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Abstract

Background: Genome-wide time-series data provide a rich set of information for discovering gene regulatory
relationships. As genome-wide data for mammalian systems are being generated, it is critical to develop network
inference methods that can handle tens of thousands of genes efficiently, provide a systematic framework for the
integration of multiple data sources, and yield robust, accurate and compact gene-to-gene relationships.

Results: We developed and applied ScanBMA, a Bayesian inference method that incorporates external information
to improve the accuracy of the inferred network. In particular, we developed a new strategy to efficiently search the
model space, applied data transformations to reduce the effect of spurious relationships, and adopted the g-prior to
guide the search for candidate regulators. Our method is highly computationally efficient, thus addressing the
scalability issue with network inference. The method is implemented as the ScanBMA function in the networkBMA
Bioconductor software package.

Conclusions: We compared ScanBMA to other popular methods using time series yeast data as well as time-series
simulated data from the DREAM competition. We found that ScanBMA produced more compact networks with a
greater proportion of true positives than the competing methods. Specifically, ScanBMA generally produced more
favorable areas under the Receiver-Operating Characteristic and Precision-Recall curves than other regression-based
methods and mutual-information based methods. In addition, ScanBMA is competitive with other network inference

methods in terms of running time.
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Background

Identifying gene regulatory networks is an important
problem in biology. There have recently been many
advances in this area in terms of tools for collecting
and analyzing large-scale genomics data. Many of these
datasets, from microarrays and next generation sequenc-
ing, quantify the expression levels of all genes in a
given genome. Genome-wide time-series data, in prin-
ciple, allow reverse engineering of the gene regulatory
relationships by studying the temporal patterns of regu-
lators and target genes. However, this can be a difficult
problem due to the large number of genes (i.e. variables)
being measured, which typically far exceeds the number
of observations. Also, the number of actual regulators for
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a particular gene is only a small fraction of the number of
possible regulators.

A popular method for inferring gene regulatory net-
works from time series data uses Dynamic Bayesian Net-
works (DBN) [1-5]. DBN methods estimate a probabilistic
graphical model, given the time-series data. DBN meth-
ods work well, but the network size that they can handle
in practice is limited because of their computational cost.

Ordinary differential equations (ODE) are alternative
methods for constructing networks [6,7]. These methods
are deterministic rather than statistical, although ODE
methods can be combined with statistical methods. DBN
on local networks within a larger ODE model inference
method have been used, for example [8].

Another class of methods is based on regression models
in which parent nodes (regulators) are inferred for each
target gene. Vector autoregressive models have been pro-
posed for inferring causal links between genes. Often this
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takes the form of a model selection problem, and meth-
ods such as the Least Absolute Shrinkage and Selection
Operator (LASSO) [9,10], elastic net [11,12], and Bayesian
model averaging (BMA) [13,14] have been used [15-19].
Morrissey, et al. [20] implemented a Markov Chain Monte
Carlo (MCMC) sampler for a fully Bayesian formulation
of the autoregressive model.

Mutual information methods have been used exten-
sively on genetics data [21-24], but usually for steady-state
rather than time-series data. These methods are typi-
cally non-directional. Recently, mutual information meth-
ods have been extended to analyze time-series data and
produce directed networks [25,26]. Mutual information
methods have the advantage of being able to identify
nonlinear relationships.

Our contributions

We present a new approach using Bayesian Model Aver-
aging (BMA) for variable selection from time-series gene
expression data. Our new method offers the following
advances over our previous work [18,19]:

e We develop a new algorithm called ScanBMA that
searches the model space more efficiently and
thoroughly than previous algorithms. It is much
faster than previous implementations of BMA for a
large number of predictors, resulting in running time
comparable to that of LASSO. It allows inference for
networks of thousands of genes to be completed in
minutes on a standard laptop computer.

e We transform the time-series data to reduce spurious
correlations. Specifically, we remove the effect of a
gene on itself by subtracting the mean expression
level for each gene at each time point and then using
the residuals from a regression of its expression at the
current time point on its expression at the previous
time point.

e We use Zellner’s g-prior [27] for the regression
parameters and show that using the g-prior to
compute posterior probabilities out-performs our
previous effort using the Bayesian Information
Criterion (BIC).

e We address the scalability of network inference
methods. Our new implementation produces running
times of minutes compared to hours or even days for
some competing methods, thus offering substantial
improvements.

We also carried out extensive empirical studies of our
new method. Specifically, we compared our new method,
ScanBMA, to other network construction methods in the
literature, namely LASSO, the mutual information meth-
ods MRNET (Maximum Relevance/Minimum Redun-
dancy) [24], CLR (Context Likelihood or Relatedness)
[23] and ARACNE (Algorithm for the Reconstruction
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of Accurate Cellular Networks) [22], and also Dynamic
Bayesian Networks (DBN) when the latter were computa-
tionally feasible.

We benchmarked the performance of our approach,
ScanBMA, using two datasets. The first dataset measures
the gene expression levels over time of 97 yeast segregants
perturbed with the drug rapamycin. The second dataset
consists of simulated time-series data from the DREAM4
(Dialogue for Reverse Engineering Assessment and Meth-
ods) challenge. For the yeast dataset, we found that our
method outperformed competitors and previous analyses
in recovering regulatory relationships previously reported
in the literature. For the DREAM4 data, for which no prior
information was available, our method performed com-
parably to other methods, while producing more com-
pact networks. Finally, the ScanBMA algorithm presents
a substantial improvement in running time over previous
implementations of BMA. The method is implemented as
the ScanBMA function in the networkBMA Bioconductor
software package.

Results and discussion

Method outline

In ScanBMA, network inference is formulated as a series
of variable selection problems in which parent nodes
(regulators) are inferred for each target gene. The BMA
framework accounts for model uncertainty in variable
selection by averaging over the posterior distributions
from multiple models, weighted by their posterior model
probabilities [13,14]. A challenge of BMA is to efficiently
select a set of models to be averaged over. ScanBMA uses
a greedy approach to explore the model space and uses
the Occam’s window principle [28] to eliminate unlikely
models.

We previously developed a supervised framework to
integrate external data sources, including co-expression,
genome-wide binding, sequence polymorphism, physical
interaction, genetic interaction, and literature curation
data [18]. Using a training set consisting of approximately
500 known regulatory relationships in the literature, we
computed prior probabilities of regulatory relationships
across all candidate genes and regulators. These prior
probabilities were then used to compute the posterior
probabilities of of candidate regression models. We used
Zellner’s g-prior [27] to specify the prior for the model
parameters in ScanBMA. We developed an expectation-
maximization (EM) algorithm to estimate the prior vari-
ance parameter g.

Before the regression step, we apply a univariate
measure (such as R-squared or BIC) to rank candi-
date regulators for each target gene using these prior
probabilities of regulatory relationships. The parameter
nvar controls the number of top regulators used in the
regression step of each target gene. We have performed
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empirical studies to study the effect of and estimate the
optimal nvar.

Assessment

A number of metrics have been used to evaluate the
quality of inferred networks. We focus on a few that com-
pare the inferred network with a gold-standard network
of true edges. One measure that we use is the preci-
sion of the inferred network, equal to the number of true
positives divided by the total number of edges in the
inferred network. Precision is important to researchers
because an experiment to verify relationships identified
in exploratory work can be expensive. Thus, the more
confident we can be when identifying relationships, the
better. In light of this, we also look at the area under the
precision-recall curve (AUPRC). This gives a more com-
prehensive view of network quality and does not require
that a threshold be chosen for the posterior probability
of an edge or for the number of edges included. We also
look at the area under the ROC curve (AUROC), which is
widely used to assess the quality of networks.

Due to incomplete knowledge in real data, we use a par-
tial assessment based on the YEASTRACT database [29].
This is a literature-curated repository of regulatory rela-
tionships between known transcription factors and target
genes in yeast, based on more than 1,300 literature refer-
ences. Due to incomplete knowledge in yeast biology, the
lack of an edge in YEASTRACT is not hard evidence of
the absence of a relationship between two genes, although
it is used as such in our evaluation. In contrast, the true
underlying networks from the simulated DREAM4 data
are known, so that an absence of a true edge is a false
negative and a presence of a non-existing edge is a false
positive.

Results: yeast time series data

Table 1 summarizes the assessment results for different
methods applied to the yeast dataset. Our new ScanBMA
method with nvar = 20 had a precision of 0.39, much

Table 1 Performance of different methods on the yeast data

Method Precision AUROC
LASSO 0.046 0.506
ARACNE 0.205 0.502
CLR 0.039 0510
MRNET 0.039 0513
ScanBMAR0 0.391 0.601
ScanBMAL>0] 0274 0.629
iBMALT00) 0.180 0517
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higher than any other method, including our previous
method, iBMA [19]. The area under the ROC curve
(AUROC) for ScanBMA was also much better than for
the competing methods. Note that for random guessing,
the expected AUROC is 0.5 and the expected AUPRC is
0.038. For these data, the mutual information methods
CLR and MRNET produced very large networks — nearly
half of the number of possible edges, which is not concor-
dant with what is known about regulatory networks of this
type.

Table 2 compares the preferred version of ScanBMA
with four other versions, each of which lacks one of the
components of our final method. This table shows that
each component contributes to the accuracy of our final
network. As shown by [19], the incorporation of the infor-
mative prior yields the largest increase in performance,
but the other components also contribute. The use of
the g-prior reduces the number of false positives, while
the data transformation substantially reduces the size
of the inferred network.

The precision-recall curves for the different methods on
the yeast data are shown in Figure 1. This figure shows
the quality of the ScanBMA network even beyond the 95%
posterior inclusion probability cutoff. The precision stays
high through a large range of recall, whereas for the other
methods it quickly drops to the level of random guessing.
The figure also shows that nvar = 20 performs better than
nvar = 3556.

When analyzing gene networks where the number of
nodes is in the thousands, computation time can be an
important consideration. We compared ScanBMA with
the other methods on the yeast data by running each
method on 20 target genes under controlled conditions to
find the average cpu time per gene.

Table 3 shows that ScanBMA with nvar = 3556,
i.e. considering all other genes whose expression varied as
potential regulators, is within a factor of 3 of LASSO, the
fastest of the other methods. Some of the mutual informa-
tion methods, on the other hand, are much slower, with

AUPRC TP FP
0.0416 996 20,469
0.0399 69 268
0.0435 8,879 220,942
0.0442 8,737 214,757
0.0747 227 353
0.0740 127 336

0.0788 593 2,702

AUROC is the area under the ROC curve, AUPRC is the area under the precision-recall curve, and TP and FP are the numbers of true positive and false positive edges
inferred, respectively. Thus TP+FP is the number of edges in the inferred network and Precision = TP/(TP+FP). ScanBMA was applied to the transformed data using
the informative edge prior and Zellner's g-prior for the model parameters. The superscript indicates the value of nvar. Expected precision and AUPRC from random

guessing is 0.0380.
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Table 2 Performance of different versions of ScanBMA on the yeast data, either on the original scale (Orig) or

transformed (Trans)

Data nvar Priors Precision
Trans 20 g, inform 0.391
Trans 3556 g, inform 0.274
Trans 20 BIC, inform 0.244
Orig 20 g, inform 0.274
Trans 20 g, Guelzim 0.175
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AUROC AUPRC TP FP
0.601 0.0747 227 353
0.629 0.0740 127 336
0.590 0.0616 200 619
0.586 0.0680 552 1460
0.499 0.0395 34 160

For the priors, inform refers to the informative prior, while Guelzim refers to the prior probability of 2.76/6000 for all possible relationships.

MRNET taking about 50 times longer than ScanBMA.
Table 3 also shows that ScanBMA produces a substantial
improvement in computational efficiency over our pre-
vious method iBMA [19], especially when nvar is large.
Dynamic Bayesian network methods were not included in
the comparison because they analyze the entire network
at once and do not scale well enough to be run feasibly on
large network datasets such as the yeast data.

Results: simulated DREAM4 data
Table 4 summarizes the results of the competing meth-
ods for the DREAM4 10-gene networks. For the DREAM4
networks, we were able to add the Dynamic Bayesian
Networks method, as implemented in the ebdbnet R
package [30], to the comparison because the networks are
small. ScanBMA again performed best among the meth-
ods, particularly in terms of the areas under the ROC and
precision-recall curves, even though no external infor-
mation was available. However, the extent of ScanBMA's
superiority to other methods, notably LASSO, was smaller
in this case than for the yeast data, reflecting the lack of
external information.

The precision-recall curves from the various methods
are shown for the first of the five 10-gene networks in

Figure 2. Figure 3 shows the actual networks returned by
each method in comparison with the true network. The
ScanBMA network resembles the true network fairly well.
In particular, the compactness of the ScanBMA network
is apparent, particularly when compared with LASSO and
MRNET. The small number of false positives may be use-
ful in focusing the attention of the biologist on edges of
high interest when searching for new regulatory relation-
ships.

The results of the methods for the DREAM4 100-gene
networks are summarized in Table 5. For these networks,
the mutual information methods MRNET and CLR per-
formed best in terms of the area under curve measures.
ScanBMA was not quite as good by these measures, but
its precision was much higher than that of any other
method. Figure 4 illustrates the precision-recall curves for
the various methods, showing increased precision across
a broader range for ScanBMA.

Conclusions

We have presented a Bayesian Model Averaging method
for inferring gene regulatory networks from time series
data. It incorporates external information in a principled
way via the prior edge probabilities, transforms the data
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Figure 1 Yeast precision-recall curves. Precision-Recall curves for different methods on the yeast data. ScanBMA was run using the g-prior,
transformed data, and informative prior with nvar=20 and 3556.
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Table 3 Average CPU time per target gene of different
methods for the yeast data

Method Running Time Per Gene (s)
LASSO 4.1
ARACNE 704
CLR 79
MRNET >500
ScanBMARY! 0.04
ScanBMAB>%¢] 1.2
iBMALRD! 0.08
IBMA3556] 85

ScanBMA was run with g-prior, transformed data, informative prior. Superscript
indicates value of nvar.

to reduce spurious correlations, and uses Zellner’s g-prior
for model parameters, with g estimated from the data. We
have introduced a new algorithm, ScanBMA, to search the
model space efficiently. Our method infers compact net-
works with higher precision than the competing methods
we have assessed, important features for further analysis
in searching for new regulatory relationships.

We found that our method outperformed previous
methods as well as LASSO and mutual information meth-
ods on yeast time-series data. In addition, our method
performed comparably to competing methods, including
Dynamic Bayesian Networks, on simulated data from the
DREAM4 challenge, even in the absence of prior informa-
tion. The networks from ScanBMA are also similar in size
to the target networks.

Methods

Bayesian model averaging

In regression-based methods for network inference, we
infer regulators (parent nodes) for each target gene.
Hence, network inference can be formulated as a series
of variable selection problems. We use the following mul-
tiple linear regression model for network inference from
time-series data:

Table 4 Average performance of different methods on the
DREAM4 10-gene networks

Method Precision AUROC AUPRC TP FP
LASSO 0.190 0.731 0.487 62 265
ebdbnet 0.509 0.704 0.438 28 27
ARACNE 0.304 0.668 0.388 35 80
CLR 0.215 0.681 0397 50 183
MRNET 0.215 0.709 0.409 53 193
ScanBMA 0432 0.740 0.505 35 46

ScanBMA was run with the original data. The true positive (TP) and false positive
(FP) columns are totaled across all 5 networks. There are 71 true edges across the
5 networks.
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Xits = Poi+ D BuiXni—1s + Eips
heH

where X is the expression level for gene i at time ¢ for
strain or replicate s, H is the set of potential regulators,

and & iid N(O, (752) is the error term, fori =1,...,n,t =
2,...,Tands =1,...,S. Weare particularly interested in
whether B; # 0, indicating a regulatory relationship from
gene /i to gene i.

One difficulty is that for gene network time series data
there are typically far more potential regulators than
observations. To address this problem, as well as to take
into account uncertainty in model selection, we use BMA
to obtain the posterior probability that each regulator is
in the model [13,14]. BMA takes model uncertainty into
account by averaging over the posterior distributions of a
quantity of interest based on multiple models, weighted
by their posterior model probabilities. Thus the posterior
probability that 8;; # 0, also called the posterior inclusion
probability of 8y, is

K

Pr(Bu; # 0ID) = Z 1(Bpni # O|D, Mj)Pr(My|D),
k=1

where Pr(My|D) o [ p(D|6k, Mi)p(6x| M) dby is the pos-
terior probability of model My given data D, p(D|6k, My)
is the likelihood of the parameter vector 6; of model
My, the prior probability of model My is Pr(My) o
HheMk Thi ]_[thk (1—my;), 7wp; is the prior probability that
gene K regulates gene i, and the models considered are
denoted by M, ..., Mg.

An additional issue is that the number of possible mod-
els is too large to enumerate in a reasonable amount of
time. MCMC approaches have been applied where the
number of potential regulators is large [31], but they are
expensive computationally. Iterative BMA has also been
applied to large genetics datasets, but the number of
regulators was restricted prior to analysis [18,32].

Data transformations

One concern when identifying regulatory relationships
among genes is that there is a great deal of variation in
gene expression levels that does not come from these
interactions. For example, in the yeast data, many of the
genes experience a sharp change in expression level over
the first few time points caused by the application of
the drug. This common trajectory is not important for
inference and can produce many large correlations that
do not correspond to actual interactions. In addition, we
have found that removing the effect of a gene on itself
can improve inference. By doing this we are removing
excess variation in order to gain accuracy in inferring
relationships.
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Figure 2 10-gene Precision-Recall curves. Precision-Recall curves for various methods on network 1 of the 10-gene networks from the DREAM4

competition. This network has 15 true edges.
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Figure 3 DREAM4 10-gene network visual comparison.

In light of these observations, we transform the data
in two steps to remove these extra sources of variation.
First, we use time-adjusted data by subtracting the mean
expression level for each gene i at timepoint ¢ across
strains:

Xirs = Xigs — Xig,.»
where X;;. = S™! Zle Xits. This removes the overall
effect of the drug.

Second, we take the residuals from regressing the gene
on itself at the previous timepoint:

X*

its = Xits — @iXit—15

where «; is the regression coefficient in the simple linear
regression model of the expression level of gene i at time ¢
on its expression level at time ¢ — 1:

Xigs = otiXip 15 + Sitss

Table 5 Average performance of different methods on the
DREAM4 100-gene networks

Method Precision AUROC AUPRC TP FP
LASSO 0.035 0.643 0.073 571 15757
ebdbnet 0.054 0.643 0.043 182 3201
ARACNE 0.114 0.589 0.106 208 1621
CLR 0.035 0.699 0.123 678 18669
MRNET 0.035 0.701 0.130 689 18784
ScanBMA 0.153 0.657 0.101 193 1062

ScanBMA run with original data. The true positive (TP) and false positive (FP)
columns are totaled across all 5 networks. There are 1,024 true edges across the
5 networks




Young et al. BMC Systems Biology 2014, 8:47
http://www.biomedcentral.com/1752-0509/8/47

Page 7 of 11

1.0

08

06

Precision

04

0.2

—— aracne

clr

mrnet

lasso

ebdbnet
ScanBMA
Random Guessing

I

0.0

0.0 0.1 02

DREAM4 competition.

03 04 05

Recall

Figure 4 100-gene Precision-Recall curves. Precision-Recall curves for various methods on network 1 of the 100-gene networks from the

iid ~A L .
where §;¢ ~N (0, criz). Then @; is the least squares esti-
mate of o; based on all S(T — 1) relevant observations for
gene i.

Specifying prior distributions

An important feature of our method is a way to incorpo-
rate external information. The Bayesian approach requires
the specification of prior distributions and so includes this
directly.

BMA requires two types of prior information: the prior
edge probability, 7j;, that potential regulator / regulates
target gene i, for each / and i, and the prior distribution of
the parameter vector for each model considered.

For the prior edge probabilities j;, we considered two
different prior distributions. The first is based on the
empirical finding of Guelzim et al. [33] that each tar-
get gene is regulated by a small number of transcription
factors, estimated as 2.76 per gene [19]. We implement
this by setting m;; = 2.76/6000 for all /# and i. This
prior distribution does not incorporate any gene-specific
information. We call it the Guelzim prior.

The second prior edge distribution we consider is that
of Lo et al. [19], which uses external information in
the form of expression data, binding-site data, curated
literature and other sources to come up with a prior
probability for each individual possible regulatory rela-
tionship. This leads to values of mj; specific to each
regulator-target pair. We refer to this as the informa-
tive prior. Integration of multiple information sources
has been shown to be beneficial in network construction
(34,35].

As a prior for the model parameters, corresponding to
the strengths of the relationships, we use Zellner’s g-prior

[27], as in [36]. The prior distribution of the parameter
vector (,Bgfi], B 5 2k]y of model My is

B oMM, My, g ~ N0, g M (X X)),
k
pBY, oMMy o 1/02H,

where Xj is the design matrix for model My and g > 0
controls the prior variance of the regression parameters.
This prior yields an analytic form for the posterior model
probabilities Pr(M|D), namely

2log (p(M|D)/p(Mo|D))
= (n—1)log(1 +g(1 — R})) — (n —dr — 1) log(1 +g)

TThi
-2 I s
Z og(l—ﬂhi)

he My

where M is the null model with no regulators, dy is the
number of regulators present in model My, and R is
the R? value for M. This is an alternative to using BIC
to approximate the posterior model probabilities, as has
been done previously [32,37].

The parameter g controls the expected size of the
regression parameters fj;, and is approximately equal to
the prior variance of ﬁhi/SE(ﬁhi), where f),; is the OLS
estimator. This suggests that g should be at least 1, oth-
erwise the individual By;’s would be expected to be nearly
indistinguishable from the noise even under ideal con-
ditions. Also, the effective number of data points in the
prior is n/g. Using ¢ = n corresponds to a unit infor-
mation prior and yields similar results to using the BIC
approximation. Raftery [38] argued that the prior should
be no more spread out than the unit information prior,
suggesting a choice of g in therange 1 < g < n.
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We estimate g from the data by maximum marginal like-
lihood, where the likelihood is summed over the model
space. We do this using an EM algorithm [39,40], where
the “missing data” are the y},’s indicating whether regula-
tor gene 4 is in the model for target gene i. First, we run
BMA with a selected value of g, and from this we obtain
the posterior probabilities of the models used. We then
maximize

K
> Pr(My|D) ((n — di — 1) log(1 + g)
k=1

—(n—1)log[1+g(1 +R,2<)])

with respect to g. We use the new value of g in the next
iteration of ScanBMA. We do this until convergence.

Searching the model space using ScanBMA

To find the models to be included in the BMA summa-
tion, we use the Occam’s window principle, according to
which models that are substantially worse than the best
model found (by a factor of C in posterior probability) are
discarded [28]. We used C = 100, based on an extensive
review of conventional standards of scientific evidence. To
find the models in Occam’s window, we propose a new,
fast algorithm called ScanBMA.

The main idea of ScanBMA is to keep an active set of
models around which to search. All models which can be
created by adding or removing a single predictor from
those in the active set are then evaluated and, if they fall
within Occam’s window of the current best model, are
added to the active set to expand the search. The method
is outlined in Algorithm 1.

Algorithm 1: ScanBMA

Initialize Meep, Mpext = {}

Initialize M ctive = {null model}, bestScore = 0

while M tive not empty do

for model my,ey in NeighborsOf(M ;¢tive) do

mScore = EvaluateModelScore(#1,,0,y)

if mScore in OccamsWindow(bestScore) then
add myen to Mens
bestScore = BestModelScore(bestScore,
mScore)

end

end

Trim models from M, according to bestScore
Add good models from M ctive to Mieep

M active = good models from M ,exs

end

return M ee,
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Because ScanBMA does not average over every model in
the model space, the algorithm yields posterior inclusion
probabilities of either 100% or 0% for many regulators.
These extreme posterior inclusion probabilities are only
approximations, and we can refine them. To estimate the
posterior inclusion probability of a predictor Xj with an
approximate posterior probability of 100%, we calculate
the ratio O_j,; of the posterior probability of the best
model to that of the best model with the predictor Xj,
removed. We then approximate the posterior probability
of predictor 4 by O_y,;/(1+ O_p,;), which will be less than
100%.

Similarly, to estimate the posterior inclusion probability
of a predictor X}, with approximate posterior probability
0%, we compute Oy, ;, the ratio of the posterior probability
of the best model to that of the best model with the predic-
tor Xj added. Then the approximate posterior inclusion
probability of predictor / is (1 + Oy;)~!, which will be
greater than 0%.

This post-processing step yields a unique ordering
among the predictors, which is useful in evaluation.

A variant of ScanBMA that we found to greatly improve
computational efficiency without degrading performance
is to restrict the number, nvar, of potential regulators 4
considered for each target gene i to those with the high-
est prior probabilities, 77j;. Guelzim et al. [33] found that
the number of transcription factors per gene has approx-
imately an exponential distribution with mean 2.76; they
did not find any of the target genes that they considered
to have more than 13 regulators. As a result, we con-
sider nvar = 20, which leaves some margin over the
Guelzim maximum. We compare this with considering all
genes with observed variation in expression as potential
regulators, which amounts to setting nvar = 3556.

Data

To validate our method, we applied it to time-series data
from a gene expression experiment on yeast as well as
simulated time-series datasets from the DREAM4 compe-
tition.

The yeast data come from an experiment on 97 strains of
yeast crossed from two parent strains [18]. Each strain was
subjected to a treatment of the macrolide drug rapamycin,
chosen to cause changes in gene transcription across
the genome. Gene expression levels were measured for
approximately 6,000 genes every 10 minutes from 0 to
50 minutes after the administration of the drug, using
Affymetrix microarrays. The data were then filtered to
remove genes that did not show significant variation over
the measurements, leaving 3,556 genes.

The yeast data can be represented as a three-
dimensional array consisting of 3,556 genes, 97 segregants
and 6 time points. There are no replicates in these data.
However, the segregant axis and the time axis capture the
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genetic and temporal variations. These yeast data are pub-
licly available from ArrayExpress with accession number
E-MTAB-412.

The simulated DREAM4 In Silico Network Challenge
[41-43] provided 5 networks each of size 10 and 100 genes
[44]. Time-series data for each network are produced by
artificially perturbing a portion of the genes in the net-
work and simulating the response of the network over
time.

Specifically, the size 10 DREAM data consist of 10
genes, 21 time points and 5 replicates. The size 100
DREAM data consist of 100 genes, 21 time points, and 10
replicates.

Since our focus is on time-series data, we did not use
the other data sources provided by the DREAM4 chal-
lenge. In particular, the DREAM4 challenge provided the
results of simulated gene knock-out experiments for all
genes, and in fact the winning entry in the competition
used only the knock-out data and ignored the time series
data [45]. In practice, however, this is unrealistic, since it
is typically feasible to do knock-out experiments for only a
small proportion of the genes. Time series data do have the
potential to provide some information about all potential
regulatory relationships, and our goal is to develop meth-
ods for doing this, so we have ignored the knock-out data
here.

Competing methods

To evaluate the performance of our method, we compared
it with LASSO [9], as well as with the mutual information
methods MRNET, CLR and ARACNE. LASSO is a vari-
able selection method based on a linear regression model,
and thus can be used as an alternative to BMA. It is known
for being computationally efficient.

We used the implementation of LASSO in the glmnet
package in R [12], with the shrinkage penalty parameter,
sometimes denoted by A, chosen by cross-validation.

Mutual information methods have been used exten-
sively in identifying relationships among genes [21-23].
Since mutual information methods are non-directional,
we used a modified version inspired by [46], including
the response as the first column of the matrix given to
the mutual information method, and the predictors as the
other columns. We then took the first column from the
resulting mutual information matrix as the measure of
the directed relationship from the predictors to the target
gene. MRNET, CLR and ARACNE are different methods
for using the mutual information to infer a weighted adja-
cency matrix between genes. All are implemented in the
minet package in R [47].

We have also investigated the possibility of using
Dynamic Bayesian Networks (DBN). Methods based on
DBNs have been implemented in several R packages.
These include the GeneNet package [48], but this is not
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designed for multiple time-series and so was not a compa-
rable method on our datasets. The ebdbnet (Empirical
Bayes Estimation of Dynamic Bayesian Networks) R pack-
age [30], and the G1DBN R package [49], do allow for
multiple time-series, but they are not designed to han-
dle networks of the size of the yeast data. They are more
appropriate for networks of sizes up to a few hundred
genes. We were able to use the ebdbnet package for the
much smaller DREAM4 networks.

YEASTRACT: Assessment of yeast data

The YEASTRACT database [29] is a literature-curated
repository of regulatory relationships between known
transcription factors and target genes in yeast, based on
more than 1,300 literature references. Among the 3,556
genes in our filtered yeast time-series data, this database
contains documented regulatory relationships for 127
transcription factors (TFs), encompassing a total of 17,173
edges. We therefore evaluate only inferred relationships
from these 127 transcription factors, and inferred reg-
ulatory relationships from other genes are not used in
evaluation.

Availability of supporting data
The yeast time series data are publicly available from
ArrayExpress http://www.ebi.ac.uk/arrayexpress [50] with
accession number E-MTAB-412. The DREAM4 data
are publicly available from http://wiki.c2b2.columbia.edu/
dream/index.php?title=D4c2 [44].
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