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Abstract

Background: In this paper we propose a model reduction method for biochemical reaction networks governed by a
variety of reversible and irreversible enzyme kinetic rate laws, including reversible Michaelis-Menten and Hill kinetics.
The method proceeds by a stepwise reduction in the number of complexes, defined as the left and right-hand sides
of the reactions in the network. It is based on the Kron reduction of the weighted Laplacian matrix, which describes
the graph structure of the complexes and reactions in the network. It does not rely on prior knowledge of the
dynamic behaviour of the network and hence can be automated, as we demonstrate. The reduced network has fewer
complexes, reactions, variables and parameters as compared to the original network, and yet the behaviour of a
preselected set of significant metabolites in the reduced network resembles that of the original network. Moreover
the reduced network largely retains the structure and kinetics of the original model.

Results: We apply our method to a yeast glycolysis model and a rat liver fatty acid beta-oxidation model. When the
number of state variables in the yeast model is reduced from 12 to 7, the difference between metabolite
concentrations in the reduced and the full model, averaged over time and species, is only 8%. Likewise, when the
number of state variables in the rat-liver beta-oxidation model is reduced from 42 to 29, the difference between the
reduced model and the full model is 7.5%.

Conclusions: The method has improved our understanding of the dynamics of the two networks. We found that,
contrary to the general disposition, the first few metabolites which were deleted from the network during our
stepwise reduction approach, are not those with the shortest convergence times. It shows that our reduction
approach performs differently from other approaches that are based on time-scale separation. The method can be
used to facilitate fitting of the parameters or to embed a detailed model of interest in a more coarse-grained yet
realistic environment.

Keywords: Kinetic models, Enzyme kinetics, Complex graph, Weighted Laplacian, Yeast glycolysis, Rat liver beta
oxidation

Background
A kinetic model of a biochemical reaction network con-
sists of a set of ordinary differential equations describing
the dynamics of the concentrations of all metabolites in
the reaction network. Most biochemical reaction net-
works are complex and involve many enzyme-catalyzed
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processes with non-linear kinetics and intricate stoichio-
metric and regulatory interactions between the enzymes.
Consequently, the mathematical models of such networks
contain high-dimensional sets of coupled rational dif-
ferential equations, which sometimes require huge com-
putational effort to analyze. The current state-of-the-art
numerical tools for stability analysis, for bifurcation study
and for other types of dynamical analysis are known to
suffer from a so-called curse-of-dimensionality. For exam-
ple, the largest biological model that has numerically been
analyzed for bifurcation in [1] consists of 25 metabolites
and 37 parameters and the one in [2] has 22 metabolites.

© 2014 Rao et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto: s.rao@umcg.nl
http://creativecommons.org/licenses/by/2.0


Rao et al. BMC Systems Biology 2014, 8:52 Page 2 of 17
http://www.biomedcentral.com/1752-0509/8/52

Moreover since complex models of biochemical reaction
networks involve a huge number of parameters, the task of
identifying these parameters (in addition to those parame-
ters that have been identified in the literature) is enormous
and requires large datasets. The complexity of this task
is further compounded by the fact that often not all the
metabolite concentrations can be measured. Thus, there
is a need for techniques that can reduce a given kinetic
model of a biochemical reaction network to a simplified
version that mimics the behaviour of the original model
satisfactorily, but contains less differential equations and
parameters.
For biochemical reaction networks, a number of model

reduction techniques are known. See [3] for a detailed
review of some of the well known methods of model
reduction. Here we list only a few of the known
methods in the literature. The singular perturbation
method, the time-scale separation technique [4-8], the
rapid-equilibrium approximation, also known as the
quasi-equilibrium approximation (see [9]) and the quasi
steady-state approximation (QSSA) (see for e.g., [10]) are
the most commonly used techniques. The reduced state
vector obtained by any of these techniques contains a
subset of the metabolite concentrations (state vector com-
ponents) of the full model. Härdin [11] extends the QSSA
approach by considering the higher-order approximation
in the computation of the quasi steady-state. In [12], some
approaches for reduction of complexity in biochemical
reaction networks are considered for use in SYCAMORE,
which is a computational research environment in sys-
tems biology. One of the approaches considered in [12] is
the intrinsic low-dimensional manifold (ILDM) approach,
which is an improved time-scale separation technique.
More recently [13], a computational singular perturbation
(CSP) algorithm was developed to analyze the time-scales
of the NF-κB signaling network which could be used in
order to reduce its model. The application of singular per-
turbation, time-scale separation, quasi equilibrium and
quasi steady state approaches to general enzyme-kinetic
rate laws, such as Michaelis-Menten and ping-pong bi-bi
is difficult and leads to complicated rate law expressions
in the reduced models. Some of the time-scale separation
techniques are either based on a priori experimental infor-
mation or eigenvalues of the Jacobian corresponding to
the model and hence are only locally effective. Another
recent approach for model reduction uses tropical geom-
etry (see e.g., [14]), wherein the polynomial occuring in
every rate equation is replaced by a monomial which is
equal to the largest, in absolute value among the monomi-
als that constitute the polynomial.
One of the ways of reducing the complexity of a bio-

chemical model is to reduce the number of parameters
in it. This can be done by carrying out a parameter sen-
sitivity analysis (see for e.g., [15]) and eliminating those

parameters whose variations have least effect on the
dynamics of a given network. In [8], a time-scale analysis
is first done using experimental data to identify the fast
and the slowmetabolites and this information is then used
to carry out an a priori parameter sensitivity analysis to
obtain a reduced kinetic model of a biochemical reaction
network. In [16], an implicit multiparametric variabil-
ity analysis (MPVA) method is used to search the entire
parameter space in order to determine the set of param-
eters that can be eliminated. In [17], the authors go one
step further by identifying a region in the parameter space
where some of the parameters are zero-valued, others
have readjusted values and where nevertheless the outputs
of the original model match those of the reduced model
within a certain tolerance. They further show that param-
eter sensitivity analysis approach for model reductionmay
not be always successful. Another way of reducing the
complexity of a biochemical reaction network model is to
reduce the number of reactions. In [18-20], optimization
techniques are used to determine which reactions can be
eliminated from the original model without a substantial
alteration of the model behaviour.
The method proposed in [21] simplifies a given chem-

ical reaction network by linearly combining reactions in
such a way that the resulting network has lesser number
of species. However, the kinetics for the reduced set of
reactions are determined by the rate limiting steps in the
original network and this requires prior biological knowl-
edge of the network. Danø et al. [22] propose reduction by
identification and elimination of variables in such a way
that the basic dynamic properties of the original model
are preserved. In [23], model reduction is achieved by
simplifying the rate equations of individual enzymes in
the network. A limitation of this method is that it yields
a reduced model that predicts measurement data only
under specific experimental conditions.
In this paper, we describe a new model reduction

method that reduces the number of reactions, metabolites
and parameters, such that the dynamics of the metabo-
lite concentrations of the reducedmodel are close to those
of the original model. This method proceeds by a simple
stepwise reduction in the number of ‘complexes’, which
are defined as the left and right-hand sides of the reac-
tions in the network. The effect of this stepwise reduction
is monitored by an error integral, which quantifies how
much the behaviour of the reduced model deviates from
the original. The method is based on the reduction of
the underlying weighted Laplacian (see [24] for a defi-
nition) describing the graph structure of the complexes
and reactions in the chemical reaction network. A similar
technique is also employed in the Kron reduction method
for reduction of resistive electrical network models [25].
Our model reduction technique is easy to implement

and can be used to reduce reaction networks governed by



Rao et al. BMC Systems Biology 2014, 8:52 Page 3 of 17
http://www.biomedcentral.com/1752-0509/8/52

a vast majority of enzyme kinetic rate laws including Hill
kinetics and reversible Michaelis-Menten kinetics. It does
not rely on prior knowledge about the dynamic behaviour
or biological function of the network. Consequently, it can
be automated. Furthermore, the reduced model largely
retains the kinetics and structure of the original model.
This enables a direct biochemical interpretation and yields
insight into which parts of the network have the highest
influence on its behaviour. It also accelerates computa-
tions and facilitates parameter fitting, especially when we
deal with models of huge biochemical reaction networks.
We show the application of our model reduction tech-

nique to a yeast glycolysis model [26] and a model of
beta-oxidation in rat liver [27]. We have simulated the
transient behaviour of the metabolites that are not elim-
inated during the model reduction procedure. In both
the cases, a 30% reduction of the number of variables
still retained about 92.5–96.5% agreement between the
outputs of the full and the reduced networks.

Methods
Preliminaries
Notation: The space of n dimensional real vectors is
denoted by R

n, and the space of m × n real matrices
by R

m×n. The space of n dimensional real vectors con-
sisting of all strictly positive entries is denoted by R

n+.
In denotes an identity matrix of dimension n. The trans-
pose of a matrix A is denoted by AT . Define the mapping
Ln : Rm+ → R

m, x �→ Ln(x), as the mapping for which
the i-th component is given by (Ln(x))i := ln(xi). Simi-
larly, define the mapping Exp : Rm → R

m+ , x �→ Exp(x),
as the mapping for which the i-th component is given
by (Exp(x))i := exp(xi). 1m denotes a vector of dimen-
sion m with all entries equal to 1 and dim(V ) denotes the
dimension of a set V.

Chemical reaction network structure
In this section, we introduce the concept of a complex
graph which was first introduced in the work of Horn
& Jackson and Feinberg [28-30]. This concept will be
used first in deriving our general mathematical formula-
tion of the dynamics of chemical reaction networks, and
subsequently to explain our model reduction approach.
Let m, c and r denote the number of species (metabo-

lites), complexes and reactions respectively of a given
chemical reaction network. The set of complexes of a
network is simply defined as the union of all the differ-
ent left- and righthand sides (substrates and products) of
the reactions in the network. Thus, the complexes corre-
sponding to the network in Figure 1 are 2X1 + X2, X3,
X1 + 2X2 and X4.
The expression of the complexes in terms of the chemi-

cal species is formalized by anm× cmatrix Z, whose α-th
column captures the expression of the α-th complex in the

m chemical species. For example, for the network depicted
in Figure 1,

Z =

⎡
⎢⎢⎣
2 0 1 0
1 0 2 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

The matrix Z is called the complex stoichiometric matrix
of the network. Note that by definition all elements of the
matrix Z are non-negative integers.
Since complexes are the left- and righthand sides of

reactions in the network, they can be naturally associated
with the vertices of a directed graph G with edges corre-
sponding to the reactions. Formally, the reaction α −→ β

between the α-th (reactant) and the β-th (product) com-
plexes defines a directed edge with tail vertex being the
α-th complex and head vertex being the β-th complex.
The resulting graph will be called the complex graph.
Any graph is defined by its incidence matrix B [24]. This

is a c × r matrix, where c denotes the number of vertices,
r denotes the number of edges and the (α, j)-th element is
equal to −1 if vertex α is the tail vertex of edge j and 1 if
vertex α is the head vertex of edge j, while 0 otherwise.
The basic structure underlying the dynamics of the vec-

tor x ∈ R
m+ of concentrations xi, i = 1, · · · ,m, of the

species of a chemical reaction network is given by the bal-
ance laws ẋ = ZBv(x); the elements of the vector v ∈ R

r

are commonly called the (reaction) rates or fluxes.
In many cases of interest, especially in biochemical reac-

tion networks, chemical reaction networks are intrinsi-
cally open, in the sense that there is a continuous exchange
with the environment (in particular, inflow and outflow
of chemical species and connection to other reaction net-
works). In this paper, we are particularly interested in
inflows to and outflows from the complexes of the net-
work. This will be modeled by a vector vb(x) ∈ R

c

consisting of c boundary (or, exchange) fluxes, leading to
an extended model

ẋ = ZBv(x) + Zvb(x) (1)

A linkage class of a chemical reaction network is a maxi-
mal set of complexes {C1, . . . , Ck} such that Ci is connected
by reactions to Cj for every i, j ∈ {1, . . . , k}, i �= j.

General kinetics
For a biochemical reaction network, the relation between
the reaction rates and species concentrations depends
on the mechanisms of the reactions involved in the net-
work. In this section, we derive a framework for describing
the dynamics of enzymatic reaction networks using the
aforementioned notion of complex graphs in a reaction
network. This framework will be useful in describing our
model reduction method. We describe the forward and
reverse rates of an enzyme with separate equations.
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Figure 1 Example of a reaction network.

Let ZSj denote the column of the complex stoichiomet-
ric matrix Z corresponding to the substrate complex Sj
of the j-th reaction of a chemical reaction network. Then
the unidirectional, forward reaction rate of the jth reaction
of the chemical reaction network between the substrate
complex Sj and the product complex Pj is given by

vj(x) = dj(x)kj exp
(
ZT
SjLn(x)

)
, (2)

where for j = 1, . . . , r, dj : Rm+ → R+ is a rational function
of its argument and kj denotes a proportionality constant
of the jth reaction of the network. Note that if the gov-
erning law of the jth reaction is mass action kinetics, then
dj(x) = 1.
As an example, consider the reaction

X1 + X2 −→ X3 + X4 (3)

For i = 1, . . . , 4, let xi denote the concentration of the
species Xi and define x :=[ x1 x2 x3 x4]T . In this
example, the substrate complex S is X1 +X2 and the prod-
uct complex P is X3 + X4. The matrices B and Z for the
reaction (3) are given by

B =
[ −1

1

]
Z =

⎡
⎢⎢⎣
1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ .

Hence ZS is given by ZS = [1 1 0 0]T . Let K1, K2,
K3 and K4 denote the “Michaelis” constants of the species
X1, X2, X3 and X4 respectively. Let Vf denote the maxi-
mum rate of the forward reaction (3). The expression for
the rate of the reaction (3) depends on the type and mech-
anism of the reaction, for instance the type of inhibition
and other regulatorymechanisms involved in the reaction.
One possibility is

v(x) =
( Vf
K1K2

)
x1x2(

1 + x1
K1

+ x3
K3

) (
1 + x2

K2
+ x4

K4

) . (4)

By defining k := Vf
K1K2

,

d(x) := 1(
1 + x1

K1
+ x3

K3

) (
1 + x2

K2
+ x4

K4

) ,

observe that d : R4+ → R+ and equation (4) can be written
as

v(x) = d(x)kx1x2 = d(x)k exp
(
ZT
SLn(x)

)
.

In Additional file 1, we have provided a list of enzyme-
kinetic rate laws that can be written in the form (2) with d
satisfying d : Rm+ → R+. Note that the form (2) is retained
with a d satisfying d : Rm+ → R+ even if there are compet-
itive, non-competitive or uncompetitive modifiers in the
reaction network. This is because the terms containing the
concentration of the modifiers appear in the denominator
of the rate expression in such a way that the denominator
assumes positive values for positive values of concentra-
tions of the substrates. For example, if we consider the
reaction

X1 −→ X2 (5)

governed by Michaelis-Menten kinetics, with Michaelis
constant of X1 denoted by K1 and the maximum reaction
rate denoted by V, then

v(x) =
Vx1
K1

1 + x1
K1

(6)

is the expression for the rate of the reaction (5). It is easy
to see that with k := V

K1
and d(x) :=

(
1 + x1

K1

)−1
, (6) has

the same form as (2) and d : R2+ → R+. Now assume that
the reaction involves a competitive modifier I whose con-
centration is denoted by i and whose inhibition coefficient
is denoted by Ki. Then the rate of the reaction is given by

vc(x) =
Vx1
K1

1 + x1
K1

+ i
Ki

(7)

With k defined as earlier and d(x) :=
(
1 + x1

K1
+ i

Ki

)−1

observe that (7) has the same form as (2) and d : R2+ →
R+. Similarly if I is a non-competitive modifier, then

vnc(x) =
Vx1
K1(

1 + x1
K1

) (
1 + i

Ki

)
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denotes the rate of the reaction which can again be writ-
ten in the form (2) with a d satisfying d : R2+ → R+. If I
denotes an uncompetitive modifier, then

vuc(x) =
Vx1
K1

1 + x1
K1

(
1 + i

Ki

)
denotes the rate of the reaction which can be written in
the form (2) with a d satisfying d : R2+ → R+.
Based on the formulation in (1) and (2), we can describe

the complete reaction network dynamics as follows. For
every σ ,π ∈ {1, . . . , c}, define

Cπσ := {
j ∈ {1, . . . , r} | (σ ,π) = (Sj,Pj)

}
and aπσ := ∑

j∈Cπσ
kjdj(x). Thus if there is no reaction

σ → π , then aπσ = 0. Define the weighted adjacency
matrix A of the complex graph as the matrix with (σ ,π)-
th element aσπ , where σ ,π ∈ {1, · · · , c}. Furthermore,
define L(x) := �(x)−A(x), where� is the diagonal matrix
whose (ρ, ρ)-th element is equal to the sum of the ele-
ments of the ρ-th column of A. Hereafter we refer to L(x)
as theweighted Laplacian of the complex graph associated
with the given network with species concentration vector
x. It can be verified that the sum of the elements of each
column of L is equal to zero and that the vector Bv(x) is
equal to −L(x)Exp

(
ZTLn(x)

)
. From equation (1), it fol-

lows that the dynamics of enzymatic chemical reaction
networks can be compactly written as

ẋ = −ZL(x)Exp
(
ZTLn(x)

)
+ Zvb(x) (8)

A similar expression of the dynamics corresponding to
mass action kinetics, in less explicit form, was obtained
in [31]. Note that although in equation (8), Exp

(
ZTLn(x)

)
is not defined if some of the components of x are equal
to zeros, the limit at such an x exists and is used in
equation (8) whenever some of the components of x are
equal to zero.

Model reduction
For many purposes one may wish to reduce the number
of dynamical equations of a chemical reaction network in
such a way that the behaviour of a number of key metabo-
lites is approximated in a satisfactory way. We propose a
novel method for model reduction of chemical reaction
networks governed by enzyme kinetics. Our method is
inspired by the Kron reduction method for model reduc-
tion of resistive electrical networks described in [25]; see
also [32].

Description of themethod
Consider again a reaction network with boundary fluxes
and with dynamics modelled by equation (8). Our model
reduction method is based on reduction of the complex
graph associated with the network. Let V denote the set

of vertices of the complex graph. Reduction of the model
is carried out by deleting certain complexes in the complex
graph, resulting in a reduced complex graph. Deletion of a
complex is equivalent to imposing the complex balancing
condition on it, i.e., the condition that the net inflow into
the complex is equal to the net outflow from it. Consider
a subset Vo ⊂ V of dimension c − ĉ that we wish to delete
in order to reduce the model. Consider a partition of L(x)
given by

L(x) =
[
L11(x) L12(x)
L21(x) L22(x)

]

where L11(x) ∈ R
ĉ×ĉ, L12(x) ∈ R

ĉ×(c−ĉ), L21(x) ∈
R

(c−ĉ)×ĉ, L22(x) ∈ R
(c−ĉ)×(c−ĉ) and Vo corresponds to the

last part of the indices (denoted by 2). Consider corre-
sponding partitions of Z and vb given by

Z = [
Z1 Z2

]
; vb(x) = [

vb1(x) vb2(x)
]T ,

in order to rewrite (8) as

ẋ = Z
[
vb1(x)
vb2(x)

− Z
] [

L11(x) L12(x)
L21(x) L22(x)

] [
Exp

(
ZT
1 Ln(x)

)
Exp

(
ZT
2 Ln(x)

) ]

Define P :=[ Iĉ − L12L−1
22 ] and let L̂(x) denote the Schur

complement of L(x) with respect to the indices corre-
sponding to Vo. Consider now the auxiliary dynamical
system[

ẏ1
ẏ2

]
=

[
vb1(x)
vb2(x)

]
−

[
L11(x) L12(x)
L21(x) L22(x)

] [
w1
w2

]
.

Note that complex balancing condition on the complexes
inVo can be imposed by setting the constraint ẏ2 = 0. This
results in the equation

w2 = −L22(x)−1(vb2(x) − L21(x)w1),

leading to the reduced auxiliary dynamics

ẏ1 = Pvb(x) − L̂(x)w1.

Substituting w1 = Exp
(
ZT
1 Ln(x)

)
in the above equation

andmaking use of ẋ = Z1ẏ1+Z2ẏ2 = Z1ẏ1, we then obtain
the reduced model given by

ẋ = Z1
(
Pvb(x) − L̂(x)Exp

(
ZT
1 Ln(x)

))
. (9)

Note that the reduced model is independent of the order
of deletion of complexes. From the following Proposition,
it follows that L̂(x) satisfies all the properties of a weighted
Laplacian matrix of a reaction network corresponding to
a complex graph with vertex set V − Vo.

Proposition 1. Consider a chemical reaction network
with weighted Laplacian matrix L(x) ∈ R

c×c correspond-
ing to the concentration vector x. Let V denote the set of
vertices of the complex graph associated with the network.
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Then for any subset of vertices Vr ⊂ V , the Schur comple-
ment L̂(x) of L(x) with respect to the indices corresponding
to Vr satisfies the following properties:

1. All diagonal elements of L̂(x) are positive and
off-diagonal elements are nonnegative for x ∈ R

m+ .
2. 1T

ĉ L̂(x) = 0, where ĉ := c − dim(Vr).

Proof. (1.) Follows from the proof of ([33], Theorem
3.11); see also [32] for the case of symmetric L. (2.) With-
out loss of generality, assume that the last c − ĉ rows and
columns of L(x) correspond to the vertex set Vr . Consider
a partition of L(x) given by

L(x) =
[
L11(x) L12(x)
L21(x) L22(x)

]
(10)

where L11(x) ∈ R
ĉ×ĉ, L12(x) ∈ R

ĉ×(c−ĉ), L21(x) ∈ R
(c−ĉ)×ĉ

and L22(x) ∈ R
(c−ĉ)×(c−ĉ). It is easy to see that

L̂(x) = L11(x) − L12(x)L22(x)−1L21(x)

Since 1T
c L(x) = 0, we obtain

1T
ĉ L11(x) + 1T

c−ĉL21(x) = 1T
ĉ L12(x) + 1T

c−ĉL22(x) = 0

Using the above equations, we get

1T
ĉ L̂(x) = 1T

ĉ
(
L11(x) − L12(x)L22(x)−1L21(x)

)
= −1T

c−ĉL21(x) + 1T
c−ĉL22(x)L22(x)

−1L21(x) = 0

This proves that (9) describes the dynamics of a chemi-
cal reaction network governed by enzyme kinetics, with a
reduced number of complexes and with, in general, a dif-
ferent set of boundary fluxes and reactions (edges of the
complex graph). An appropriate choice of Vo will ensure
that some of the elements of x have derivative zero in (9)
leading to a reduced number of state variables.
The principle behind our model reduction method is to

couple the dynamics of certain complexes to the dynam-
ics of the neighbouring complexes or the complexes with
which they are connected by reactions. This is done by
complex balancing or by equating the net rate of inflow
into the complex to the net rate of outflow from it. Note
that for a reasonably goodmodel reduction, it is important
to make the right choice of complexes to be deleted. In
the next section, we describe a procedure for making the
choice of complexes to be deleted. Below, we illustrate our
complex balancing procedure for model reduction with
the help of an example.

Example 1. We consider an example of a simple reversible
reaction network and apply the model reduction proce-
dure described in the paper. This reaction network is shown
below:

X1 + X2 � X3 + X4 � X5 + X6 (11)

For i = 1, . . . , 6, let xi denote the concentration of Xi. For
i = 1, . . . , 4, let K I,i

m denote the Michaelis constant of Xi
for the first reversible reaction. For i = 3, . . . , 6, let KII,i

m
denote theMichaelis constant of Xi for the second reversible
reaction. Let kIf and kIr denote the forward and reverse rate
constants of the first reaction and let kIIf and kIIr denote
the respective rate constants of the second reaction. Note

that kIf := V I
f

K I,1
m K I,2

m
where V I

f denotes the maximum rate
of the first reversible reaction in the forward direction and
the other rate constants are similarly defined. Define x :=
[ x1 x2 . . . x6]T ,

p1(x) :=
(
1 + x1

K I,1
m

+ x3
K I,3
m

) (
1 + x2

K I,2
m

+ x4
K I,4
m

)
,

p2(x) :=
(
1 + x3

KII,3
m

+ x5
KII,5
m

) (
1 + x4

KII,4
m

+ x6
KII,6
m

)
.

As described for the example in the section “General
kinetics”, possible rate equations for the network are given

by v1f (x) = kIf x1x2
p1(x) , v1r(x) = kIrx3x4

p1(x) , v2f (x) = kIIf x3x4
p2(x) and

v2r(x) = kIIr x5x6
p2(x) , where v1f , v1r denote the reaction rates in

the forward and the reverse directions respectively of the
first reversible reaction and v2f , v2r similarly denote those
of the second reversible reaction. If K I

eq and KII
eq denote the

equilibrium constants of the first and the second reversible
reactions respectively, then

K I
eq =

kIf
kIr

KII
eq =

kIIf
kIIr

Now consider the reduced network

X1 + X2 � X5 + X6

that is obtained by deleting the complex X3 + X4 from
the network (11). Applying the procedure described in this
section, we first assume that the rate of inflow to the com-
plex X3 + X4 is equal to the rate of outflow from it, i.e.
v1f − v1r = v2f − v2r. This yields

x3x4 =
kIf p2(x)x1x2 + kIIr p1(x)x5x6

kIIf p1(x) + kIrp2(x)
(12)

By substitution, we obtain the following expression for
the overall rate v in the forward direction of the reduced
network:

v(x)=v1f (x)−v1r(x) = v2f (x)−v2r(x) =
kIf k

II
f x1x2 − kIrkIIr x5x6

kIIf p1(x) + kIrp2(x)
.

In the expression for p1 and p2 in the right hand side of the
above equation, we fix x3 and x4 at their initial values to
obtain the following expression for v.
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v(x)=
kredf x1x2 − kredr x5x6

1+ x1
Kred,1
m

+ x2
Kred,2
m

+ x5
Kred,5
m

+ x6
Kred,6
m

+ x1x2
Kred,12
m

+ x5x6
Kred,56
m

.

(13)

where kredf , kredr ,Kred,1
m ,Kred,2

m ,Kred,5
m ,Kred,6

m ,Kred,12
m ,Kred,56

m
are positive constants that depend on the rate constants
and Michaelis constants of the original network and the
initial values of x3 and x4. We remark here that the result-
ing equation (13) has again the form of an enzyme kinetic
rate equation and the rates in the forward and reverse
directions can be written in the form of equation (2) with a
d satisfying d : R4+ → R+. If Kred

eq denotes the equilibrium
constant for the reduced network, then observe that

Kred
eq =

kIf k
II
f

kIrkIIr
= K I

eqK
II
eq

For this example, our procedure yields a reduced model
with 8 parameters while the original model has 12 parame-
ters. Moreover while the original model has 2 reactions and
6 state variables, the reduced model has 1 reaction and 4
state variables.

Error integral
We now describe an automated procedure for making
the choice of complexes to be deleted in such a way that
the dynamic behaviour of the reduced model is close to
that of the original model. We quantify the difference
between the dynamical behaviour of the original and the
corresponding reduced model under the conditions of a
specific dynamic event by an error integral, as defined in
this section.
Assume that the given biochemical network is asymp-

totically stable around a steady state. Let MI denote the
set of species which we consider to be significant from the
point of view of experimental design. This set is a sub-
jective choice of the scientist and contains for instance
species whose concentrations can be experimentally mea-
sured. Moreover complexes made of species in MI are
not considered for deletion in order to reduce the model.
Let n(MI) denote the number of elements in the set
MI. Assume that [ 0,T] is the time interval over which
we are interested to observe the difference between the
behaviours of the full and the reduced model. We define
the error integral (I) as

I :=
∑
i∈MI

1
Tn(MI)

∫ T

0

∣∣∣∣1 − xir(t)
xif (t)

∣∣∣∣ dt, (14)

where xir(t) and xif (t) denote the concentrations of the ith
metabolite of the reduced and the full model respectively
at time t. Observe that I is dimensionless. The value of I
indicates the deviation of the reduced model from the full
model averaged over time and species.

In order to reduce a given model of a biochemical
reaction network, we first determine the steady state con-
centration of each of the metabolite of the network. Then
we rank the complexes to be deleted according to the
error integrals corresponding to the reduced model with
the respective complex deleted and with the initial values
of concentrations of the species of the deleted complexes
set at their steady state values. We then make the dele-
tion that leads to the smallest value of I. With the reduced
model, we then repeat this procedure. Thus we follow an
iterative procedure with each iteration consisting of two
steps: ranking of complexes to be deleted and deletion of
the complex which leads to the smallest error integral. We
stop the iteration when the error integral of the reduced
model obtained at the end of an iteration exceeds a cer-
tain cut-off value. The reduced model obtained at the end
of the previous iteration is then considered as the final
reduced model.
For the two biochemical models considered in this

paper, namely the yeast glycolysis model and the rat-liver
fatty acid beta-oxidation model, the cut-off value of the
error integral for stopping the iterative model reduction
procedure has been set at 0.1. In general, this cut-off
value can be set according to the desired closeness of the
reduced model to the original.

Difference with QSSA
The basic premise of our model reduction approach is
similar to the one of quasi steady state approximation
(QSSA). In our method, we assume that some of the com-
plexes attain rapid steady states and hence we equate the
rates of inflows to and outflows from such complexes. On
the other hand, in the case of QSSA, it is rather some
of the individual metabolites that are assumed to attain
rapid steady states and hence the rates of inflows to and
outflows from such metabolites are equated. There are
some other subtle differences between our approach and
QSSA even for the case when the complexes are given by
the species, i.e., Z is an identity matrix, as shown in the
following example. Consider the reaction network

X1 � X2 � X3

with reactions governed by reversible Michaelis-Menten
kinetics. As earlier, for i = 1, 2, 3, let xi denote the con-
centration of Xi. For i = 1, 2, let K I,i

m denote the Michaelis
constant of Xi for the first reversible reaction. For i = 2, 3,
let K II,i

m denote the Michaelis constant of Xi for the second
reversible reaction. Let kIf and kIr denote the forward and
reverse rate constants of the first reaction and let kIIf and
kIIr denote the respective rate constants of the second reac-

tion. Note that kIf :=
V I
f

K I,1
m

where V I
f denotes the maximum
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rate of the first reversible reaction in the forward direction
and the other rate constants are similarly defined. Define

p1(x1, x2) :=
(
1 + x1

K I,1
m

+ x2
K I,2
m

)

p2(x2, x3) :=
(
1 + x2

K II,2
m

+ x3
K II,3
m

)
.

Now assume that X2 attains rapid steady state which, as in
the previous example, implies that

x2 =
kIf p2(x2, x3)x1 + kIIr p1(x1, x2)x3
kIIf p1(x1, x2) + kIrp2(x2, x3)

.

If we use QSSA method, we first need to solve for x2 from
the resulting quadratic equation given by

x22

(
kIIf
K I,2
m

+ kIr
K II,2
m

)
+ x2

(
kIIf + kIr +

kIIf x1
K I,1
m

−
kIf x1
K II,2
m

+ kIrx3
K II,3
m

− kIIr x3
K I,2
m

)

− kIf x1
(
1 + x3

K II,3
m

)
− kIIr x3

(
1 + x1

K I,1
m

)
= 0.

Let f be a function of two variables such that x2 = f (x1, x3)
defines an admissible (real and positive) solution of the
above equation. Then the resulting reaction rate in the
forward direction (v) of the reduced network

X1 � X3 (15)

is given by

v(x) =
kIf k

II
f x1 − kIrkIIr x3

kIIf p1(x1, f (x1, x3)) + kIrp2(f (x1, x3), x3)
.

The kinetics of the reduced network obtained by applica-
tion of QSSA in this case is no longer enzyme kinetics. In
contrast, our model reduction method yields the simple
expression

v(x) =
kredf x1 − kredr x3
1 + x1

K red,1
m

+ x3
K red,3
m

as the overall reaction rate in the forward direction of the
reduced network (15).
If we now consider the following reaction network

X1 + X2 � 2X3 � X4 + X5

governed by the same kind of enzyme-kinetic rate laws
as in Example 1 and assume that X3 attains rapid equilib-
rium, application of QSSA is more complicated as com-
pared to the previous case as it involves solution of a
quartic equation. On the other hand, our method leads
to a simple expression for the overall reaction rate in the
forward direction (v) of the reduced network

v(x) =
kredf x1x2 − kredr x4x5

1 + x1
K red,1
m

+ x2
K red,2
m

+ x4
K red,4
m

+ x5
K red,5
m

+ x1x2
K red,12
m

+ x4x5
K red,45
m

.

When the complex to be deleted in a reaction net-
work is made up of more than one species, QSSA cannot

be applied in some cases. Example 1 is one such case.
With reference to this example, using equation (12), one
needs to solve for x3 and x4 in order to apply QSSA.
However, this is not possible as there is one equation
and two unknowns x3 and x4 to be solved for. Thus our
model reduction method is more effective in dealing with
deletion of complexes made up of more than one species.

Effect of model reduction
In this section, we show the graph restructuring of our
reduced model in terms of its corresponding full model
for three particular types of linkage classes of biochemi-
cal reaction networks. Note that the deletion of a set of
complexes in one linkage class does not affect the mathe-
matical models of the reactions of the other linkage classes
of the network.
Type 1 linkage class:

Full Network: C1 � C2 � C3 � · · · · · · � Cn
(16)

Reduced Network: C1 � C3 � · · · · · · � Cn (17)
Consider a linkage class with reversible reactions occur-

ing between consecutive elements of the set of distinct
complexes {C1, C2, . . . , Cn} as in (16). The reduced network
obtained by deleting the complex C2 is given by (17), where
the two reversible reactions, C1 � C2 and C2 � C3 of the
full network are replaced by a reversible reaction C1 � C3
in the reduced network. If the kinetics of the reactions
C1 � C2 and C2 � C3 are of the same type, the reaction
C1 � C3 of the reduced network has the same kinetics.
This has been shown for a particular type of reactions in
Example 1. The rate equations of all the remaining reac-
tions of the reduced network are the same as those of the
full network.
A special case of linkage class (16) is the following:

C1 � C2 (18)

Deletion of the complex C2 in this case is equivalent to
deletion of the linkage class from the network. Such a
deletion provides a close approximation to the original
network if the reaction (18) has very little effect on the
dynamics of the network.
Type 2 linkage class:

Full Network 1: · · · C1 � C2 → C3 · · · (19)

Reduced Network 1: · · · C1 → C3 · · · (20)

Full Network 2: · · · C1 → C2 � C3 · · · (21)

Reduced Network 2: · · · C1 → C3 · · · (22)
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In this type of a linkage class, we have one complex C2
involved in both a reversible reaction and an irreversible
reaction as shown in (19) and (21). The reversible and the
irreversible reactions in which C2 is involved in the full
network are replaced with a single irreversible reaction
in the reduced network as in (20) and (22). The deletion
of C2 does not affect the mathematical description of the
remaining reactions of the linkage class. As with the pre-
vious type of linkage class, if the kinetics of the reversible
and irreversible reactions of the full network are of the
same type, the reaction C1 → C3 of the reduced network
has the same kinetics.
Type 3 linkage class:

(23)

(24)

In this type of linkage classes, we have a complex that is
involved in more than two reactions as the one shown in
(23). In this example, if we delete the complex C2, we arrive
at the reduced network shown in (24). This deletion has no
effect on the mathematical description of the remaining
part of the network. Similar to the previous type of linkage
classes, the reduced model of this type of a linkage class
inherits the kinetics of the full model.
Notice that though the number of complexes in the

reduced network is less than that of the original network,
the number of reactions is the same in both. The reaction
constants of reaction 4 of the reduced network depends
on the reaction constants of reactions 1 and 2 of the full
network; those of reaction 5 depend on those of reactions
1 and 3 and those of reaction 6 depend on those of reac-
tions 2 and 3. Furthermore, deletion of the complex C2 in
this case does not lead to a reduction in the number of
parameters.
In the next section, we show the application of our

model reduction method on a yeast glycolysis model and
a beta oxidation model in rat liver. In both these cases,
we encounter linkage classes belonging to one of the three
types mentioned above.

Results and discussion
Yeast Glycolysis model
We have applied our model reduction procedure on a
detailed kinetic model of yeast glycolysis [26]. A schematic
representation of the model is shown in the left-hand
panel of Figure 2. The corresponding detailed mathemat-
ical model can be found in [26]. This network consists of
type 1 and type 2 linkage classes.
For the modelling, we have considered the following as

external fluxes as indicated in Figure 2:

1. uptake of extracellular glucose (Glco) into the cell;
2. conversion of trehalose into intracellular glucose

(Glci);
3. production of trehalose from glucose 6-phosphate

(G6P);
4. production of glycerol from TRIO (TRIO is a pool

summing up dihydroxyacetone phosphate and
glyceraldehyde 3-phosphate);

5. production of succinate from pyruvate (PYR);
6. production of acetate from acetaldehyde (AcAld);
7. production of ethanol from AcAld.

The model reduction procedure is applied to a glucose
upshift as described in [26] and the corresponding param-
eter set was chosen [26]. Under these conditions, the
imposed concentrations of Glco are 0.2 mM and 5mM for
t < 0 and t ≥ 0 respectively, and as observed experimen-
tally the corresponding concentrations of ATP are equal
to 5 mM and 2.5 mM. It is assumed that the network is at
steady state for t < 0. It is found that the model is asymp-
totically stable. The reactions of the network are governed
by enzyme kinetics and we can write the equations of
the model in the same form as equation (8). The set of
significant species (MI) for the model consists of Glci,
TRIO, BPG, PYR, AcAld and NADH. Figure 3 depicts the
minimum error integrals as a function of the number of
deleted complexes. Since deletion of a sixth complex leads
to the error integral exceeding 0.1 in value, we stop the
model reduction process after deletion of five complexes.
The order of deletion is F6P, G6P, 2-phosphoglycerate
(P2G), 3-phosphoglycerate (P3G) and phosphoenoylpyru-
vate (PEP). Deletion of P3G and P2G produces the same
effect as the deletion of complex C2 from a type 1 link-
age class as described in the section on model reduction.
Deletion of each of the remaining complexes produces the
same effect as the deletion of complex C2 from a type 2
linkage class. Each deletion results in the shortening of
the chain length of the linkage class to which the complex
belongs (see Figure 2, right-hand panel).
It is observed that there is a good agreement between

the transient behaviours of most of the metabolites when
comparing the original model to the reduced model with
five complexes deleted. The main reason for this is that
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Figure 2 Schematic of the original and reduced yeast-glycolysis networks. The left-hand panel is a schematic representation of the yeast
glycolysis model used for model reduction. The full model description and an explanation of all the abbreviations is found in [26]. The right-hand
panel represents the reduced model after deleting 5 complexes (F6P, P2G, P3G, G6P and PEP). The blue arrows in the two panels indicate external
fluxes.

Figure 3 Reduction of the yeast glycolysis model. Left-hand panel: minimum error integral versus number of deleted complexes (we have taken
T = 1.5 min for the computation of the error integral). Right-hand panel: identity of the deleted complexes and their convergence times.
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the reactions of the original model that are missing in the
reduced one (see Figure 2) are the close-to-equilibrium
reactions of the network. The concentration of F16BP has
a strong effect on enzyme rates, both locally on the reac-
tions in which it is involved, and distantly on the rate
of pyruvate kinase (PYK). Together, this provides a clear
explanation why F16BP ends up last in the order of com-
plexes to be deleted (see Figure 3). The table of Figure 3
gives the convergence times of the six metabolites (com-
plexes) that were considered for deletion. These are the
times that it takes for the metabolite concentrations to
achieve 95% of their concentration change going from one
steady state to the other. Observe that the order of deletion
of the complexes is not the same as the increasing order of
their convergence times.
While the original model has 12 variables, 88 parame-

ters and 12 reactions, the reduced model has 7 variables,
50 parameters and 7 reactions.We have provided theMat-
lab files corresponding to the original model, the reduced
model and automation of the model reduction proce-
dure for the yeast glycolysis model, as additional files
(see Additional files 2, 3 and 4 respectively). Additional
file 4 gives as output the order of deletion of com-
plexes and the error integral at each step of deletion.
Additional files 5, 6, 7 and 8 are Matlab files that are
required to run Additional file 4. We have submitted to

Biomodels two SBML files corresponding to the origi-
nal and the reduced yeast glycolysis models (submission
identifiers MODEL1403250001 and MODEL1403250002
respectively). The evolution of the concentrations of
Glci, PYR, TRIO, ACALD, BPG and NADH is com-
pared between the different stages of model reduction in
Figure 4.

Fatty acid beta-oxidation model
Subsequently, we have applied our model reduction
method to a very different type of biochemical network,
i.e., a model of fatty-acid beta-oxidation in rat liver [27].
This network mostly consists of type 1 and type 3 link-
age classes. The model is shown schematically in Figure 5.
Acyl carnitines of even chain lengths are broken down in
the mitochondria to produce acetyl CoA. The acyl car-
nitines are first converted to acyl CoA’s of the same chain
length within the mitochondria by the enzyme carnitine
palmitoyl transferase II. Through a series of enzymatic
reactions involving the enzymes acyl CoA dehydrogenase,
crotonase (CROT), hydroxyacyl CoA dehydrogenase
(M/SCHAD), β-ketothiolase (MCKAT) and mitochon-
drial trifunctional protein (MTP), the carbon chain
length of each molecule of acyl CoA is shortened by
2 at the same time producing one molecule of acetyl
CoA.

Figure 4 Comparison of concentration profiles of yeast-glycolysis metabolites between the full and reducedmodels.
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Figure 5 Schematic of a model of beta-oxidation in rat liver. The ellipses within, on and outside the boundary of the mitochondrion represent
the enzymes responsible for the beta-oxidation. The full model description and explanation of all the abbreviation can be found in [27].

The carbon chain-lengths of the compounds processed
by each of these enzymes is indicated within the ellipses.
The full model has 42 state variables, 160 parameters and
56 reactions. The mathematical model is first written in
the form (8). It is found that the model is asymptoti-
cally stable. At steady state, each enzyme has a constant
reaction flux (rate).
By making use of the biochemical knowledge of the beta

oxidation model, an initial reduction of the beta oxida-
tion model has been performed as described below. This
procedure holds only for this particular model and is not
obtained by an automated deletion of complexes. It can be
seen from Figure 5 that certain acyl CoAs having the same
carbon chain lengths can be dehydrogenated by multiple
enzymes, for example C8 acyl CoA can be dehydrogenated
by three enzymes MCAD, LCAD or VLCAD. By checking
the steady state fluxes of the same reaction through these
different enzymes, we can reduce the model. For exam-
ple, we found that the flux of dehydrogenation of C6 acyl
CoA byMCAD is 99 times that by SCAD. Thus the model
can be reduced by assuming that C6 acyl CoA is dehydro-
genated by MCAD alone and not by SCAD. Similarly, we
found that the model can be further reduced by assum-
ing that C4 acyl CoA is dehydrogenated by SCAD alone
and C8 acyl CoA is dehydrogenated by MCAD alone as
the dehydrogenation fluxes of these compounds via other
enzymes is comparatively very low.

Subsequently, we performed a further reduction of the
beta oxidation model by deletion of certain complexes
according to the procedure described earlier. It can be
seen from Figure 5 that the shortening of chain length of
acyl CoAs of chain lengths 16, 14, 12, 10 and 8 can happen
via two routes, i.e. either via the enzyme MTP or via the
sequence of enzymes crotonase, M/SCHAD andMCKAT.
Deletion of the complexes hydroxyacyl and ketoacyl CoAs
of even chain lengths between 8 and 16 is equivalent to
having all acyl CoAs of chain lengths 8 till 16 reduced
by only the first route. It is found that such a deletion
produces a reduced model which has a very similar tran-
sient behaviour as the full model. The observation that the
steady state fluxes through the first route is about a hun-
dred times larger than the steady state fluxes through the
second route explains the fact that removal of the second
route does not have much effect on the dynamics of the
rest of the system.
Note that the shortening of chain length of acyl CoAs

of chain lengths 6 and 4 happens only via the sequence
of enzymes crotonase, M/SCHAD and MCKAT. It is
found that the combined effect of enzymes crotonase and
M/SCHAD can be produced by a single fictitious enzyme
which we have termed as CRMS. This is done by deleting
the complexes C4 hydroxyacyl CoA and C6 hydroxyacyl
CoA. Again such a deletion has a negligible effect on the
dynamics of the rest of the system.
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Each of the 12 deletions of complexes mentioned above
produces the same effect as the deletion of the complex
C2 from a type 1 linkage class as described in the section
on effect of model reduction. Deletion of hydroxyacyl and
ketoacyl CoAs of even chain lengths between 16 and 8 is
equivalent to removal of the linkage classes to which they
belong. Deletion of C4 and C6 hydroxyacyl CoA is equiv-
alent to reducing the number of reactions in the linkage
class to which they belong, which in turn is equivalent to
replacing the enzymes crotonase and M/SCHAD with a
single enzyme CRMS.
The set of significant species (MI) for the model con-

sists of all the acyl carnitines in the cytoplasm and the
mitochondria, since these have been measured for the
original model validation [27]. Figure 6 depicts the values
of minimum error integrals vs the number of complexes
deleted in order to obtain a reduced model of beta oxi-
dation. It can be seen that when the fourteenth complex
is deleted from the model, the minimum error integral
is more than 0.1. Therefore as discussed earlier, we stop
our model reduction procedure after deletion of 13 com-
plexes. The first 13 complexes that are deleted are the ones
that were mentioned in the previous paragraphs in addi-
tion to C8 acyl CoA. Deletion of C8 acyl CoA produces the
same effect as the deletion of the complex C2 from a type
3 linkage class as described earlier. This deletion does not
lead to a reduction in the number of reactions or param-
eters; only the number of complexes is reduced. In the
following we show the local effect of deletion of C8 acyl
CoA schematically.

The reduced model obtained by incorporating all the
deletionsmentioned above except the deletion of the com-
plex C8 acyl CoA is depicted in Figure 7. It has 31 state
variables, 118 parameters and 37 reactions while the full
model has 43 state variables, 160 parameters and 56 reac-
tions. It is found that the transient behaviour of all the
state variables of the reduced model with 12 complexes
deleted are in good agreement with those obtained using
the full model. Both the original and the reduced model
have been provided as additional files (see Additional
files 9 and 10 respectively). An SBML file corresponding

Figure 6Minimum error integral vs number of complexes deleted from the beta-oxidation model.We have taken T = 25 min for the
computation of the error integral.
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Figure 7 Schematic of the reducedmodel (with 12 complexes deleted) of beta-oxidation in rat liver. CRMS is a fictitious enzyme as described
in the section “Fatty acid beta-oxidation model”.

to the reduced model has been submitted to Biomod-
els (submission identifier MODEL1403250000). Figure 8
depicts the comparison of the transient behaviours of the
concentrations of all the acyl carnitines in the cytoplasm.

Discussion
Our model reduction method involves rewriting of the
complex graph corresponding to a given network. In the
literature, there are other model reduction methods that
involve graph rewriting like QSSA and quasi-equilibrium

procedures, the method of [21] and the graph rewriting of
monomolecular reaction networks described in [3]. The
difference between these methods and ours is that these
involve rewriting of the species-reactions graph unlike
ours where the complex graph is rewritten.
In order to come up with a reasonably good reduced

model, we follow an iterative procedure as described
in the subsection titled “Error integral”. This iterative
procedure involves computation of error integrals of a
number of reducedmodels which are obtained by deletion

Figure 8 Comparison of concentration profiles of acyl carnitines between the full and reduced beta-oxidation models.
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of different combinations of complexes. In the beta-
oxidation example, where the original model consists of 43
species and the reduced one has 30 species, the required
number of simulations is (43−M)+(42−M)+(41−M)+
· · ·+(31−M)whereM is the number of species that must
still be present in the reduced model (and hence, are not
considered in the subset of complexes for deletion). In our
example,M = 14 (corresponding to all Acyl-carnitines in
the cytosol and mitochondria) and the total simulations
using our procedure are 299. More precisely, if there are
N number of species,M number of important species and
if L is the dimension of the reduced species, then the total
number of simulations is

∑N
i=L(i−M) = (L+N

2 − M
)
(N−

L + 1). Although our procedure is time consuming, it is
simple and systematic, ensures that the reduced model
closely mimics the transients of the original model and is
scalable to a large model. We are currently investigating
the computation of error bounds based on the algebraic
property of the Laplacianmatrices and we foresee that this
knowledge might allow us to directly obtain the optimal
set of complexes to be deleted.
The cut-off value of the error integral at which we

stop our iterative model reduction procedure can be set
according to the desired closeness to the original model.
For the two models discussed in this paper, this value has
been set at 0.1 and it has been found that if this value is set
at 0.2, then the resulting comparison plots of the transient
behaviours of the original vs the reduced models reveal
significant visual differences. Another method of coming
up with a cut-off value for the error integral is to look for
a sudden, steep increase in the error integral histogram.
However in the case where the error-integral histogram
shows uniform increase with an increase in the number of
complexes deleted, this method cannot be used.
Note that in principle, complexes can be deleted to

reduce any biochemical model, whether asymptotically
stable or not. However, for the computation of error inte-
gral as described in the paper, it is necessary that the
original network is asymptotically stable around a steady
state, since the computation makes use of the steady state
concentrations of some species of the network.
In some cases, deletion of certain complexes can drasti-

cally change the dynamics of the system. An example is the
following. Assume that X1,X2, . . . ,X10 are distinct species
of the network. Consider the following reaction network
consisting of three reversible reactions:

X1 + X2 � X3 + X4

X4 + X5 � X6 + X7

X7 + X8 � X9 + X10

Now consider deletion of the complex X4 + X5 from
the above reaction network. This deletion leads to the

deletion of the second reaction of the network. Since the
first and the third reaction of the network do not have
common species, deletion of the second reaction leads to
the first and the third reactions occuring independently of
each other. This will lead to the reduced model exhibit-
ing a behaviour which is not close to the behaviour of the
original model. Although one can quantify the difference
between the behaviours using error integrals, avoiding
such deletions will reduce the computational effort in
making the choice of complexes to be deleted. Examples
of such deletions are deletion of complexes TRIO or BPG
in the yeast glycolysis model and deletion of complex C16
Acyl Carnitine in the beta oxidation model.
We remark here that one should update a reduced

model when major changes are made to the original
model. For example, if we consider the rat liver beta-
oxidation model of a MCAD-deficient animal, this model
will not have the enzymeMCAD. In this case, the dynamic
behaviour of the reduced model of Figure 7 may be far
from that of the original model of Figure 5 without the
enzyme MCAD.

Conclusions
In this paper, we have outlined a method for model reduc-
tion of biochemical reaction networks that are asymptot-
ically stable around a steady state. The principle behind
our model reduction method is to couple the dynamics
of certain complexes to the dynamics of the neighbouring
complexes in such a way that the net rate of inflow into
the complex is equal to the net rate of outflow from it.
We provide an algorithm for choosing the complexes to be
deleted in such a way that the transient behaviour of the
significant species of the reduced model is close to that of
the original model. Apart from a reduction in the number
of state variables, our model reduction method also leads
to a reduction in the number of reactions and parameters
of the model. This in turn leads to an improved com-
putational effort required in order to analyze the model.
Our model reduction procedure ensures that the reduced
model mimics the full model well under the conditions of
a specific dynamic event. A different reduced model with
a different set of deleted complexes may be produced by
our procedure under the conditions of a different dynamic
event.
In Additional file 1, we give a list of some well-known

enzyme kinetic rate laws for which our model reduction
method is applicable. Some of the rate laws provided in
this list are rate laws for irreversible reactions. However
our method is also applicable for the reversible version
of these rate laws. This is because a reversible reac-
tion can be split into its forward and reverse reaction
components and if our method is applicable to each
of these components then it is applicable to the given
reversible reaction. For example, since our method is
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applicable to reactions governed by irreversible mass
action kinetics, it is also applicable for reactions gov-
erned by reversible mass action kinetics. The list pro-
vided in Additional file 1 is not an exhaustive list of all
enzyme kinetic rate laws for which our method is appli-
cable. We have checked that our method is applicable
to all the rate laws that are included in the COPASI
software [34].
We have applied our method on a yeast glycolysis model

and a beta-oxidation model in rat liver and have observed
a good agreement between the transient behaviours of
the original and the reduced models. In these cases, our
model reduction method has also helped us significantly
in improving our understanding of the dynamics of the
networks, for example by identification of the close-to-
equilibrium reactions of the yeast glycolysis model and
of the reaction pathways with comparatively low fluxes
in the rat liver beta-oxidation model. In the case of the
yeast glycolysis model, we found that the order of deletion
of complexes (metabolites) is not the same as the order
of their convergence times. This shows that in this case,
our model reduction approach will perform differently
from a time-scale separation technique where metabolites
with faster convergence times are assumed to attain rapid
steady state. As observed in the two examples of metabolic
reaction networks, our model reduction method helps in
removing redundancies in the given network (in the yeast
glycolysis network, redundant reactions were coupled and
in the rat liver beta-oxidation model, redundant pathways
were removed).
Recently, there has been an interest in kinetic mod-

elling of large genome-scale networks. For example, [35]
gives amethod for building a parameterized genome-scale
kinetic model of a network consisting of 956 reactions and
820 metabolites. We envisage that our model reduction
method will be particularly useful to reduce the com-
plexity of such large genome-scale kinetic models in the
future. Likewise, it can also be useful in reducing mul-
tiscale models of biochemical reaction networks which
are computationally burdensome to analyze. In a large-
scale kinetic model of a biochemical reaction network, our
model reduction method can be used to reduce all path-
ways except the ones of interest into which we would like
to zoom-in and analyze.
Currently, we are using our reduced model of the rat

liver beta-oxidation model that we explained in an earlier
section in order to check for possible bifurcations. In this
respect, the reduced model provides an advantage over
the full model as it requires lesser computational effort
while checking for bifurcation.
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