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Abstract

Background: Waddington’s epigenetic landscape is an intuitive metaphor for the developmental and evolutionary
potential of biological regulatory processes. It emphasises time-dependence and transient behaviour. Nowadays, we
can derive this landscape by modelling a specific regulatory network as a dynamical system and calculating its
so-called potential surface. In this sense, potential surfaces are the mathematical equivalent of the Waddingtonian
landscape metaphor. In order to fully capture the time-dependent (non-autonomous) transient behaviour of
biological processes, we must be able to characterise potential landscapes and how they change over time. However,
currently available mathematical tools focus on the asymptotic (steady-state) behaviour of autonomous dynamical
systems, which restricts how biological systems are studied.

Results: We present a pragmatic first step towards a methodology for dealing with transient behaviours in
non-autonomous systems. We propose a classification scheme for different kinds of such dynamics based on the
simulation of a simple genetic toggle-switch model with time-variable parameters. For this low-dimensional system,
we can calculate and explicitly visualise numerical approximations to the potential landscape. Focussing on transient
dynamics in non-autonomous systems reveals a range of interesting and biologically relevant behaviours that would
be missed in steady-state analyses of autonomous systems. Our simulation-based approach allows us to identify four
qualitatively different kinds of dynamics: transitions, pursuits, and two kinds of captures. We describe these in detail,
and illustrate the usefulness of our classification scheme by providing a number of examples that demonstrate how it
can be employed to gain specific mechanistic insights into the dynamics of gene regulation.

Conclusions: The practical aim of our proposed classification scheme is to make the analysis of explicitly
time-dependent transient behaviour tractable, and to encourage the wider use of non-autonomous models in
systems biology. Our method is applicable to a large class of biological processes.

Dynamical systems theory, Differential equations, Non-
autonomous systems, Transient dynamics, Genetic toggle
switch, Phase space analysis, (Quasi-)potential landscape

In the study of development we are interested not only in
the final state to which the system arrives, but also in the
course by which it gets there.
Conrad HalWaddington, “The Strategy of the Genes”, 1957

Background
Development in wild-type organisms is robust to genetic
and environmental variations. Conrad Hal Waddington
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introduced the notion of ‘canalisation’ to describe how
developmental processes resist perturbations during
embryogenesis [1-3]. The canalised nature of develop-
ment explains, he argued, why most phenotypes are dis-
crete and distinct. To illustrate these ideas, he developed
the epigenetic landscape, one of his most well-known
concepts [3,4].
In Waddington’s epigenetic landscape, the current state

of a developing system is indicated by a ball on an
undulated surface (Figure 1A, top panel) [3,5,6]. The
topography of this landscape determines the develop-
mental potential or repertoire of the system. The top-
most edge of the surface shown in Figure 1A (top panel)
represents the initial state of the system given by, for
example, a particular set of initial protein concentra-
tions in a cell. Valleys in the landscape symbolise the
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Figure 1Waddington’s epigenetic landscape and potential surfaces. (A) Two different views of Waddington’s epigenetic landscape taken
from “The Strategy of the Genes” published in 1957 [3]. The top panel shows a top view of the landscape. The path that the ball will follow
represents the developmental trajectory (chreode) of a given system. Valleys indicate alternative differentiation pathways, branch points imply
developmental decisions. The bottom panel shows the view from below the landscape. It illustrates how genes remodel the surface by pulling on it
through ropes. Waddington used this sketch to show how the landscape’s topography changes during development and evolution. (B) Panel 1:
Diagrammatic representation of the toggle switch network used in the simulations. Activating interactions are indicated by arrows, repressing ones
by T-bar connectors. See Model and methods section for detailed parameter descriptions. Panel 2: Mathematical formulation of the toggle switch
model. x and y indicate concentrations of the protein products of genes X and Y. Ordinary differential equations define the rate of change in protein
concentrations ( dxdt and

dy
dt ). Sigmoid functions with fixed Hill coefficients of 4 are used to represent auto-activation andmutual repression. Decay and

external activation are taken to be linear. Parameters as in Panel 1. Panel 3: Phase portrait for a constant set of parameter values of the toggle switch
model in the bistable regime. X- and Y-axes represent protein concentrations x and y. We use this example to illustrate relevant features of phase
space: arrows indicate flow, blue points mark the position of stable steady states (attractors), the red point shows an unstable steady state (saddle)
lying on the separatrix that divides the two basins of attraction (grey line). See the main text for detailed descriptions of the highlighted features.
Panel 4: Quasi-potential landscape associated to the the phase portrait shown in Panel 3. The steepness of the quasi-potential surface correlates with
the flow at each corresponding point on the phase portrait. Attractors, saddle, and separatrix are indicated as in Panel 3. See main text for details.

various differentiation pathways that are available. The
landscape’s topography—together with the initial state—
determine a developmental trajectory that follows a par-
ticular valley. The structure of the landscape is such that,
if the system is slightly perturbed, the sloping valley walls
will cause it to correct and readjust its trajectory. This
behavour is called ‘homeorhesis’—the maintenance of a
dynamic trajectory—in analogy to the more static con-
cept of homeostasis—the maintenance of a (steady) state
of the system [3]. The wider and deeper a valley is, the
more canalised the developmental trajectory.Waddington
named such canalised trajectories ‘chreodes’ .
An additional feature of Waddington’s landscape is cru-

cial in our context: it is the fact that its surface is not
necessarily fixed, but can change over time due to the in-
fluence of genetic or environmental signals. Waddington
represented this by pegs connected to the underside of the
landscape by ropes (Figure 1A, lower panel) [3]. As the

genetic or environmental context of the system changes,
these ropes pull and stretch the surface, thereby changing
its topography and hence its developmental potential.
Waddington’s epigenetic landscape was conceived as a

conceptual tool to illustrate the nature of developmen-
tal robustness and its effect on evolutionary dynamics
[1,3-5,7]. As such, it remained at a rather metaphorical
level of explanation, since complex non-linear biological
processes are hard to formulate and analyse [5,6,8-12].
This is still the predominant way in which it is used in
various reviews on contemporary stem cell research (see
for example, [13-17]). However, in order to understand
the precise nature of specific developmental trajectories
or chreodes in real systems, we have to take Waddington’s
landscape a step further: we have to calculate it based on
experimental evidence, and use it to characterise the tran-
sient behaviours that govern the observed developmental
dynamics [18-25].
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The increasing availability of quantitative gene expres-
sion data renders this approach feasible. However, before
we can successfully apply it, we also require new concep-
tual and mathematical tools to deal with the analysis of
data-driven models that are formulated in terms of non-
autonomous (i. e. explicitly time-dependent) dynamical
systems. Explicit time-dependence is necessary to repro-
duce the changing topography ofWaddington’s landscape.
However, such systems are difficult to study in a rigorous
mathematical manner, and few analysis tools exist at this
point. In this work, we address this challenge by proposing
a classification scheme for transient dynamic behaviours
observed in a non-autonomous version of a simple gene
networkmodel. This scheme is meant to provide the foun-
dation for the analysis of more complex time-dependent
models that reproduce the dynamics of specific, experi-
mentally tractable, biological regulatory systems.

Dynamical systems
In this study, we focus on dynamical systems formulated
in terms of ordinary differential equations, and illustrate
how suchmodels can help explain the function and poten-
tial of developmental gene regulatory networks in terms
of their dynamical repertoires, that is, in terms of the set
of behaviours that can be implemented by the system.
A system’s behaviour is defined by its trajectories, which
represent the change of the state of the system—e. g.
consisting of a set of transcription factor concentrations—
over time. The shape of these trajectories depends on the
structure or organisation of the underlying regulatory net-
work (see, for example, [3,22-24,26-31]). It is possible to
gain a general qualitative understanding of what the sys-
tem’s trajectories can and cannot achieve without the need
to solve the dynamical system analytically [32,33]. Most
of this information comes from the geometrical analysis
of phase space, i. e. an analysis of the number, nature and
relative arrangement of the steady states of the system.
The phase space of a dynamical system is an abstract

space, in which each dimension represents the value of
a specific state variable. Here we use a well established
double-repressive feedback loopmodel, known as the tog-
gle switch ([23], and references therein), to study transient
dynamics in a two-dimensional, time-dependent gene reg-
ulatory network (see Figure 1B, panels 1 and 2, as well as
‘Model and methods’ below, for the full formulation). In
this case, the state variables represent the concentrations
of the transcription factors that constitute the network
(denoted by X and Y ; Figure 1B, panel 1). The graphical
representation of phase space is called the phase portrait.
It shows the rate of change of the system at any given
state. This is known as the flow of the system. The flow
of the toggle switch model is indicated by arrows of a
given length and direction in the phase portrait shown in
Figure 1B, panel 3. If we follow the flow from all possible

initial states, we obtain the totality of possible dynamic
trajectories.
It is evident from the inspection of the flow in Figure 1B

(panel 3) that trajectories tend to converge to specific
points in phase space: the steady states of the system.
There are different kinds of steady states, those that are
stable, and those that are unstable. The most simple sta-
ble steady state is an attractor point [32,33]. Attractors,
as their name implies, draw trajectories towards them.
Furthermore, they have the special property that once a
trajectory has reached an attractor, it will return to it if the
system is slightly perturbed. An example of an unstable
steady state is a saddle point (Figure 1B, panel 3). Saddle
points attract trajectories from some directions, but repel
them in others. Usually, the system will move away from
a saddle upon perturbation, towards the nearest attractor.
The repelling trajectory follows a structure in phase space
called an unstable manifold. This manifold is defined by
the the path that links a saddle with an attractor point.
Note that unstable manifolds correspond to chreodes at
the bottom of valleys in Waddington’s landscape.
In our phase portraits, we plot steady states as points

coloured according to their stability: attractors in blue,
and saddle points in red (Figure 1B, panel 3). The region
of phase space around an attractor, from which all trajec-
tories converge towards it, is called its basin of attraction.
Curves known as separatrices set apart the different basins
and their attractors (in the case of Figure 1B, panel 3,
the separatrix is a straight line indicated in grey). Saddle
points are always located on separatrices.
Attractors and saddles, with their associated basins and

separatrices can be created or annihilated through the
process of bifurcation [32,34]. Bifurcations represent sud-
den qualitative changes in the structure of the phase
portrait caused by small changes in the values of a given
set of control parameters.
To date, the best example illustrating the importance

and usefulness of geometric approaches for understand-
ing the dynamics and function of specific, experimentally
tractable, developmental regulatory systems comes from
an analysis of the gap gene regulatory network involved
in pattern formation during early embryogenesis of the
vinegar flyDrosophilamelanogaster. Manu and colleagues
[35] identified features of phase space responsible for pat-
terning and canalisation of spatio-temporal gene expres-
sion in the Drosophila blastoderm embryo. The analysis
is based on low-dimensional projections of phase space
to study the geometric arrangement of attractors in the
four-dimensional system representing the change in pro-
tein concentration for four transcription factors encoded
by the gap genes hunchback (hb), Krüppel (Kr), knirps
(kni), and giant (gt). Gene expression domain boundaries
that remain at a constant position over time could be
attributed to movements of attractors in phase space, or
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nuclei switching between attractor basins depending on
their position in the embryo. In contrast, more posterior
expression boundaries, which keep shifting position over
time, were associated with transient behaviours along a
canalising unstable manifold, forming the equivalent of a
valley in Waddington’s landscape [35].

Potential landscapes
Phase portraits of systems with two state variables can be
visualised in terms of their associated potential landscape
[32] (Figure 1B, panel 4). In this representation, the steep-
ness of the potential landscape corresponds to the flow
of the system (compare Figure 1B, panels 3 and 4). Tra-
jectories travel downhill towards the attractor points. The
topography of the potential landscape is therefore a direct
result of the topology (number and nature of steady states)
and the geometry (relative positions of the steady states
and size of the flow) of the underlying phase portrait.
Potential surfaces can be thought of as mathemati-

cal representations of Waddington’s epigenetic landscape
[18,20,24,25,36-40]. Attractors represent differentiated
states (in agreementwith earlier postulates, [1,13,14,41-46]),
separatrices form the ridges between the valleys, which
are formed by unstable manifolds representing their asso-
ciated chreodes (see Figure 1B, panels 3 and 4), and the
flow is represented by the steepness of the slopes on the
landscape. Canalisation is explained by the depth and
width of each valley in the potential landscape. This pro-
vides a way of probing and understanding the features
that confer robustness to the system (see, for exam-
ple, [18,19,21,24,45,47,48]). Branching valleys can arise
through particular types of bifurcation events. In particu-
lar, new attractor states can branch off from existing ones
during development or stem cell differentiation through
(supracritical) pitchfork bifurcations [19,20,25,32,47,49-51].
Due to this analogy to Waddington’s epigenetic land-

scape, potential landscapes are becoming increasingly
popular as explanatory tools in fields such as evo-
devo, developmental biology, and especially in stem cell
research. In the case of stem cells, the positioning of the
valleys in the landscape relative to each other explains
which differentiation pathways can be reached by a given
stem cell, and which cell fates can (or cannot) be trans-
differentiated into each other [13-16,36,37,40,52-54].
This illustrates how specific biological meaning can be
gained from studying the topography of potential land-
scapes, which ultimately, is nothing more than a visu-
ally accessible way of studying the underlying phase
portrait.
Waddington meant his epigenetic landscape as a “dia-

grammatic representation” of development and warned
explicitly against interpretations that were too rigorous
or literal [2,3]. Detailed topographical interpretations of
Waddington’s landscape may be quite inaccurate and even

misleading. Ferrell [25] points out thatWaddington’s land-
scape, where valleys progressively split into an increasing
number of branches, does not help explain many realistic
cell differentiation processes. In particular, many induc-
tive processes in development (e. g. vulval induction in the
roundworm Caenorhabditis elegans, or mesoderm induc-
tion in vertebrates) involve saddle-node rather than pitch-
fork bifurcations, which correspond to the disappearance
of valleys rather than to their creation by branching. The
system shifts to a new attractor only once the old one
has vanished. This is why it is important to move from
metaphorical uses of Waddington’s epigenetic landscape
to accurately calculated potential surfaces whenever pos-
sible, or more importantly, to the detailed analysis of the
underlying phase portraits, which is where the dynamics
of specific regulatory networks are determined.
Potential landscapes can only be calculated and visu-

alised explicitly for a restricted range of dynamical sys-
tems, belonging to the class of gradient systems [32]. Note
that the notion of a gradient system is defined math-
ematically by the absence of limit cycles or any other
complex attractor structures in their phase portraits, and
has nothing to do with biochemical or other biological
gradients (see Model and methods for a detailed explana-
tion). In cases where we do not know whether the system
under study is a gradient system or not, we can approxi-
mate the actual potential using various numerical meth-
ods [19,20,38,39,48,55]. The resulting approximations are
called quasi-potential landscapes.
However, even such quasi-potential landscapes can only

be visualised directly when the number of state vari-
ables of the system does not exceed two. This is not
true for most biologically realistic systems. Nevertheless,
(quasi-)potential landscapes are still useful as conceptual
tools for the analysis of higher-dimensional regulatory
networks. In some cases, it is possible to reduce a high-
dimensional system to a lower-dimensional one (see, for
example, [56-58]). But even if this is not the case, the
concept of the potential landscape provides two advan-
tages. First, as discussed above, quasi-potential surfaces
linkWaddington’s intuitively accessible concept of the epi-
genetic landscape to the biological interpretation of (high-
dimensional) phase space analysis. And second, potential
surfaces are useful as visual guides to diagnose features of
the underlying phase portrait of the system that are char-
acteristic of specific dynamic behaviours of the regulatory
network under study.

The importance of transient dynamics
Many models of biological systems are formulated with
the assumption that the relevant dynamics occur near or
at a steady state. For instance, Thom’s pioneering sys-
tematic and rigorous analysis of morphogenesis in terms
of catastrophe theory explicitly and strongly relies on
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this assumption [8]. Similarly, work on robustness and
evolvability, using ensembles of simulated networks, stan-
dardly assumes that the steady state pattern produced by
a model can be taken as a satisfactory and realistic rep-
resentation of the phenotype of the system (e. g. [59-62]).
Furthermore, stem cell models that make use of potential
landscapes are analysed with a strong focus on how their
attractors govern system behaviour [19,20,47,48,56,58].
In some cases, the steady state assumption makes obvi-

ous sense based on biological reasoning. One exam-
ple is the analysis of the segment polarity network in
Drosophila melanogaster, which amplifies and maintains
a periodic input, and thus performs an intrinsically sta-
bilising patterning function [63-65]. In most cases, how-
ever, biological pattern formation is highly dynamic and
far from equilibrium, and the steady state assumption
is justified based on methodological, rather than biolog-
ical considerations. Focussing on asymptotic behaviour
at or near steady state greatly simplifies the analysis of
the system. First, it discretises and reduces phase (and
hence phenotype) space into a small number of pos-
sible states—represented by the system’s attractors (see
Figure 1C, panel 3). Second, it enables the powerful toolkit
of linear stability analysis to be employed to examine the
characteristic properties of system states [32,33].
However, there are both theoretical and practical rea-

sons indicating that steady state analysis misses essential
and biologically relevant systems behaviours. One line of
theoretical reasoning is provided by Waddington himself,
who reminds us that “[i]n the study of development we
are interested not only in the final state to which the sys-
tem arrives, but also in the course by which it gets there”.
[3]. His concept of homeorhesis and his representation of
developmental trajectories or chreodes as descending val-
leys in the epigenetic landscape places the focus explicitly
on the transient dynamics of cells on their way to their
final, differentiated state. In the same spirit, other authors
have suggested that phenotypes should be defined over
developmental trajectories, rather than representing some
sort of ‘final’ outcome or ‘end state’ of the system [22,66].
To decide what a final pattern is, and when exactly it
occurs, is always arbitrary to some degree, while transient
features (such as intermediate stages and the timing of
their transitions) are clearly important when considering
the function and dynamics of developmental processes.
There are also practical reasons to consider transient

dynamics explicitly. For developmental processes that
consist of continuous transitions between patterns rather
than the production of a final output, it is impossible
to decide a priori whether the system is representing a
non-autonomous succession of steady states (see below),
or whether its behaviour is truly transient (i. e. far from
steady state). In the case of gap domain shifts, we have
evidence for the latter [35], although there is no reason

to assume that the two situations need to be mutually
exclusive. The gap gene model analysed by Manu and
colleagues [35] exhibits boundary shifts that are caused
by trajectories following a canalising unstable manifold.
Assuming steady state dynamics would collapse the trajec-
tories representing these shifts into a single attractor point
at the final configuration of gene expression. Any such
analysis would miss the relevant underlying features of
phase space (the transient manifold), and therefore fail to
provide a proper characterisation and explanation for the
observed gene expression dynamics (the shift in domain
position over time).
Other examples of developmental processes, where

transient dynamics are clearly important are dorso-ventral
patterning of the vertebrate neural tube, which involves
boundary shifts strikingly similar to those of the gap
domains [67,68], and vertebrate somitogenesis or short-
germband segmentation in arthropods where transient
travelling waves of gene expression are an essential com-
ponent of the underlying clock-and-wavefront patterning
mechanism [69-75]. Incidentally, similar considerations
can be made for models dealing with ecological networks,
and several examples exist in the literature that consider
transient dynamics explicitly (see models of coupled oscil-
lating population dynamics between species [76,77], or
[78-80]).

Non-autonomy: explicit time dependence
Another important aspect of biological regulatory pro-
cesses, which receives surprisingly little attention, is the
explicit time dependence of these systems. As soon as
we consider cellular dynamics, development, or evolution
over a large-enough time span, the organisation of the
underlying regulatory system starts to change. This affects
the parameters—not just the state variables—of the sys-
tem. Such explicitly time-dependent dynamical systems
are called non-autonomous [32,81,82]. Time-dependent
signalling cues and environmental conditions have long
been known to shape many processes in the fields of evo-
lutionary and developmental biology. Obvious examples
of such phenomena are inductive processes or external
(e. g. seasonal) cues that are essential to trigger many
developmental pathways (as described in standard text-
books such as [83,84]), or evolutionary dynamics driven
by changing environmental conditions (examples, based
on the simulation of gene regulatory network models, can
be found in [85-88]).
Still, it is rare to find studies based on explicitly non-

autonomous models in the literature, and most authors
avoid the challenge of dealing with dynamical systems
where the parameters representing external cues are time-
dependent. This is the case in the study of gap domain
shifts by Manu and colleagues [35,89], where maternal
morphogen gradients providing regulatory input to the
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systemwere assumed to reach steady state before gap gene
boundary positioning was analysed. Such simplifications
can be risky, especially when describing biological phe-
nomena where the time scales of change in parameters
and state variables are of similar order. In such cases, time
scales should not be separated, nor quasi-steady states
considered since it is easy for dynamical properties and
behaviours of the system to be missed or misinterpreted
under these conditions.
Recently there have been some attempts at including

non-autonomy in biological models. Corson and Siggia
[90], for example, offer an explanation for vulva devel-
opment in C. elegans which explicitly considers temporal
parameter changes due to inductive signalling cues in
their model. Their model considers differentiation of cells
into three differentiated states depending on inputs from
two signalling pathways. Signalling inputs are encoded
in the model by altering values of system parameters,
which change and distort the geometry of the phase
portrait by displacing separatrices from their original
position (see Figures three–nine in [90]). When a cell
receives a signal, its developmental trajectory comes to lie
within another basin of attraction, inducing an alterna-
tive cell fate to that which would have been reached in the
absence of the signal. This study illustrates the importance
of non-autonomous dynamics in development. However,
it remains somewhat limited in its implementation of
explicit time-dependence. Although parameter change
is included in the model, signalling occurs before cells
embark on their developmental paths, and trajectories
develop purely autonomously thereafter. Therefore, this
approach does not fully capture the transient dynam-
ics of cell differentiation. In other words, although their
model is able to offer an explanation for cell differentiation
in vulval development, it cannot capture the full non-
autonomous nature of the developmental process, since it
does not reproduce developmental trajectories, chreodes,
in an accurate and fully time-dependent manner.
Similarly, most of the few other examples of non-

autonomous models in the biological literature do not
explicitly consider the effect of parameter changes on
transient behaviour (e. g. [91-93]). This simplification may
be justified in many cases and is necessary for any kind
of rigorous analytical treatment of a model. In many sit-
uations, however, it fails to capture essential features of
the system. For instance, a truly accurate analysis of gap
gene regulatory dynamics would require the inclusion of
both non-autonomy from the rapidly changing maternal
morphogen gradients, and transient dynamics, which are
known to underlie the temporal shifts in domain posi-
tion. Before we can undertake such an analysis we must
first build a conceptual toolkit for phase space analysis of
transient, non-autonomous dynamics. Due to the limited
amount of analysis possible in such systems, this toolkit

will need to be developed in a pragmatic and empirical
manner, using numerical simulation and exploration of a
simple conceptual model as its basis.
In the following sections, we present such a simulation-

based attempt at developing concepts to classify transient,
non-autonomous behaviours. For this purpose, we use a
simple two-component model of a genetic toggle switch,
whose potential landscape can be explicitly visualised.
We use time series of graphs and animations of systems
dynamics on this potential to identify mechanisms leading
to state transitions, and other forms of pattern forma-
tion. From this, we are able to identify four basic types of
dynamical mechanism and behaviour—transitions, pur-
suits and two types of captures of trajectories—that can
be used to classify and understand dynamical behaviour in
more complicated and realistic models, such as a full non-
autonomous version of the gap gene model. While this
present paper provides the methodological foundation for
such an analysis, detailed results for a realistic model of
the gap genes will be presented elsewhere.

Model andmethods
To develop our methodology for analysing transient
behaviour in non-autonomous dynamical systems, we use
a simple toggle switch model (see [22], and references
therein) with time-dependent parameters. We consider
two interacting genes X and Y (Figure 1B, panel 1). Con-
centrations of the corresponding protein products are
labelled x and y. X and Y mutually repress each other, are
linearly activated by external signals and can auto-activate
themselves (Figure 1B, panel 1). Protein products decay
linearly dependent on their concentration. The mathe-
matical formulation of our toggle switch model is thus
given by

dx
dt

=
[
αx + x4

a4 + x4

] [
b4

b4 + y4

]
− λxx

dy
dt

=
[
αy + y4

c4 + y4

] [
d4

d4 + x4

]
− λyy (1)

where parameters αx and αy represent the external acti-
vation on genes X and Y respectively. Sigmoid functions
with Hill coefficients of 4 are used to represent auto-
activation andmutual repression, where parameters a and
c determine auto-activation thresholds, while b and d
determine thresholds formutual repression. Protein decay
rates are represented by parameters λx and λy.
The toggle switch model (1) exhibits different dynam-

ical regimes depending on the values of its parameters
(Figure 2A–C). Its name derives from the fact that it can
exhibit bistability over a wide range of parameters. When
in this bistable region of parameter space, the underly-
ing phase portrait has two attracting states and one saddle
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Figure 2 Dynamical regimes of the toggle switch model. The toggle switch model can exhibit three different dynamical regimes depending on
parameter values. (A) In the monostable regime, the phase portrait has one attractor point only (represented by the blue dot on the quasi-potential
landscape). At this attractor, both products of X and Y are present at low concentrations. (B) In the bistable regime, which gives the toggle switch its
name, there are two attractor points (shown in different shades of blue) and one saddle (red) on a separatrix (black line), which separates the two
basins of attraction. The attractors correspond to high x, low y (dark blue), or low x, high y (light blue). The two factors never coexist when equilibrium
is reached in this regime. (C) In the tristable regime, both bistable switch attractors and the steady state at low co-existing concentrations are
present (shown in different shades of blue). In addition, there are two separatrices with associated saddle points (red). These regimes convert into
each other as follows (double-headed black arrows indicate reversibility of bifurcations): the monostable attractor is converted into two bistable
attractors and a saddle point through a supercritical pitchfork bifurcation; the saddle in the bistable regime is converted into an attractor and two
additional saddles in the tristable regime through a subcritical pitchfork bifurcation; the bistable attractors and their saddles collide and annihilate in
two simultaneous saddle-node (or fold) bifurcations to turn the tristable regime into a monostable one. Graph axes as in Figure 1B, Panel 4.

point (Figure 2B). All phase portraits associated with
parameters in the bistable range are topologically equiva-
lent to each other, meaning that they can be mapped onto
each other by a continuous deformation of phase space
called a homeomorphism [34].
The toggle switch model has two other dynamical

regimes: monostable and tristable. Phase portraits associ-
ated with parameters in the monostable range have only
one attractor point (Figure 2A), while those in the tristable
range have three attractor states and two saddle points
(Figure 2C). Again, phase portraits within each regime
are topologically equivalent to each other. While phase
space can be geometrically deformed within each regime
(through movements of attractors or separatrices), its
topology only changes when one regime transitions into
another through different types of bifurcations [32,34]
(Figure 2). The transition from monostable to bistable is
known to be governed by a supracritical pitchfork, the
transition from bistable to tristable involves a subcritical

pitchfork bifurcation, and the transition from tristable to
monostable takes place through two simultaneous saddle-
node bifurcations involving the two attractors labelled in
darker blue in Figure 2C.

Definition of the potential landscape
Potential landscapes can only be calculated explicitly for
the class of dynamical systems called gradient systems
[32]. A two-variable gradient system is a dynamical system

dx
dt

= f (x, y)

dy
dt

= g(x, y) (2)

which satisfies the following relationship between partial
derivatives

fy(x, y) = gx(x, y). (3)
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For gradient systems, it is possible to calculate a closed-
form (explicit) potential function, V (x, y) such that

Vx = −dx
dt

Vy = −dy
dt

. (4)

The local minima on the two-dimensional potential sur-
face given by V (x, y) correspond mathematically to the
steady states of the system in (2) since, if (x∗, y∗) is such
that

Vx(x∗, y∗) = Vy(x∗, y∗) = 0, (5)

then

dx
dt

(x∗, y∗) = 0

dy
dt

(x∗, y∗) = 0, (6)

and, therefore, (x∗, y∗) is a steady state of (2).

Calculating quasi-potential landscapes
Condition (3) will not always bemet. In particular, dynam-
ical systems representing gene interaction networks are
not in general gradient systems, and therefore an associ-
ated potential function and landscape may not exist. In
such cases, we can still take advantage of the visualisa-
tion power of potential landscapes by approximating the
true potential using a numerical method. The numeri-
cal approximation method we adopt for our study was
developed by Bhattacharya and colleagues [38] using a
toggle switchmodel very similar to the one used here. This
allows us to calculate a quasi-potential landscape for any
specific set of fixed parameter values.
The quasi-potential, which we denote by Vq, is defined

to decrease along all trajectories of the dynamical system
as they progress on the phase portrait over time

�Vq = δVq
δx

�x + δVq
δy

�y = −dx
dt

�x + −dy
dt

�y. (7)

�x and �y are defined as small-enough increments
along the trajectory such that dx/dt and dy/dt can be con-
sidered constant in the interval

[
(x, x + �x), (y, y + �y)

]
.

In addition, �x = dx
dt �t and �y = dy

dt �t, where �t is the
time increment. Substituting into equation 7, we obtain

�Vq = −dx
dt

(
dx
dt

�t
)

+ −dy
dt

(
dy
dt

�t
)

= −
[(

dx
dt

)2
+

(
dx
dt

)2
]

�t.
(8)

�Vq has been formulated in such a way that, for pos-
itive time increments �t, �Vq is always negative along
the unfolding trajectory and is, in effect, a Lyapunov func-
tion of the two-gene dynamical system [32]. This ensures
that trajectories will always “roll” downhill on the quasi-
potential surface. Just as in the case of closed-form poten-
tial, the steady states of the system (x∗, y∗) correspond
to the local minima on the quasi-potential surface since
�Vq(x∗, y∗) = 0.
We apply the numerical approximation method

described above to trajectories with various initial points
on the x-y plane. This yields a sampled collection of tra-
jectories with quasi-potential values associated to every
one of their points. Next, we apply the following two
assumptions, in order to construct a continuous quasi-
potential surface from this sample of discrete trajec-
tories [38]:

1. Two trajectories with different initial conditions that
converge to the same steady state must also converge
to the same final quasi-potential level (normalisation
within basins of attraction).

2. Two adjacent trajectories that converge to different
steady states will be taken to start from the same
initial quasi-potential level (normalisation between
basins of attraction).

Finally, interpolation of all the normalised trajecto-
ries results in a continuous quasi-potential landscape.
Bhattacharya et al. [38] validated this approach by demon-
strating that the quasi-potential values of the steady states
were inversely correlated with their probability of occur-
rence using a stochastic version of the toggle switch
dynamical system.

Approximating non-autonomous trajectories
As we have argued in the Background Section, we cannot
generally assume that parameter values remain constant
over time when modelling biological processes. We take
a step-wise approximation approach to the change in
parameter values to address this problem (Figure 3). We
chose a time increment (step size) as small as possible.
Parameter values are kept constant for the duration of
each time step. As a consequence, the associated phase
portrait will also remain constant during this time inter-
val, and is visualised for each step by calculating a quasi-
potential landscape as described in the previous section
(Figure 3C, top row).
The smaller the time increments considered, the bet-

ter we are able to approximate continuous changes in
parameter values, and the consequent changes to the asso-
ciated phase portrait and quasi-potential landscape. Such
accurate approximation allows us to faithfully reproduce
non-autonomous trajectories produced by models with
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Figure 3 Numerical approximation of non-autonomous trajectories. (A) Toggle switch network. Red arrows representing auto-activation
indicate time-dependence of threshold parameters ax and ay (see equation 1). (B) Values of auto-activation thresholds ax and ay are altered
simultaneously and linearly over time. The graph shows the step-wise approximation of a continuous change, in this case, an increase in parameter
values. Step size is taken as small as computational efficiency allows. (C) During every time step, parameters can be considered constant, and the
phase portrait and (quasi-)potential landscape are calculated for the current set of parameter values. Trajectories are then integrated over the
duration of the time step using the previous end point as the current initial condition. The result is mapped onto the potential surface. The four
panels in (C) show examples of potential landscapes (upper panels) calculated based on sets of parameter values at time points indicated by
dashed arrows from (B). Important events altering the geometry of the trajectory are indicated. Lower panels show the corresponding
instantaneous phase portraits with the integrated progression of the trajectory across time steps. See Model and methods for details.

continuously time-variable parameters. This is done by
integrating trajectories using constant parameters dur-
ing each time step, and then using the resulting end
position in phase space as the initial condition for the
next time step. The resulting integrated trajectories can
then be visualised by mapping them from the underlying
phase plane onto the associated quasi-potential landscape
as described above. This allows us to track and analyse
in detail how changes in the phase portrait and quasi-
potential landscape shape the trajectories as the values of
the parameters are changing.

Results and discussion
Using the toggle switch defined in (1) as a concep-
tual model, we have set out to identify and catalogue
mechanisms that affect the shape of trajectories in non-
autonomous systems. In contrast to previous studies
(see, for example, [19,20]), we do not assume asymp-
totic behaviour of the system, but focus on transient
dynamics—that is, the entire trajectory from initial to
steady state.
In this context, we use the term ‘mechanism’ in an

unusual, but precisely defined way. We do not mean it to
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imply any specific biochemical interactions—this is how
most experimental biologists would use the term. Nor
does our notion of ‘mechanism’ depend on any specific
regulatory structure, such as network motifs (reviewed in
[94]), or the different stripe-forming mechanisms studied
in [95]. Instead, we use the term ‘mechanism’ in a broader,
more abstract sense: a mechanism is a causal explana-
tion of dynamics in terms of the dependence of the flow
on parameter changes, and how these affect the trajec-
tories of the system. We will illustrate this very abstract
definition using a number of concrete examples below.
Changing parameter values in non-autonomous sys-

tems can change the underlying phase portrait in two
main ways: it can alter the geometry or the topology of
phase space (or both) [32,34]. On one hand, a change
in geometry means that the phase portrait is still com-
posed of the same basic elements—the same number, kind
and relative placement of attractors and their associated
basins, saddle points, and separatrices—but that the exact
position, shape, and/or size of these elements has been
altered. On the other hand, a topological alteration of
phase space occurs when a change in parameter values
cause the number or stability of steady states to change.
For example, small changes in a parameter value can cause
a pair of attractor and saddle points to appear or disappear
through a saddle-node or fold bifurcation, or an attractor
can be turned into a saddle point through a transcriti-
cal bifurcation. Topological changes to the phase portrait
are therefore associated with bifurcations as studied in the
context of autonomous dynamical systems [32-34].
In what follows, we examine how both geometrical and

topological changes in phase space affect transient tra-
jectories in non-autonomous systems. For this purpose,
we use a numerical simulation approach with three-
dimensional visualisation of the quasi-potential landscape
associated with the phase portrait of our toggle switch
model (see the Model and methods Section, for details).
We identify four different basic types of non-autonomous
mechanisms affecting dynamical behaviour: transitions,
pursuits and two kinds of captures.

Transitions
Out of the four trajectory-shaping mechanisms that we
have identified in this study, transitions are the most
familiar. They have been found and described in previ-
ous approaches to the study of non-autonomous biolog-
ical systems [78-80,91,92]. Transitions in our context are
equivalent to Thom’s ‘catastrophes’ [8], and to what Schef-
fer has termed ‘critical transitions’, defined as a shift of
the system from one attractor to another when it passes a
given critical point in parameter space [92]. While Thom’s
and Scheffer’s analyses focus on the resulting steady state
behaviour of the system, we also consider the transient
dynamics during a transition.

An example of a transition in the toggle switch model—
occurring from the bistable via the tristable to the monos-
table regime—is shown in Figure 4 (see also Additional
file 1, Supporting Movie S1). This transition is driven by
an increase in the value of the auto-activation thresholds
(a and c in equation 1). Changes in auto-activation have
been previously used to explain the dynamics of stem
cell differentiation [20,21,47,48], and patterning by lateral
inhibition [25].
In this case, we consider that the system is already at

steady state at the outset, in its bistable regime with high x
and low y (Figure 4A). In other words, we assume that the
system has had time to converge, or that the initial con-
dition coincides with the neighbourhood of this attractor.
During the transition, two bifurcation events take place—
a subcritical pitchfork bifurcation (Figure 4A to B), and
two simultaneous saddle-node bifurcations (Figure 4D
to E)—which make the initial steady state and its asso-
ciated basin of attraction disappear while creating a new
attractor at which both factors X and Y are present at low
concentrations (Figure 4B to E).
Examining transient dynamics during the transition

reveals important details that shape the trajectory and
hence the behaviour of the system. First, we note that
the trajectory initially at steady state does not necessar-
ily remain anchored to its attractor (Figure 4C and D).
As the change in parameter values causes the attractor
state to move, the trajectory’s current state falls behind
and reacts by travelling towards the moving attractor (see
Pursuit below). Since the flow rate along the trajectory is
smaller than the velocity of attractor movement, the sys-
tem is not able to catch up with the moving steady state.
Hence, it temporally reverts from asymptotic to tran-
sient behaviour. Obviously, such a reversal can never be
observed if we only focus on steady state behaviour.
Second, we observe a delay between the subcritical

pitchfork bifurcation creating the new attractor state
(shown in light blue in Figure 4B) and the system switch-
ing into that basin of attraction (Figure 4E). This delay
effect was already noted and described by Thom in his
analysis [8]. The change from one basin to another (indi-
cated by a change from dark to light blue on the trajec-
tory shown in Figure 4E) only occurs once the tristable
system undergoes two simultaneous saddle-node bifurca-
tions, where the two saddles on the separatrices collide
against the two outer attractors and annihilate each other
(darker blue attractors in Figure 4D and E). A monostable
system results from these bifurcations. The trajectory sud-
denly finds itself in a different basin, and eventually it will
converge to this new attractor state (Figure 4E).
In this particular example, the shape of the observed

transient trajectory does not differ much from its equiva-
lent in an autonomousmonostable system. This is because
for most of the time the trajectory is in the basin of
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Figure 4 Transition. A transition indicates the switch of a non-autonomous system from one attractor state to another. Upper panels show
(quasi-)potential surfaces, lower panels phase portraits as in Figure 3C. The progress of time is shown through increasingly dark shading, and by the
arrow at the bottom of the figure. (A) The system starts off in the bistable regime. The trajectory’s initial conditions coincide with the attractor at
high x, low y (dark blue). The trajectory is therefore at steady state at the outset. (B) Changes in auto-activation thresholds a and c (equation 1) over
time cause the system to undergo a subcritical pitchfork bifurcation and enter the tristable regime (see also Figure 2). (C, D) The trajectory does not
switch attractors immediately after the bifurcation occurs. However, it does not remain anchored to its current attractor either. Instead, it is left
behind by the moving attractor, which it starts to pursue (see also Figures 5 and 6). (E) The system enters the monostable regime as the two
bistable attractors disappear via two simultaneous saddle-node (or fold) bifurcations. The trajectory suddenly finds itself in an alternative basin of
attraction, and eventually converges to the new, monostable attractor with low x and y . This change in basins of attraction is represented by a
change in colour of the trajectory shown in (E). See also Additional file 1, Supporting Movie S1.

attraction of the attractor at low X and Y concentrations
(light blue part of the trajectory in Figure 4E). Nev-
ertheless, most developmental processes require tightly
controlled timing and therefore the observed temporary
reversal to transient behaviour and consequent delay in
attractor switch can be significant. These aspects are
therefore not negligible if we want to achieve a full under-
standing of the dynamics of the system. Steady state
analyses, where more or less instant convergence to the
new attractor state is assumed, will be limited in this
regard since they are not able to address the question of
developmental timing.
In addition to its effect on timing, the delay in switch-

ing basins of attraction also provides an explanation for
the irreversibility of developmental pathways. This phe-
nomenon has been studied in detail in the context of
stem cell differentiation. Wang and colleagues [19,20] use
a non-autonomous toggle switch model similar to ours
to study the transition from monostable (stem cell) to
bistable behaviour (differentiated cells). The authors sim-
ulate this transition in both directions (from stem cell to
differentiated state and back), and show that two different
delay effects occur depending on the direction of the pro-
cess. In other words, forward and backward pathways are
very different, thus explaining why the system is unable

to retrace its original differentiation pathway when the
process is reversed.

Pursuit
Transient phenomena need to be taken into account to
be able to fully understand the dynamical repertoire of a
system. This becomes especially relevant when consider-
ing what we call pursuit mechanisms. We now consider
what happens if the external activation on genes X and
Y in our toggle switch model (αx and αy in 1) are altered
over time. In biological terms, this could represent the
system’s response to a changing external signal. This par-
ticular parameter change affects the geometry but not
the topology of the phase portrait. The system remains
in the bistable dynamical regime throughout the whole
parameter range that we explored.
Let us first consider an increase in activation strength.

As external production rates increase over time, the
attractors move away from the origin along the direc-
tion of the x and y axes respectively (Figure 5, see also
Additional file 2, Supporting Movie S2). This outward
movement of the attractors leaves the position of the
separatrix unchanged throughout the simulation, keeping
the location and area of the basins of attraction constant
over time (Figure 5). Since the separatrix does not move,
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Figure 5 Pursuit stabilising the direction of a trajectory. Pursuit behaviour results from the movement of an attractor. In this case, both attractor
and trajectory progress in the same direction, which is therefore stabilised even before the system enters any asymptotic regime. Upper panels
show (quasi-)potential surfaces, lower panels phase portraits as in Figure 3C. The progress of time is shown through increasingly dark shading, and
by the arrow at the bottom of the figure. (A) Pursuit behaviour shows similarities to autonomous dynamics, since the location of the initial condition
determines the attractor towards which the system will converge. In this example, parameter changes do not alter the position of the separatrix.
(B–D) However, the approach of the system towards the attractor is very different than in the autonomous case, since both attractors move away
from the origin as activation strength (represented by αx and αy in equation 1) is increased over time. This leads to an enduring pursuit by the
trajectory of its moving attractor target. See also Additional file 2, Supporting Movie S2.

trajectories are not able to change basins. Therefore, the
initial conditions determine which basin of attraction the
system will remain in, as they do in autonomous systems.
However, the approach to the attractor is very different
in this non-autonomous case, since trajectories are drawn
towards a moving target. It is this continued pursuit that
plays the main role in shaping them (Figure 5). Even
though its associated attractor keeps moving over time,
this sort of pursuit shows how the general direction of a
trajectory can be stably maintained in a non-autonomous
system.
Two specific pursuit scenarios can be distinguished. In

the first, the trajectory eventually reaches the moving
attractor. This occurs if the change in parameter values
increases the flux around the attractor faster than it moves
its position, or if further change in parameter values no
longer alters the position of an attractor—in other words,
the position of an attractor itself converges to a given
location over time. Under these conditions, the trajecto-
ries of a non-autonomous system can show asymptotic
behaviour and come to rest at steady state. However, it
is not guaranteed that this should take place. There are
many imaginable scenarios in which attractors will keep
moving as parameters change and trajectories governed

by pursuit mechanisms may never come to rest. It is prob-
able that many developmental processes—at least to a
certain degree—work in this regime, as external condi-
tions and the cellular environment (signalling inputs or
tissue context) constantly keep changing over time.
Just as in the case of transitions, it is obvious that pur-

suit mechanisms have a great impact on the timing of
developmental dynamics. They can delay or even pre-
vent the system from reaching steady state. In addition,
attractor movements can also drastically influence and
alter the shape of a trajectory. This becomes evident if
we consider an alternative scenario, in which activating
inputs decrease over time (Figure 6, see also Additional
file 3, Supporting Movie S3). In this case, the attractors
move towards the origin over time. This causes the attrac-
tor to ‘overtake’ the trajectory at a given point in time
(Figure 6B), which induces a rather drastic change in the
trajectory’s direction: initially it is travelling toward high x
(Figure 6A), but later comes to approach the origin (low x)
while pursuing the moving attractor (Figure 6B–D).
In summary, we have illustrated how pursuit mech-

anisms in non-autonomous systems can either lead to
the stable maintenance of a transient trajectory (as in
Figure 5), or to a drastic change in its direction (as in
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Figure 6 Pursuit altering the direction of a trajectory. Pursuit behaviour results from the movement of an attractor. In this case, the direction of
the trajectory is altered since the attractor moves against the flow. Upper panels show (quasi-)potential surfaces, lower panels phase portraits as in
Figure 3C. The progress of time is shown through increasingly dark shading, and by the arrow at the bottom of the figure. (A–D) Panels show the
movement of the attractors towards the origin as activation strength (represented by αx and αy in equation 1) is decreased over time. As the
attractor ‘overtakes’ the trajectory (between panels B and C), the angle of the flow changes drastically, leading to a reversal in the direction of the
trajectory (clearly visible in D). See also Additional file 3, Supporting Movie S3.

Figure 6) depending on the geometric arrangement of
the attractor with regard to the converging trajectory.
We have argued that pursuit mechanisms are likely to be
almost ubiquitous in systems that are exposed to a chang-
ing environment or variable tissue context (e. g. signalling
or external input by morphogen gradients). One specific
example for pattern formation by pursuit are the tran-
sient gap domain shifts examined byManu and colleagues
[35,89]. In this particular case, spatial shifts in domain
position are caused by the timed up- and later down-
regulation of a specific sequence of gap genes in nuclei
located within the posterior region of the Drosophila
blastoderm embryo (see [35], for details). Basically, each
nucleus goes through a stereotypical series of expression
pulses of different gap genes. Such pulses can easily be
explained by the sort of trajectory observed in Figure 6,
where an initial expression trend (upregulation of X) is
later smoothly reversed (towards downregulation of the
same gene).

Capture
In autonomous dynamical systems, trajectories never
cross a separatrix [32]. Depending on the position of its
initial conditions, a trajectory will find itself in a particu-
lar basin of attraction, that is, in the dynamical regime of

a particular attractor. The trajectory will always remain in
this basin and, given enough time, will eventually converge
to the attractor.
The same is not true for non-autonomous systems. We

know that the phase portrait is changing as the parame-
ters change. This means that the position and number of
steady states need not remain constant over time.We have
seen how saddles and attractors can be created and anni-
hilated by bifurcations, and how they can move through
phase space in such systems. In particular, when saddle
points change their position, they cause their associated
separatrices to shift with them. Separatrices mark the
boundaries between basins of attraction, and their move-
ment will cause the size, shape and/or relative placement
of these basins with regard to each other to change.
As trajectories progress on the changing phase portrait,

it is possible for a moving separatrix to overtake them.We
will call this event a ‘capture’. When a capture occurs, the
affected trajectory is deviated, and often exhibits a sud-
den change in direction, since it is now attracted towards
a different attractor at a different position of the phase
plane than it was before. Captures will happen when the
flow along the trajectory is smaller than the rate of change
in separatrix position. The separatrix is recruiting points
from one basin of attraction into another at a faster rate
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than the trajectory is travelling away from it. Therefore,
the velocities of the trajectory and the separatrix relative
to each other are determining whether a capture event is
going to take place or not.
We identified two main ways by which capture events

are brought about in the non-autonomous toggle switch
model. In both cases, the mechanism shaping the trajec-
tory is essentially the same: the trajectory suddenly finds
itself converging towards a different attractor as a result
of an abrupt change to the flow at its current position.
Themain difference between the two capturemechanisms
resides in how the movement of the separatrix is caused.
In the first situation, the trajectory gets captured after

a bifurcation event has lead to the creation of a new
attractor state. This increases the number of attractor
basins and, in this way, introduces new separatrices into
the phase portrait. We simulate this situation using the
bistable-to-tristable transition caused by an increase in
the auto-activation threshold as described above (Figure 7,

see also Additional file 4, Supporting Movie S4). In this
example, a subcritical pitchfork bifurcation creates a new
attractor and two associated saddles from a pre-existing
saddle point (Figure 7A,B). This results in a change in
phase space topology. What used to be a single separatrix
now ‘opens up’, giving rise to two different forked sep-
aratrices (Figure 7B,C). Further parameter changes then
cause the new separatrices to move outward through
phase space, catching up with, and overtaking, trajecto-
ries as they recruit points into the newly created and
expanding basin of attraction (Figure 7B–D).
As with the transition mechanism, we notice a some-

times considerable time delay between the bifurcation and
the capture event. The extent of this delay depends on
how close a trajectory is to the new attractor at the time of
bifurcation, and on the rate of change in separatrix posi-
tion due to further parameter change. In our example,
the delay effect can be clearly seen, as the trajectory first
veers to the left, towards its original attractor, before being

Figure 7 Capture due to a change in the topology of the phase portrait. A capture results from a trajectory being recruited into a new basin of
attraction due to the movement of a separatrix. In this example, the relevant separatrix is created and caused to move by a preceding bifurcation
event, which leads to the appearance of a new attractor state, resulting in a change of phase space topology. Upper panels show (quasi-)potential
surfaces, lower panels phase portraits as in Figure 3C. The progress of time is shown through increasingly dark shading, and by the arrow at the
bottom of the figure. (A) The system starts off in the bistable regime and the initial conditions place the trajectory in the basin of the high x, low y
attractor (dark blue). (B) Changes in the values of the auto-activation thresholds (a and c, see equation 1) cause the system to undergo a subcritical
pitchfork bifurcation and enter the tristable regime (see also Figure 2). At the time of the bifurcation, the trajectory is still attracted towards the dark
blue attractor. (C) As auto-activation thresholds are further increased, the two separatrices surrounding the new attractor state (shown in light blue)
separate from each other, enlarging the corresponding basin of attraction. A capture event takes place as the separatrix ‘overtakes’ the trajectory,
recruiting it into the new basin of attraction. The system will now converge towards the light blue attractor. This change in basins of attraction is
represented by the colour coding of the trajectory on the phase portrait. (D) As auto-activation thresholds are further increased, the system will
transition from the tristable into the monostable regime (see also Figures 2 and 4). This causes the dark blue attractors and their basins to disappear
altogether, but does not influence the direction of the trajectory anymore, which will eventually converge to the light blue attractor at low x and y.
See also Additional file 4, Supporting Movie S4.
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steered back towards the center of the phase portrait,
where the new attractor lies. This introduces a marked
bend into the trajectory (Figure 7D), which affects both
time to convergence and the identity of transient states.
In the second scenario, we consider a situation where

the capture event is not preceded by a bifurcation. In this
case, a pre-existing separatrix is moving through phase
space due to parameter changes. This movement of the
separatrix reconfigures the geometry of the basins of
attractionwithout changing the topology of the phase por-
trait. We simulate this event in our toggle switch model
by introducing asymmetric changes in the values of the
thresholds determining the two mutually repressing reg-
ulatory interactions (i.e. b �= d in 1) (Figure 8, see also
Additional file 5, Supporting Movie S5). This shifts the
position of the separatrix in the bistable regime towards
one of the two attractors without creating or annihilating
any steady states.

As in the case of capture with preceding bifurcation, the
separatrix moves and recruits points from one basin into
the other, thereby shrinking one basin of attraction while
enlarging the other (Figure 8A–D). If the moving sepa-
ratrix encounters a trajectory at one of the points that
are being recruited into a different basin of attraction, a
capture event will take place (Figure 8B). The affected tra-
jectory will change direction as it now converges towards
a different attractor than before the capture (Figure 8C,D).
Capture mechanisms illustrate how dramatic changes in

direction and velocity of trajectories do not always require
changes to the topology of the underlying phase portraits.
In other words, they do not necessarily have to be associ-
ated with bifurcations, and even if they are, the observed
sudden change in direction does not usually coincide with
the bifurcation. Instead, it can be significantly delayed.
This kind of phenomenon cannot be observed if only
asymptotic behaviours are considered. In that case, only

Figure 8 Capture due to a change in the geometry of the phase portrait. A capture results from a trajectory being recruited into a new basin of
attraction due to the movement of a separatrix. In this example, the relevant separatrix is caused to move by a break in the symmetry of the
repressive interactions between X and Y. No new attractor states or separatrices are created. Therefore, the change in landscape topography is
purely geometrical and does not affect the topology of phase space. Upper panels show (quasi-)potential surfaces, lower panels phase portraits as
in Figure 3C. The progress of time is shown through increasingly dark shading, and by the arrow at the bottom of the figure. (A) The system starts
off in the bistable regime and the initial conditions place the trajectory in the basin of the low x, high y attractor (light blue). (B) Changing the
threshold of one of the repressive interactions only (b in equation 1) shrinks the basin of attraction of the low x, high y attractor (light blue) causing
the separatrix to move towards the upper left corner of the phase portrait. (C) The shifting separatrix catches up with the converging trajectory,
recruiting it into the basin of the high x, low y attractor (dark blue). A capture event has taken place without any preceding bifurcation. This change
in basins of attraction is represented by the colour coding of the trajectory on the phase portrait. (D) After the capture, the system converges to its
new attractor (dark blue). Interestingly, the geometry of this capture has made the trajectory loop over itself. Such self-crossing trajectories are never
observed in autonomous dynamical systems. The subsequent saddle-node bifurcation by which the saddle (red) and the light blue attractor
annihilate each other does not affect the trajectory any further. See also Additional file 5, Supporting Movie S5.
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transition-like events can occur since captures and pur-
suits crucially depend on transient dynamics.
There are several examples which illustrate how this

might be important in practice. Corson and Siggia [90]
considered an explicitly non-autonomous mechanism for
determining vulval cell fates in their model. In their study,
shifts in separatrices and captures happen instantaneously
at the outset of the simulation. In other words, the initial
condition of cells that are captured completely determines
which basin of attraction they will find themselves in for
the rest of the simulation. While this does not affect the
analysis of the resulting differentiated (steady) states—
as evidenced by the tight match between the model and
the measured proportions of differentiated cells [90]—it
could limit the model’s ability to reproduce the transient
dynamics of cellular differentiation.
This becomes crucial when analysing more dynamic

examples of gene expression, such as pattern formation
driven by the gap gene system. In this example, it will be
essential to study the interplay between changing mater-
nal gradients and moving gap target domains. This was
not really possible in the study of Manu and colleagues
[35] since their model assumed the maternal gradients to
remain constant. Our classification scheme of transient
behaviour in non-autonomous systems should be useful to
analyse such questions in more detail. For instance, cap-
ture events occurring at different times in different nuclei
could explain how stable expression boundaries can be
maintained in the presence of changing regulatory inputs.
In contrast, moving domain boundaries in the posterior of
the embryo are more likely to involve some type of pur-
suit mechanism (see above). Without doubt, the concepts
developed in this paper will be useful to classify and char-
acterise the boundary-forming and -shifting mechanisms
in a fully non-autonomous model of this system.

Conclusions
In this paper, we have argued that considering both
transient dynamics and explicit time-dependence (non-
autonomy) of dynamical systems is essential for an accu-
rate and complete quantitative understanding of many
biological processes. In particular, we have argued that
these two features are important if we are to fully cap-
ture the richness and explanatory power of Waddington’s
metaphor of the epigenetic landscape [3]. Waddington’s
concepts of developmental chreodes, and their canalised
nature due to the regulatory process of homeorhesis,
apply to transient or non-autonomous behaviour, not sta-
ble steady states of a system. Moreover, Waddington’s
landscape changes its shape due to genetic or environ-
mental signals as represented by the pegs and ropes in
Figure 1A.
However, it remains difficult to analyse transient

dynamics in non-autonomous systems. Where rigorous

analysis is possible, it is mostly limited to special cases
(e.g., systems with regular external forcing, [82]). No gen-
eral theory or toolkit exists to deal with more complex
non-autonomous systems, or the transient phenomena
they exhibit.
In this paper, we have taken a first step towards

overcoming this limitation. We have used a pragmatic
simulation-based approach to classify different mecha-
nisms that affect transient trajectories in non-
autonomous systems. Our study is based on a simple
conceptual model—a toggle switch with time-dependent
parameter values—to visualise the changing potential
landscape which determines the dynamical repertoire
of a regulatory circuit. We found four distinct mecha-
nisms that affect trajectories on time-variable potential
surfaces: transitions, pursuits and two kinds of captures.
At this point it is impossible to say whether this list is
complete. Other types of behaviour may be possible in
higher-dimensional phase spaces.
Despite its potential incompleteness, we believe that

our preliminary classification scheme is useful, since it
makes transient dynamics in non-autonomous systems
more tractable in practice. The advantages of our frame-
work are twofold: first, it allows us to describe and
categorise patterning mechanisms. Each one of the mech-
anisms described above has its own characteristics, both
in terms of their effect on the short-term dynamics, as well
as the longer-term evolutionary potential of the system.
We have described specific examples of such character-
istics in the Results Section. Second, it can be used as
a diagnostic framework for the analysis of phase space,
even in the case of higher-dimensional systems where the
potential surface can no longer be visualised explicitly.
It shows us, for example, that we need not necessarily
find a bifurcation associated with every observed critical
transition of a system. Instead, drastic changes in systems
behaviour can also be caused by pursuit or geometrical
capture events as described in the Results Section.
Our framework is widely applicable to the analysis

of real-world regulatory networks. In fact, it has been
developed in the context of our analysis of a fully non-
autonomous version of the gap gene model by Manu et al.
[35]. Our classification scheme has allowed us to cate-
gorise different mechanisms for spatial pattern formation
in this system, and to identify those features of phase space
responsible for the spatio-temporal dynamics of gene
expression. A full analysis of this system will be published
elsewhere.We hope that our work will inspire further such
analyses in systems where our framework could be useful,
and where the required detailed and data-driven models
are currently available. Examples such as vulval determi-
nation in C. elegans or neural patterning in vertebrates
come to mind. We have no doubt that—considering the
current rate of progress in systems biology—this list will
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be extended considerably in the very near future, leading
to a more general investigation of transient dynamics in
non-autonomous biological systems.

Additional files

Additional file 1: Supporting Movie S1–Transition. A transition
indicates the switch of a non-autonomous system from one attractor state
to another. This movie shows the simulation that Figure 4 is based on. It
displays the changing potential landscape as the system transitions from
the bistable to the tristable and then the monostable regime (see Figure 2)
as auto-activation thresholds are increased. The corresponding phase
portrait is shown in the inset on the upper right. Parameter values are
displayed in the panel on the lower right. The current state of the system is
shown as a black ball. Attractors are marked by blue dots, saddle nodes by
red dots with associated separatrices shown as black lines. The history of
the trajectory is shown on the phase portrait, colour coded according to
which attractor the trajectory is converging towards at every individual
step of the simulation. See main text and Figure 4 for details.

Additional file 2: Supporting Movie S2–Pursuit stabilising the
direction of a trajectory. Pursuit behaviour results from the movement of
an attractor. In this case, both attractor and trajectory progress in the same
direction, which is therefore stabilised even before the system enters any
asymptotic regime. This movie shows the simulation that Figure 5 is based
on. It displays the changing potential landscape as activation strength is
increased. The corresponding phase portrait is shown in the inset on the
upper right. Parameter values are displayed in the panel on the lower right.
The current state of the system is shown as a black ball. Attractors are
marked by blue dots, the saddle node by a red dot with its associated
separatrix shown as a black line. The history of the trajectory is shown on
the phase portrait. See main text and Figure 5 for details.

Additional file 3: Supporting Movie 3–Pursuit altering the direction
of a trajectory. Pursuit behaviour results from the movement of an
attractor. In this case, the direction of the trajectory is altered since the
attractor moves against the flow. This movie shows the simulation that
Figure 6 is based on. It displays the changing potential landscape as
activation strength is decreased. The corresponding phase portrait is
shown in the inset on the upper right. Parameter values are displayed in the
panel on the lower right. The current state of the system is shown as a black
ball. Attractors are marked by blue dots, the saddle node by a red dot with
its associated separatrix shown as a black line. The history of the trajectory
is shown on the phase portrait. See main text and Figure 6 for details.

Additional file 4: Supporting Movie 4–Capture due to a change in the
topology of the phase portrait. A capture results from a trajectory being
recruited into a new basin of attraction due to the movement of a
separatrix. In this example, the relevant separatrix is created and caused to
move by a preceding bifurcation event, which leads to the appearance of a
new attractor state, resulting in a change of phase space topology. This
movie shows the simulation that Figure 7 is based on. It displays the
changing potential landscape as the system transitions from the bistable
to the tristable and then the monostable regime (see Figure 2) as
auto-activation thresholds are increased. The corresponding phase portrait
is shown in the inset on the upper right. Parameter values are displayed in
the panel on the lower right. The current state of the system is shown as a
black ball. Attractors are marked by blue dots, saddle nodes by red dots
with associated separatrices shown as black lines. The history of the
trajectory is shown on the phase portrait, colour coded according to which
attractor the trajectory is converging towards at every individual step of
the simulation. See main text and Figure 7 for details.

Additional file 5: Supporting Movie 5—Capture due to a change in
the geometry of the phase portrait. A capture results from a trajectory
being recruited into a new basin of attraction due to the movement of a
separatrix. In this example, the relevant separatrix is caused to move by a
break in the symmetry of the repressive interactions between X and Y. No
new attractor states or separatrices are created. Therefore, the change in
landscape topography is purely geometrical and does not affect the

topology of phase space. This movie shows the simulation that Figure 8 is
based on. It displays the changing potential landscape as the threshold for
repression of X by Y is raised, causing the system to be increasingly
asymmetrical. The corresponding phase portrait is shown in the inset on
the upper right. Parameter values are displayed in the panel on the lower
right. The current state of the system is shown as a black ball. Attractors are
marked by blue dots, the saddle node by a red dot with its associated
separatrix shown as a black line. The history of the trajectory is shown on
the phase portrait, colour coded according to which attractor the
trajectory is converging towards at every individual step of the simulation.
See main text and Figure 8 for details.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BV, AC and JJ conceived and designed the study. BV implemented
computational tools and performed computer simulations. BV, AC and JJ
analysed results. BV and JJ wrote the paper. All authors read and approved the
manuscript.

Acknowledgements
We thank Gregory Boyle for his help with rendering the supplementary
movies, and Damjan Cicin-Sain for programming support. We would also like
to thank Nick Monk, and the members of the Jaeger Lab for critical discussions
and reading of the manuscript. This work was supported by a ’la Caixa’
fellowship awarded to BV. AC was supported by the BioPreDyn consortium,
funded by European Commission grant FP7-KBBE-2011-5/289434. The
laboratory of JJ is funded by the MEC-EMBL agreement for the EMBL/CRG
Research Unit in Systems Biology. Additional financial support was provided
by SGR Grant 406 from the Catalan funding agency AGAUR, and by grants
BFU2009- 10184 and BFU2012-337758 from the Spanish Ministerio de
Economia y Competitividad (MINECO).

Received: 19 December 2013 Accepted: 19 March 2014
Published: 4 April 2014

References
1. Waddington C: An introduction tomodern genetics. London: Allen &

Unwin; 1939.
2. Waddington C: Canalisation of development and the inheritance of

acquired characters. Nature 1942, 150:563–564.
3. Waddington C: The Strategy of the Genes. London: Allen & Unwin; 1957.
4. Waddington C: Genes and Organisers. Cambridge: Cambridge University

Press; 1940.
5. Gilbert S: Epigenetic landscaping: Waddington’s use of cell fate

bifurcation diagrams. Biol Philos 1991, 6:135–154.
6. Fagan M:Waddington redux: models and explanation in stem cell

and systems biology. Biol Philos 2012, 27:179–213.
7. Gilbert S: Diachronic biology meets evo-devo. Am Zool 2000,

40:729–737.
8. Thom R: Structural Stability andMorphogenesis. Boulder: CO: Westview

Press; 1975.
9. Thom R: An inventory of Wadington’s concepts. In Theoretical Biology.

Edited by Goodwin B, Saunders P. Edinburgh: Edinburgh University Press;
1989.

10. Saunders P, Kubal C: Bifurcations and the epigenetic landscape. In
Theoretical Biology. Edited by Goodwin B, Saunders P. Edinburgh:
Edinburgh University Press; 1989.

11. Saunders P: The organism as a dynamical system. In Thinking about
Biology. Edited by Varela F, Stein W. Reading, MA: Addison Wesley; 1993.

12. Slack J: Conrad Hal Waddington: The last renaissance biologist? Nat
Rev Genet 2002, 3:889–895.

13. Enver T, Pera M, Peterson C, Andrews P: Stem cell states, fates, and the
rules of attraction. Cell Stem Cell 2009, 4:387–397.

14. Graf T, Enver T: Forcing cells to change lineages. Nature 2009,
462:587–594.

15. Hochedlinger K, Plath K: Epigenetic reprogramming and induced
pluripotency. Development 2009, 136:509–523.

16. Yamanaka S: Elite and stochastic models for induced pluripotent
stem cell generation. Nature 2009, 460:49–52.

http://www.biomedcentral.com/content/supplementary/1752-0509-8-43-S1.mp4
http://www.biomedcentral.com/content/supplementary/1752-0509-8-43-S2.mp4
http://www.biomedcentral.com/content/supplementary/1752-0509-8-43-S3.mp4
http://www.biomedcentral.com/content/supplementary/1752-0509-8-43-S4.mp4
http://www.biomedcentral.com/content/supplementary/1752-0509-8-43-S5.mp4


Verd et al. BMC Systems Biology 2014, 8:43 Page 18 of 19
http://www.biomedcentral.com/1752-0509/8/43

17. Ladewig J, Koch P, Brüstle O: Leveling Waddington: the emergence of
direct programming and the loss of cell fate hierarchies. Nat Rev Mol
Cell Biol 2013, 14:225–236.

18. Huang S: Reprogramming cell fates: reconciling rarity with
robustness. Bioessays 2009, 31:546–560.

19. Wang J, Xu L, Wang E, Huang S: The potential landscape of genetic
circuits imposes the arrow of time in stem cell differentiation.
Biophys J 2010, 99:29–39.

20. Wang J, Zhang K, Xu L, Wang E: Quantifying theWaddington
landscape and biological paths for development and
differentiation. Proc Nat Acad Sci 2011, 108:8257–8262.

21. Zhou JX, Huang S: Understanding gene circuits at cell-fate branch
points for rational cell reprogramming. Trends Genet 2011, 27:
55–62.

22. Jaeger J, Irons D, Monk N: The inheritance of process: a dynamical
systems approach. J Exp Zool (Mol Dev Evol) 2012, 318B:591–612.

23. Jaeger J, Crombach A: Life’s Attractors. In Evolutionary Systems Biology.
Edited by Soyer O. New York: Springer; 2012.

24. Huang S: Themolecular andmathematical basis of Waddington’s
epigenetic landscape: a framework for post-Darwinian biology?
BioEssays 2012, 34:149–157.

25. Ferrell J: Bistability, bifurcations, andWaddington’s epigenetic
Landscape. Curr Biol 2012, 22:458–466.

26. Goodwin B: Development and evolution. J Theor Biol 1982, 97:43–55.
27. Alberch P: Developmental Constraints in Evolutionary Processes. In

Evolution & Development. Edited by Bonner JT. Berlin/Heidelberg: Springer;
1982.

28. Oster G, Alberch P: Evolution and bifurcation of developmental
programs. Evolution 1982, 36:444–459.

29. Alberch P: From genes to phenotype: dynamical systems and
evolvability. Genetica 1991, 84:5–11.

30. Webster G: Goodwin B: Form and Transformation: Generative and Relational
Principles in Biology. Cambridge: UK: Cambridge University Press; 1996.

31. François P, Siggia E: Phenotypic models of evolution and
development: geometry as destiny. Curr Opin Genet Dev 2012,
22:627–633.

32. Strogatz S: Nonlinear dynamics and chaos. Boulder. CO: Westview Press;
1994.

33. Hirsch M, Smale S, Devaney R: Differential Equations, Dynamical Systems,
and an Introduction to Chaos. Amsterdam: Elsevier; 2013.

34. Kuznetsov Y: Elements of applied bifurcation theory. New York: Springer;
2004.

35. Manu, Surkova A, Spirov A, Gursky V, Janssens H, Kim A, Radulascu O,
Vanario-Alonso C, Sharp D, Samsonova M, Reinitz J: Canalization of gene
expression and domain shifts in the drosophila blastoderm by
dynamical attractors. Plos Comput Biol 2009, 5:e1000303.

36. Macarthur B, Ma’ayan A, Lemischka I: Toward stem cell systems
biology: frommolecules to networks and landscapes. Cold Spring
Harb SympQuant Biol 2008, 73:211.

37. Macarthur B, Ma’ayan A, Lemischka I: Systems biology of stem cell
fate and cellular reprogramming. Nat Rev Mol Cell Biol 2009, 10:
672–681.

38. Bhattacharya S, Zhang Q, Andersen M: A deterministic map of
Waddington’s epigenetic landscape for cell fate specification. BMC
Syst Biol 2011, 5:85.

39. Zhou J, Aliyu M, Aurell E, Huang S: Quasi-potential landscape in
complex multi-stable systems. J R Soc Interface 2012, 9:3539–3553.

40. Furusawa C, Kaneko K: A dynamical-systems view of stem cell biology.
Science 2012, 338:215–217.

41. Delbrück M: Discussion. In Unités biologiques douées de continuité
génétique. Paris: Editions du Centre National de la Recherche Scientifique;
1949.

42. Jacob F, Monod J: Genetic regulatory mechanisms in the synthesis of
proteins. J Mol Biol 1961, 3:318–356.

43. Kauffmann S: Homeostasis and differentiation in random genetic
control networks. Nature 1969, 224:177–178.

44. Kauffmann S: The Origins of Order: Self-Organization and Selection in
Evolution. Oxford: Oxford University Press; 1993.

45. Huang S, Eichler G, Bar-Yam Y, Ingber D: Cell fates as high-dimensional
attractor states of a complex gene regulatory network. Phys Rev Lett
2005, 94:128701–128705.

46. Chang H, Hember M, Barahona M, Ingber D, Huang S:
Transcriptome-wide noise controls lineage choice in mammalian
progenitor cells. Nature 2008, 453:544–547.

47. Huang S, Guo Y, May G, Enver T: Bifurcation dynamics in
lineage-commitment in bipotent progenitor cells. Dev Biol 2007,
305:695–713.

48. Kim K, Wang J: Potential energy landscape and robustness of a gene
regulatory network: toggle switch. PLoS Comput Biol 2007, 3:e60.

49. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller M, Loeffler M: Dynamic
modeling of imatinib-treated chronic myeloid leukemia: functional
insights and clinical implications. Nat Med 2006, 12:1181–1184.

50. Guantes R, Poyatos J:Multistable decision switches for flexible control
of epigenetic differentiation. PLoS Comput Biol 2008, 4:e1000235.

51. Andrecut M, Halley J, Winkler D, Huang S: A general model for binary
cell fate decision gene circuits with degeneracy: indeterminacy and
switch behavior in the absence of cooperativity. PLoS One 2011,
6:e19358.

52. Goldberg A, Allis C, Bernstein E: Epigenetics: a landscape takes shape.
Cell 2007, 128:635–638.

53. Hemberger M, Dean W, Reik W: Epigenetics dynamics of stem cells
and cell lineage commitment: diggingWaddington’s canal. Nat Rev
Mol Cell Biol 2009, 10:526–537.

54. Furusawa C, Kaneko K: Chaotic expression dynamics implies
pluripotency: when theory and experiment meet. Biol Direct 2009,
4:11.

55. Wang J, Xu L, Wang E: Potential landscape and flux framework of
nonequilibrium networks: Robustness, dissipation, and coherence
of biochemical oscillations. PNAS 2008, 105:12271–12276.

56. Choi M, Shi J, Jung SH, Chen X, Cho KH: Attractor landscape analysis
reveals feedback loops in the p53 network that control the cellular
response to DNA damage. Sci Signal 2012, 5:ra83.

57. Qiu X, Ding S, Shi T: From understanding the development
landscape of the canonical fate-switch pair to constructing a
dynamic landscape for two-step neural differentiation. PloS One
2012, 7:e49271.

58. Li C, Wang J: Quantifying cell fate decisions for differentiation and
reprogramming of a human stem cell network: landscape and
biological paths. PLoS Comput Biol 2013, 9:e1003165.

59. Wagner A: Does evolutionary plasticity evolve? Evolution 1996,
50:1008–1023.

60. Siegal M, Bergman A:Waddington’s canalization revisited:
developmental stability and evolution. Proc Nat Acad Sci 2002,
99:10528–10532.

61. Wagner A: Robustness and Evolvability in Living Systems. Princeton. NJ:
Princeton University Press; 2005.

62. Wagner A: The Origins of Evolutionary Innovations: A Theory of
Transformative Change in Living Systems. Oxford: Oxford University Press;
2011.

63. von Dassow G, Meir E, Munro E, Odell G: The segment polarity network
is a robust developmental module. Nature 2000, 406:188–192.

64. Albert R, Othmer HG: The topology of the regulatory interactions
predicts the expression pattern of the segment polarity genes in
Drosophila melanogaster. J Theor Biol 2003, 223:1–18.

65. Ingolia N: Topology and robustness in the Drosophila segment
polarity network. PLoS Biol 2004, 2:e123.

66. Fusco G: Howmany processes are responsible for phenotypic
evolution? Evol Dev 2001, 3:279–286.

67. Dessaud E, Yang L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, NovitchG B,
Briscoe J: Interpretation of the sonic hedgehogmorphogen gradient
by a temporal adaptation mechanism. Nature 2007, 450:717–720.

68. Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N, Page K, Briscoe J,
Ribes V: Gene regulatory logic for reading the Sonic Hedgehog
signaling gradient in the vertebrate neural tube. Cell 2012,
148:273–284.

69. Cooke J, Zeeman E: A clock and wavefront model for control of the
number of repeated structures during animal morphogenesis.
J Theor Biol 1976, 58:455–476.

70. Cooke J: A gene that resuscitates a theory–somitogenesis and a
molecular oscillator. Trends Genet 1998, 14:85–88.

71. Pourquié O: The segmentation clock: converting embryonic time
into spatial pattern. Science 2003, 301:328–330.



Verd et al. BMC Systems Biology 2014, 8:43 Page 19 of 19
http://www.biomedcentral.com/1752-0509/8/43

72. Chipman A, Akam M: The segmentation cascade in the centipede
Strigamia maritima: involvement of the Notch pathway and
pair-rule gene homologues. Dev Biol 2008, 319:160–169.

73. Pueyo J, Lanfear R, Couso J: Ancestral Notch-mediated segmentation
revealed in the cockroach Periplaneta americana. Proc Nat Acad Sci
2008, 105:16614–16619.

74. Sarrazin A, Peel A, Averof M: A segmentation clock with two-segment
periodicity in insects. Science 2012, 336:338–341.

75. Oates AO, Morelli L, Ares S: Patterning embryos with oscillations:
structure, function and dynamics of the vertebrate segmentation
clock. Development 2012, 139:625–639.

76. Hastings A: Transient dynamics and persistence of ecological
systems. Ecol Lett 2001, 4:215–220.

77. Hastings A, Higgins K: Persistence of transients in spatially structured
ecological models. Science 1994, 263:1133–1136.

78. Veraart A, Fassen E, Dakos V, van Nes E, Lürling M, Scheffer M: Recovery
rates reflect distance to a tipping point in a living system. Nature
2012, 481:357–359.

79. Hirota M, Holmgren M, van Nes E, Scheffer M: Global resilience of
tropical forest and savanna to critical transitions. Science 2011,
334:232–235.

80. Barnosky A, Hadly E, Bascompte J, Berlow E, Brown J, Fortelius M, Getz W,
Harte J, a Hastings, Marquet P, Martinez N, Mooers A, Roopnarine P,
Vermeij G, Williams J, Gillespie R, abd C Marshall JK, Matzke N, Mindell D,
Revilla E, Smith A: Approaching a state shift in the Earth’s biosphere.
Nature 2012, 486:52–58.

81. Kloeden P: Nonautonomous Dynamical Systems. Providence. RI: American
Mathematical Society; 2011.

82. Rasmussen M: Attractivity and Bifurcation for Nonautonomouos Dynamical
Systems. Heidelberg: Springer; 2007.

83. Gilbert S: Epel D: Ecological Developmental Biology: Integrating Epigenetics,
Medicine, and Evolution. Sunderland: MA: Sinauer Associates; 2009.

84. Gilbert S: Developmental Biology. Sunderland. Sinauer Associates: MA; 2013.
85. Kashtan N, Alon U: Spontaneous evolution of modularity and

network motifs. Proc Nat Acad Sci 2005, 102:13773–13778.
86. Kashtan N, Noor E, Alon U: Varying environments can speed up

evolution. Proc Nat Acad Sci 2007, 104:13711–13716.
87. Crombach A, Hogeweg P: Evolution of evolvability in gene regulatory

networks. PLoS Comput Biol 2008, 4:e1000112.
88. Crombach A, Hogeweg P: Evolution of resource cycling in ecosystems

and individuals. BMC Evol Biol 2009, 9:122.
89. Manu, Surkova A, Spirov A, Gursky V, Janssens H, Kim A, Radulascu O,

Vanario-Alonso C, Sharp D, Samsonova M, ReinitzJ J: Canalization of
gene expression in the drosophila blastoderm by gap gene cross
regulation. Plos Biol 2009, 7:e1000049.

90. Corson F, Siggia E: Geometry, epistasis, and developmental
patterning. PNAS 2012, 109:5568–5575.

91. Scheffer M, Carpenter S, Lenton T, Bascompte J, Brock W, Dakos V, van de
Koppel J, van de leemput I, Levin S, van Nes E, Pascual M, Vandermeer J:
Anticipating critical transitions. Science 2012, 338:344–348.

92. Scheffer M: Critical Transitions in Nature and Society. Princeton. NJ:
Princeton University Press; 2009.

93. Wang R, Dearing J, Langdon P, Zhang E, Yang X, Dakos V, Scheffer M:
Flickering gives early warning signals of a critical transition to a
eutrophic lake state. Nature 2012, 492:419–422.

94. Alon U: Network motifs: theory and experimental approaches.
Nat Rev Genet 2007, 8:450–461.

95. Cotterell J, Sharpe J: An atlas of gene regulatory networks reveals
multiple three-gene mechanisms for interpreting morphogen
gradients.Mol Syst Biol 2010, 6:425.

doi:10.1186/1752-0509-8-43
Cite this article as: Verd et al.: Classification of transient behaviours in a
time-dependent toggle switch model. BMC Systems Biology 2014 8:43.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Dynamical systems
	Potential landscapes
	The importance of transient dynamics
	Non-autonomy: explicit time dependence

	Model and methods
	Definition of the potential landscape
	Calculating quasi-potential landscapes
	Approximating non-autonomous trajectories

	Results
	Transitions
	Pursuit
	Capture

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Competing interests
	Authors' contributions
	Acknowledgements
	References

