between the
two models do not overlap and each model predicts a
slightly different subset of the core circuitry. Despite
only having a single time point of experimental images
and using a pre-defined spatial pattern for two genes at
an early time point, the Markov model has analogous
performance to the ODE model in terms of predicting
spatial expression patterns. The correct prediction of
different gene subsets of the core mesoderm and endo-
derm regulatory circuitry by the two models may be



A B 

C D 

Figure 7 Spatial gene expression patterns in Xenopus embryos. (A) The ventx gene is expressed ventrally. (B) The gsc gene is expressed
dorsally. (C) The bix1 gene is expressed in both the ventral and dorsal regions. (D) The gata4 gene is expressed in the vegetal region. The
rectangular bar across the embryo indicates the portion of the image viewed for classification purposes, with the bar under the image showing
the 1-dimensional representation of gene expression.
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suggestive of different underlying spatial dynamics for
those genes.
We also compared the two inferred networks with a

number of (e.g., 1000) random permutation matrices
derived from the inferred networks. We calculated the
corresponding fraction of the correctly predicted genes
among the 28 genes with prior patterns for each random
network derived from rearranging the inferred networks.
The probability density estimate is shown in Figure 9.
Most random networks derived from rearranging the
inferred 28-gene ODE network are about 12% correct
(the p-value is 0.007, i.e., there are only 0.7% of the 1000
random networks obtaining not less prior patterns than
the inferred ODE network), while the ODE network is
39.3% correct. Similarly, most random networks derived
from rearranging the inferred 28-gene Markov network
are about 14% correct (the p-value is 0.002, i.e., there are
only 0.2% of the 1000 random networks obtaining not less
prior patterns than the inferred Markov network), while
the Markov network is 39.3% correct.

Conclusions
There is an increasing need to integrate the approaches
that unravel the complicated networks of gene regulatory
processes and the works that focus on the spatial-temporal
multi-cellular phenomena of pattern formation and mor-
phogenesis. Currently, the network-centric studies produce
volumes of regulatory interactions typically with little
regard to how these networks specify cellular fate in the
context of spatial patterns of gene expression. While
development-centric studies focus on small sets of genes,
they require labor-intensive approaches, and do not fully
embed those genes within the larger regulatory network.
Our study represents an initial attempt to integrate these
disparate approaches into a single methodology based on
biological gene perturbations combined with constraints
from spatial modeling. With such an approach, one can
make more meaningful predictions for spatial patterns
and developmental programs, constrained by the observed
complex regulatory networks and in response to changes
in gene expression that can be tested experimentally.
We have applied two gene regulatory network inference

models with different underlying assumptions to Nano-
string experimental data from heterogeneous cell popula-
tions from the Xenopus embryo. One inference model is
an ODE model that assumes steady-state data, and we
have previously developed an optimization framework for
this model that incorporates prior network information.
The other inference model is a Markov model for time
series data. We have shown that the Markov model fits
within our optimization framework, and extended the
model so that prior network information and sparse-
ness constraints can be incorporated directly into the
optimization task. We have tested the extended Markov



Table 2 Predicted gene spatial patterns based on the
Markov spatial prediction model for 36 genes from
averages with 1000 random initial patterns

Gene Predicted pattern Prior pattern

‘bix1.2’ ‘d’ ‘b’

‘bmp4’ ‘v’ ‘v’

‘ctnnb1’ ‘v’ ‘d’

‘foxa1’ ‘u’ ‘m’

‘foxa2’ ‘v’ ‘m’

‘foxa4a’ ‘d’ ‘b’

‘foxh1’ ‘u’ ‘u’

‘foxh1.2’ ‘v’ [ ]

‘frzb’ ‘d’ ‘d’

‘gata4’ ‘d’ ‘m’

‘gata5’ ‘u’ ‘m’

‘gata6’ ‘v’ ‘m’

‘gsc’ ‘d’ ‘d’

‘hhex’ ‘u’ ‘d’

‘hnf1b’ ‘u’ [ ]

‘lhx1’ ‘u’ ‘d’

‘mespb’ ‘v’ [ ]

‘mix1’ ‘u’ ‘u’

‘mixer’ ‘u’ ‘m’

‘msx1’ ‘v’ ‘v’

‘myc’ ‘v’ [ ]

‘myf5’ ‘u’ [ ]

‘myod1’ ‘u’ [ ]

‘nodal3’ ‘u’ ‘d’

‘nodal6’ ‘u’ ‘m’

‘otx2’ ‘d’ ‘d’

‘sox17a’ ‘u’ ‘m’

‘sox17b.1’ ‘u’ ‘m’

‘sox21’ ‘v’ [ ]

‘Sox7’ ‘v’ [ ]

‘t’ ‘v’ ‘b’

‘vegt’ ‘u’ ‘u’

‘ventx1.2’ ‘v’ ‘v’

‘ventx2.2’ ‘v’ ‘v’

‘wnt11’ ‘b’ ‘b’

‘xbp1’ ‘u’ ‘b’

‘d’, ‘v’, ‘b’, ‘u’, ‘m’ stand for dorsal, ventral, both dorsal and ventral, uniform and
middle (vegetal) patterns, respectively. ‘[]’ represents unknown patterns.
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model on simulated network data and showed that existing
network information improves performance and can
perform well even when some of the existing network
information is partially incomplete. In this regard, we have
recently obtained ChIP-seq data for sox17 and RNA-seq
after sox17 MO knockdown [Cho, Blitz and Zorn, unpub-
lished results]. Based on this observation we were able
to confirm 4 out of 7 sox17 connections predicted by
the steady-state ODE model, and 3 out of 7 connections
predicated by the Markov model. Some of these confirmed
interactions include newly predicted connections.
Both inference models were able to recover the core

circuitry for controlling dorsal endoderm specification and
dorsal mesoderm specification. Differences in the model
predictions suggest different dynamics that may be related
to the underlying assumptions for each model. For the
dorsal endoderm circuitry, the ODE model usually does
not differentiate regulatory action of sox17a and sox17b,
while the Markov model sometimes splits their regulatory
action and places more connections for sox17b. This
suggests that even though sox17a and sox17b are similar
in their expression and activity, they may play different
roles in their temporal dynamics in their feedback loop
with gata4-6 and bix1. A putative hypothesis is that sox17b
is the primary driver of temporal change for the feedback
loop, while sox17a stabilizes those changes. For the dorsal
mesoderm circuitry, both inference models recovered some
core dorsal mesoderm circuit with slightly different gene
sets.
Recent experimental results have provided the opportun-

ity to compare our predictions. A T/T2 double knockdown
was performed by microinjection of sequence-specific
morpholino antisense oligonucleotides, and RNA-seq
data of perturbed embryos was obtained at stage 32
[54]. The differential expressions of the selected targets
were retrieved from the analyzed datasets for the 36 genes
used in this study (see Additional file 7). For comparison
purposes, we consider genes with >1.5 fold change to be
directly or indirectly regulated by t where a negative log
fold change indicates positive regulation, while a positive
log fold change indicates negative regulation. The results
indicate a total of 18 genes regulated by gene t (Additional
file 7). Among them, foxa4a, gsc, mespb, myf5, mix1, bix1.2,
myod1 (i.e., totally 7 genes) are positively regulated by t,
and bmp4, sox21, vegt, ventx2.2, ventx1.2, msx1, wnt11,
foxh1.1, nodal6, mixer, nodal3 (i.e., totally 11 genes) are
negatively regulated by t. Using the forward ODE and
Markov models (described in Methods), the forward ODE
model predicts the positively regulated genes are foxa4a,
myf5 and bix1.2; and predicts the negatively regulated
genes are sox21, vegt, msx1, wnt11, foxh1.1, nodal6 and
mixer. The forward Markov model predicts the positively
regulated genes are foxa4a, gsc, myf5, mix1 and myod1;
and predicts the negatively regulated genes are bmp4, vegt,
foxh1.1, nodal6 and mixer.
Given the two inferred regulatory networks from the

ODE model and the Markov model, we additionally con-
strained these networks by using them to predict spatial
gene expression in the Xenopus embryo. Both models
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Figure 8 Percentage of correctly predicted patterns in the ODE spatial prediction model. Given a fixed number (from 1 to 26) of
pre-defined patterns, the percentages are averaged over 20 sets (Figure (A)) and 100 sets (Figure (B)) of randomly chosen genes with pre-defined
patterns. As expected, the percentages of correctly predicted patterns are more stable when they are averaged over more sets of randomly
chosen genes. Also, the prediction percentages show an increasing trend as more pre-defined patterns are provided.
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were able to predict the spatial patterns for some of the
key genes involved in mesoendoderm specification. Inter-
estingly, each model tended to correctly predict a different
subset of genes suggesting that those genes are playing
different roles in the spatial-temporal dynamics.
The spatial prediction model is dependent upon the

provided inferred network for how well it can predict
spatial patterns. Similar to the inferred network, the
number of prior predicted spatial patterns should not be
directly interpreted as the accuracy of the algorithm,
because there are numerous reasons why not all of the
prior patterns were predicted. A number of (not-inclusive)
reasons include 1) incomplete or incorrect connections
in the inferred network, 2) incorrect or coarse pattern
classification for the biological spatial images, or 3) the
non-linear spatiotemporal dynamics are not accurately
Table 3 Predicted spatial patterns for genes with
unknown patterns based on the ODE spatial prediction
model and 28 prior gene patterns

Gene Predicted pattern

‘foxh1.2’ ‘v’

‘hnf1b’ ‘m’

‘mespb’ ‘b’

‘myc’ ‘m’

‘myf5’ ‘d’

‘myod1’ ‘b’

‘sox21’ ‘b’

‘sox7’ ‘d’

‘d’, ‘v’, ‘b’, ‘u’, ‘m’ stand for dorsal, ventral, both dorsal and ventral, uniform and
middle (vegetal) patterns, respectively.
captured in our 1-dimensional abstract model. However,
the fact that a statistically significant portion of the prior
patterns is predicted suggests that the spatial prediction
algorithm is effectively utilizing the information it is given.
Given a more accurate inferred network, the spatial pre-
dictions should improve.
One limitation of the spatial prediction with regards

to the Markov model is that we did not have access to
temporal spatial gene expression images. Instead, we took
the approach of assuming initial spatial patterns for a
small set of well-studied genes for an earlier time point,
then tested the model ability to predict spatial patterns at
a later time point. Despite being given only limited initial
data, the Markov model was able to correctly predict
39.3% of the gene expression patterns and thus suggesting
that the model is accurately capturing some aspects of the
temporal dynamics involved in early Xenopus development.
In the future, in situ images of gene expression patterns
at multiple embryo stages could improve the prediction
capability of the Markov model.

Methods
Morpholino knockdown and NanoString analysis of gene
expression
Synchronously developing Xenopus tropicalis embryos were
obtained by in vitro fertilization, dejellied in pH 7.6 3%
cysteine prepared in 1/9thX MMR, and cultured on
agarose-coated plates until they reached the 2-4-cell
stage [55]. Embryos were microinjected in 1X MMR with
translation-blocking morpholino antisense oligonucleotides
(MO) that targeted foxh1 (22.5 ng), vegt (22.5 ng), sox17α/β
(20 ng), or ctnnb1 (β-catenin) (10 ng) and cultured in
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Figure 9 Estimated probability density distribution of the spatial patterns prediction. 1000 random networks derived from rearranging the inferred
network were used to calculate the fractions of the correctly predicted genes in the 28 genes with prior patterns. (A) 1000 random networks were derived
from rearranging the inferred 28-gene ODE network. They are mostly about 12% correct (the p-value is 0.007, i.e., there are only 0.7% of the 1000 random
networks obtaining not less prior patterns than the inferred ODE network), while the inferred ODE network is 39.3% correct. (B) 1000 random networks
were derived from rearranging the inferred 28-gene Markov network. They are mostly about 14% correct (the p-value is 0.002, i.e., there are 0.2% of the
1000 random networks obtaining not less prior patterns than the inferred Markov network), while the inferred Markov network is 39.3% correct.
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1/9thX MMR at 25°C. Sequences of the MOs used in
this study were:

� foxh1 (TCATCCTGAGGCTCCGCCCTCTCTA)
� vegt (TGTGTTCCTGACAGCAGTTTCTCAT)
� ctnnb1 (TTTCAACAGTTTCCAAAGAACCAGG)
� sox17a (AGCCACCATCAGGGCTGCTCATGGT)
� sox17b1/b2 (AGCCACCATCTGGGCTGCTCA

TGGT)

Total RNA from three biologically independent samples
were prepared at the stages of interest using the acid
guanidinium thiocyanate phenol chloroform method [56].
Measurements of transcript abundances were performed
using the NanoString platform [57]. In brief, RNA sample
(total 100 ng) was hybridized to probe sets at 65°C for a
minimum of 18 hours. The hybridized probes were recov-
ered using the NanoString Prep Station, and immediately
evaluated using the NanoString nCounter. For each reac-
tion 1155 fields of view were counted. Detailed protocols
for NanoString transcript counting followed the manufac-
turer’s instruction manual (http://www.nanostring.com/).

A steady-state ODE model
We model the gene network inference as the following
linear ordinary differential equations (ODEs)

dxki
dt

¼
Xp
j¼1

Wijx
k
j ; ð1:1Þ
where xki is the concentration of mRNA for gene i mea-
sured at the k th observation (e.g., time point, sample,

wild type expression, knockout expression etc.),
dxki
dt is

the rate of change for the mRNA concentration of gene
i at the k th observation, p is the number of genes, W is
the gene interaction matrix which is to be inferred.
If the ODEs system is close to a steady state, i.e., the

change of gene concentrations is very small, then dxki
dt ≈0

and as a result
Xp
j¼1

Wijx
k
j ≈ 0. Here we consider how one

gene is affected by the other genes, so we can let the di-

agonal of W be -1 s, then
P
j¼1
j6¼i

p

W ijxkj ≈ x
k
i , which was also

used in [58]. Based on our previous work [17], which
incorporated two regularization terms, i.e., a sparsity
control and the prior network information, we trans-
form the linear steady-state ODE model to the following
optimization problem:

min
W

Xn
k¼1

Xp
i¼1

Xp
j¼1
j 6¼i

W ij�x
k
j −x

k
i

0
BB@

1
CCA

2

þ α Wk k1 þ β W ∘W 0
�� ��

1
; ð1:2Þ

where n is the number of observations, α is a positive
parameter that enforces the sparsity of the interaction

network, Wk k1 ¼
Xp
i¼1

Xp
j¼1

Wij

�� ��;W 0 is a Boolean network

containing existing network information where W 0
ij ¼ 0

http://www.nanostring.com/
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indicates a directed interaction from gene j to gene i and
thus is not penalized while W 0

ij ¼ 1 for all the other edges
and β ≥ 0 indicates the strength of the penalty. �xk ¼ xk if
xk is a wild-type data point. If xk is a knockout data, we
previously put forward one method from a perturbation
aspect [17]. Here we suggest another but simple way as
follows. Since a knocked out gene does not contribute
to the change of other genes’ concentrations, we can let
�xkj ¼ xkj for all j = 1,…, p except �xki ¼ 0 if gene i is
knocked out at a single observation k. All these notations
are used throughout the paper with the same meanings.

A Markov model

If time series data is achievable, the finite difference
xkþ1
i −xki
Δt

can be considered to approximate the rate of change of

gene i i:e:;
dxki
dt

� �
[20], but when time intervals are long (e.g.,

in hours), this approximation is very inaccurate. [20,27]
suggested to employ a linear first order Markov model,
which assumed the expression of genes at time k, as a lin-
ear function of its regulators at the previous time k – 1,

i.e., xki ¼
Xp
j¼1

Wijx
k−1
j . In this paper, we combine the idea

of linear Markov model and regularization. We first put
forward a linear Markov model incorporating network
sparsity control and prior network information, which
can be shown in the following optimization form:

min
W

Xobsmax

obs¼1

Xk max

k¼1

W �xk
� � obsð Þ

− x kþ1ð Þ
� � obsð Þ����

����
2

þ α Wk k1 þ β W ∘W 0
�� ��

1
;

ð1:3Þ

where obsmax represents the number of observations. Here
one observation means one sample (e.g., wild-type data or
knockdown data) with a complete time series, kmax repre-
sents the number of time points in each observation, and
all the other notations have the same meanings as before.
In particular, �xk ¼ xk if xk is a wild-type data point. If gene
i is knocked down at time k in one observation obs we
can let �xkj

� �
obs¼ xkj

� �
obs

for all j = 1,…, p except i and
�xki
� �obs ¼ 0. Notice, here we do not require j ≠ i as we
did in (Eq. 1.2) since for gene i the concentration at time k
i:e:; �xki
� �

could contribute to that at time k þ 1 i:e:; xkþ1
i

� �
.

Previously, we presented an optimization framework to
solve a linear gene network inference with steady-state
data [17]. We found that the optimization problems
(Eq. 1.2) and (Eq. 1.3) happen to be its special cases and
they are equivalent to the following optimization problem:

min
W

tr WTWΣ
� �

−2tr WUð Þ þ
Xp
i¼1

Wi⋅D
iWt

i⋅

þ α Wk k1 þ β W ∘W 0
�� ��

1
;

ð1:4Þ
where tr is the trace of a matrix, the matrices Σ and U
for the linear ODE model are

∑ ¼
Xn
k¼1

�xk �xk
� �T

;U ¼
Xn
k¼1

�xk xk
� �T

; ð1:5Þ

the matrices Σ and U for the linear Markov model are

∑ ¼
Xobsmax

obs¼1

Xkmax

k¼1

�xk
� � obsð Þ

�xk
� � obsð Þ� �T

;

U ¼
Xobsmax

obs¼1

Xkmax

k¼1

�xk
� � obsð Þ

xkþ1
� � obsð Þ� �T

;

ð1:6Þ

Wi denotes the i-th row of the matrix W, Di is a p × p
zero matrix for i = 1,…, p.
In some cases partial gene concentrations are not avail-

able, e.g., different gene sets may be chosen in different
experiments. Mathematically, suppose in the linear ODE
model the concentration of gene i at observation k is not

available i:e:; xki ¼ 0
� �

, then
Xp
j¼1;j≠i

W ij�x
k
j −x

k
i

 !2

need to be

deleted from the sum in (Eq. 1.2) because xki is not pre-
dictable. The matrices Σ, U and Di in the optimization
problem (Eq. 1.4) should change correspondingly. If
Wii is always set to be 0 and define Ii to be the set of
observation indices of gene i with zero concentrations,

i.e., Ii ¼ k k ¼ 1;…; ng∩ k xki ¼ 0g������ , then
Xp
i¼1

Xn
k¼1

X
j¼1
j 6¼i

p

Wij�x
k
j − xki

0
B@

1
CA

2

in (Eq. 1.2) should be replaced by
Xp
i¼1

Xn
k¼1
k∉Ii

X
j¼1
j6¼i

p

W ij�xkj − xki

0
B@

1
CA

2

,

which can be transformed as follows:

Xp
i¼1

Xn
k¼1
k∉Ii

Xp
j¼1
j6¼i

W ij�x
k
j − x

k
i

0
BB@

1
CCA

2

¼
Xp
i¼1

Xn
k¼1
k∉Ii

Xp
j¼1

Wij�x
k
j − xki

 !2

¼
Xp
i¼1

Xn
k¼1
k∉Ii

W i⋅�x
k− xki

� �
Wi⋅�x

k−xki
� �T

¼
Xp
i¼1

Xn
k¼1
k∉Ii

W i⋅�x
k �xk
� �T

WT
i⋅

−2
Xp
i¼1

Xn
k¼1
k∉Ii

W i⋅�x
kxki þ c

¼
Xp
i¼1

Wi⋅

Xn
k¼1
k∉Ii

�xk �xk
� �T

0
BB@

1
CCAWT

i⋅

−2
Xp
i¼1

Wi⋅

Xn
k¼1

�xkxki þ c

¼
Xp
i¼1

Wi⋅

Xn
k¼1
k∉Ii

�xk �xk
� �T

0
BB@

1
CCAWT

i⋅

−2tr W
Xn
k¼1

�xk xk
� �T !

þ c;

ð1:7Þ
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where c is a constant independent of W. Compared
with the form in (Eq. 1.4), it can be found that for the
ODE model

∑ ¼ zero matrix; Di ¼
Xn
k¼1
k∉Ii

�xk �xk
� �T

; U ¼
Xn
k¼1

�xk xk
� �T

:

ð1:8Þ
Similarly, for the Markov model

∑ ¼ zero matrix; Di ¼
X

k¼1:k max

obs¼1: obs
k; obsð Þ∉Ii

�xk
� �obs

�xk
� �obs� �T

;

U ¼
Xobsmax

obs¼1

Xk max

k¼1

�xk
� � obsð Þ

xkþ1
� � obsð Þ� �T

;

ð1:9Þ

where Ii ¼ p; qð Þ p ¼ 2;…; k max þ 1; q ¼jf 1;…; obsmaxg∩
p; qð Þ xpi

� �q ¼ 0g���
. As a conclusion, the following simpli-

fied optimization framework can be used for both the
ODE model (Eq. 1.2) and the Markov model (Eq. 1.3) with
all kinds of data (e.g., wild-type data, knockdown data or
data with partial zeros):

min
W

Xp
i¼1

Wi⋅D
iWT

i⋅ −2tr WUð Þ þ α Wk k1 þ β W ∘W 0
�� ��

1;

ð1:10Þ

where the matrices Di and U are defined in (Eq. 1.8) or
(Eq. 1.9).
The optimization problem (Eq. 1.10) can be solved by

combining an iterative coordinate descent algorithm for
a given pair of parameters (α, β) and a leave-one-out
cross-validation to find the optimal values of (α, β) which
provide the minimal cross-validation error [17,59]. Here
‘leave-one-out’ means to leave one ‘observation’ out, which
implies all the time-series data in one observation are left
out for the Markov model. We perform an exponential
search starting from max |Uij|, where U is defined in
(Eq. 1.8) or (Eq. 1.9), and going down. Since the incoming
edges for each gene in the gene network can be considered
independent from the incoming edges of other genes, we
used a separate α and β for each gene. For each gene and
(α, β), zero initial and an accuracy control of 10-5 are used
in the optimization procedure.

Knockout simulations
Here we consider numerical simulations of knocking
out genes in a forward ODE model and a forward
Markov model (more computational details are pro-
vided in Additional file 1).

(1) A Forward ODE Model
We define a forward ODE model as following
dx
dt

¼ Wx−x; ð1:11Þ

where W ∈ Rp × p is the inferred network derived from
the ODE model (Eq. 1.2) with zero diagonal elements, x ∈

Rp represents a vector of p gene expressions.

We use the 4th-order Runge–Kutta method to solve
the above ODE. Choose the initial vector as a random
vector drawn from the uniform distribution between
0 and 1. We next consider the following persistent
complete knockout. Suppose the set of knocked down
genes is denoted as K, keep xi = 0 (i ∈ K).

(2) A Forward Markov Model
We define a forward Markov model as following

xkþ1 ¼ Wxk ; ð1:12Þ

where W ∈ Rp × p is the inferred network derived from
the Markov model (Eq. 1.3), xk ∈ Rp (k = 1,2,…) is the k-th
iteration vector of p gene expressions.
We define the initial vector x1 as a random vector
drawn from the uniform distribution between 0 and
1. We consider the similar knockout as before. The
only difference is to add a superscript k, i.e., keep
xki ¼ 0 (i ∈ K) for all k.
Spatial prediction model
Given a regulatory network, known spatial expression
patterns for genes in the network can be used to predict
the unknown spatial patterns for the remaining genes in
the network. Examples of typical spatial gene expression
patterns in Xenopus gastrula stage embryos are shown in
Figure 7. For simplicity, we regard the dorsal-ventral axis
as a one-dimensional interval, which is partitioned into
three regions, i.e., right (dorsal), middle (vegetal) and left
(ventral). We took a set of 28 in situ images of the 36
total genes being considered in this study, and categorized
the gene expression level for the three regions as either
low, medium or high within a given embryo. For computa-
tional purposes, we assigned arbitrary values to these levels
of 0.1 (low), 0.4 (medium) and 1.0 (high) (the effect of vary-
ing these values is provided in Additional file 1). The overall
spatial expression pattern could then be assigned a category
of dorsal (‘d’), ventral (‘v’), both dorsal and ventral (‘b’),
vegetal (‘m’) or uniform (‘u’). The expression values across
the three regions are (0.1, 0.4, 1.0) for “dorsal” and (1.0, 0.4,
0.1) for “ventral”. The other categories have multiple pos-
sible values with “both” having higher dorsal and ventral
values than the middle region (e.g. 1.0, 0.1, 1.0), “vegetal”
having a higher value in the middle region than the dorsal
and ventral regions (e.g. 0.1, 1.0, 0.1), and “uniform” having
the same values across all regions (e.g. 0.4, 0.4, 0.4). The
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categorized spatial gene expression patterns are shown
in Table 2.
For steady-state patterns we define the following

optimization problem:

min
xposif g

Xp
i¼1

 
xposi −

Xp
j¼1
j6¼i

W ijx
pos
j

!
2

subject to xposk ¼ yposk ; k ∈ Index;

xposi ≥0; i ¼ 1;…; p; pos ¼ 1; 2; 3;

ð1:13Þ

where pos represents the three one-dimensional regions
of the embryo, Index is the set of genes with known
patterns, yposk represents the concentration of gene k
with known patterns at position pos (i.e. one of 1, 0.4
and 0.1), and W is the inferred network from the
steady-state ODE model. This optimization problem
(Eq. 1.13) considers the inferred network W as fixed,
thus directly using the coefficients and gene-to-gene
interaction of W to define the structure of the spatial
prediction model. Some of the Xpos

i values are provided
as known gene spatial expression patterns, while the
remaining Xpos

i values are free variables. The resultant
values of the free variables are interpreted as spatial
predictions for their associated genes. The optimization
problem (Eq. 1.13) satisfies the known gene spatial patterns
while simultaneously constraining the model with the
gene-to-gene interaction topology from the steady-state
equations in the ODE model (Eq. 1.1), so we call (Eq. 1.13)
ODE spatial prediction model, which is a quadratic pro-
gramming and can be solved by the MATLAB function
‘lsqlin’.
The ODE spatial prediction model does not contain

time information. In the following, we put forward a
Markov spatial prediction model for time series data.
Suppose spatial gene expressions for a subset of genes
are observed or defined at time points t1 and t2. Then
we can calculate the spatial gene expressions for other
genes at time t2. For each region we define the following
optimization model:

min
xpos;2if g

XN
i¼1

 
xpos;2i −

XN
j¼1

Wijx
pos;1
j

!
2

subject to xpos;1k ¼ ypos;1k ; k ∈ Index1;

xpos;2i ≥0; i ¼ 1;…;N ; pos ¼ 1; 2; 3;

ð1:14Þ

where pos represents the three one-dimensional regions
of the embryo, N is the number of genes, ypos;1k represents
the concentration of gene k with known patterns at
position pos (i.e. one of 1, 0.4 and 0.1) at time t1, xpos;1k
and xpos;2k represent the concentrations of gene k at pos-
ition pos at time t1 and t2, respectively, W is the inferred
network from the Markov model, Index1 is the index set
of genes observed at time t1. This optimization problem
(Eq. 1.14) considers the inferred network W as fixed, thus
directly using the coefficients and gene-to-gene interaction
of W to define the structure of the spatial prediction model.
Since no information is available for the initial patterns of
the other genes (i.e., xpos;1k ; k∈ 1;…;Nf g Index1), when we
solved the optimization problem (1.14) we used random
initial patterns (for genes k, k ∈ {1,…,N}\Index1) for 1000
optimization runs and averaged the values of xpos;2k as the
final prediction. Since xpos;1k

n o
are all defined, this model

is actually a direct computation for xpos;2k

n o
with a non-

negative constraint. We attempted to leave the expression
values for the other genes at time t1 to be variables and
have the optimization model predict their values. However
this results in an underdetermined model with an infinite
set of solutions.
To determine the spatial categorization based upon the

results produced by the optimization algorithm, a set of
rules was used that compared the values between the
three regions. Suppose the left, middle and right regions
are denoted as ‘l’, ‘m’ and ‘r’, respectively. One threshold
‘TH’ is used and by default TH = 0.5 (the effect of varying
the threshold is provided in Additional file 1). ‘abs(x)’
stands for the absolute value of x. Let ‘min’ and ‘max’ repre-
sent the minimum value and maximum value in abs(l-m),
abs(m-r) and abs(l-r), respectively.

1. Check if min
max ≥TH or max < 0.1,
If yes, output ‘Uniform (‘u’)’; otherwise, go to step 2.
2. Check if m < l and m < r and abs l−rð Þ

abs m−rð Þ≤0:5 and
abs l−rð Þ
abs l−mð Þ≤0:5,
If yes, output ‘Both (‘b’)’; otherwise, go to step 3.

3. Check if m > l and m > r,
If yes, output ‘Vegetal (‘m’)’; otherwise, go to step 4.

4. Check if l > m and l > r,
If yes, output ‘Ventral (‘v’)’; otherwise, go to step 5.

5. Check if r > m and r > l,
If yes, output ‘Dorsal (‘d’)’; otherwise, output ‘Not
one of the five patterns’.
Additional files

Additional file 1: Contains method description for p-value calculation,
the effect of varying algorithmic parameters for determining the spatial
gene expression patterns, comparison and sensitivity analysis for the
forward ODE and Markov models, and Tables S1, S2, S3 and S4.

Additional file 2: Nanostring probes. The list of 177 genes with the
NanoString probes.

Additional file 3: Nanostring data. NanoString data from the ctnnb1
and sox17 morpholino antisense oligonucleotide (MO) experiments.

Additional file 4: Nanostring data. NanoString data from the foxh1
and vegt morpholino antisense oligonucleotide (MO) and cers
perturbation experiments.
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Additional file 5: Xenbase image data. Source for the 28 genes of
known spatial expression patterns and links to their pictures from
Xenbase.

Additional file 6: Xenbase image data. Publication source for the
spatial expression patterns of the 28 genes.

Additional file 7: Gentsch et al. gene expression data. Differential
gene expression for the 36-gene subset after T/T2 double
knockdown.
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