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Abstract

Background: In a gene regulatory network (GRN), gene expressions are affected by noise, and stochastic fluctuations
exist in the interactions among genes. These stochastic interactions are context dependent, thus it becomes important
to consider noise in a context-sensitive manner in a network model. As a logical model, context-sensitive probabilistic
Boolean networks (CSPBNs) account for molecular and genetic noise in the temporal context of gene functions. In a
CSPBN with n genes and k contexts, however, a computational complexity of O(nk222n) (or O(nk2n)) is required for an
accurate (or approximate) computation of the state transition matrix (STM) of the size (2n ∙ k) × (2n ∙ k) (or 2n × 2n). The
evaluation of a steady state distribution (SSD) is more challenging. Recently, stochastic Boolean networks (SBNs) have
been proposed as an efficient implementation of an instantaneous PBN.

Results: The notion of stochastic Boolean networks (SBNs) is extended for the general model of PBNs, i.e., CSPBNs. This
yields a novel structure of context-sensitive SBNs (CSSBNs) for modeling the stochasticity in a GRN. A CSSBN enables an
efficient simulation of a CSPBN with a complexity of O(nLk2n) for computing the state transition matrix, where L is a factor
related to the required sequence length in CSSBN for achieving a desired accuracy. A time-frame expanded CSSBN can
further efficiently simulate the stationary behavior of a CSPBN and allow for a tunable tradeoff between accuracy and
efficiency. The CSSBN approach is more efficient than an analytical method and more accurate than an approximate analysis.

Conclusions: Context-sensitive stochastic Boolean networks (CSSBNs) are proposed as an efficient approach to modeling
the effects of gene perturbation and intervention in gene regulatory networks. A CSSBN analysis provides biologically
meaningful insights into the oscillatory dynamics of the p53-Mdm2 network in a context-switching
environment. It is shown that random gene perturbation has a greater effect on the final distribution of the steady state of a
network compared to context switching activities. The CSSBN approach can further predict the steady
state distribution of a glioma network under gene intervention. Ultimately, this will help drug discovery and develop
effective drug intervention strategies.

Keywords: Gene regulatory networks, Boolean networks, Stochastic Boolean networks, Context dependent, Gene
perturbation, Intervention, Context switch, Steady state distribution, p53 network, glioma network
Background
Diverse biological functions are regulated through the
interactions among genes, proteins and other molecules
in a cell. Gene expressions are however affected by the
intrinsic and extrinsic noise in a gene network [1]. A
major source of the noise is the stochastic fluctuations
in gene regulatory interactions [2]. The genetic interac-
tions are also context dependent, that is, certain regula-
tory functions are active in some cellular states, but
inactive in others [3]. This indicates the necessity to
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consider noise in a context-sensitive manner in the study
of gene regulatory networks (GRNs).
Various methods have been proposed to model GRNs;

these include logical models [4], continuous models
using differential equations [5,6] and stochastic models
at the single-molecule level [7,8]. As a classic logical
model, Boolean networks (BNs) have been widely used to
qualitatively model the interactions among genes [4,9-11].
Probabilistic Boolean networks (PBNs) have been proposed
to consider noise in a BN model [12-14]. In a PBN, the
next state of a gene is determined by its current state and a
Boolean function. If the Boolean function is randomly
selected, a PBN is referred to as an instantaneous PBN
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[12]. As a general model, a context-sensitive PBN (CSPBN)
considers the feature of context dependence in a biological
network [15]. In a CSPBN, a context is a combination of
Boolean functions and each function determines the next
state of a gene. A context remains unchanged until a switch-
ing occurs. This switching of contexts, possibly caused by ex-
ternal stimuli, is considered to occur randomly in a network.
The study of PBNs has focused on the analysis of

steady state distributions (SSDs) under gene perturbation
and intervention. A Markov Chain Monte Carlo method
is used in [16] to analyze the long run behavior of a PBN;
however, this method generally requires a large number of
simulations to reach a steady state, due to the slow
convergence typically encountered in a Monte Carlo
method [17]. An analysis is performed in [18] for
finding the SSD of a PBN through the computation of the
state transition matrix (STM). However, the application of
an analytical approach is generally limited to small
networks due to the exponential increase in the size of
an STM with gene numbers. The analysis of CSPBNs
presents even a greater challenge due to its significantly
increased computational complexity. Analytical expressions
have been derived for analyzing CSPBNs [19]; however,
this method is only applicable to the steady state analysis
of a network with small perturbation and switching
probabilities. The method in [20] ignores some BNs
with very small probabilities for reducing the size of the
STM and thus provides a more efficient but approximate
solution for computing the SSD of a CSPBN. In [15,21,22],
gene intervention is investigated for avoiding undesirable
states associated with certain diseases (such as cancer).
Due to external stimuli, the STM is changed by external
control variables, so desirable states can be obtained
with larger probabilities in the SSD. In a context-sensitive
network with n genes and k contexts, however, a (2n ∙ k) ×
(2n ∙ k) [23] (or 2n × 2n [20]) matrix is required for an
accurate (or approximate) analysis of the SSD; this results
in a computational complexity of O(nk222n) (or O(nk2n))
for an accurate (or approximate) computation of the
STM. Hence, the application of current gene network
analysis is limited to those of less than a dozen of genes.
Recently, stochastic Boolean networks (SBNs) have been

proposed for an efficient computation of the STM and
SSD of an instantaneous PBN [24]. The SBN approach
can recover biologically-proven regulatory behaviors, such
as the oscillatory dynamics of a simplified p53-Mdm2
network [25] and the dynamic attractors in a T cell immune
response network [26]. To further exploit the simplicity of
logical models, stochastic multiple-valued networks
(SMNs) have been utilized to investigate the dynamics
of gene networks with multiple-valued gene states
[27]. Asynchronous SBNs have also been developed to
investigate the asynchronous state-update behavior of
genes [28]. In this paper, the notion of SBNs is extended
for the general model of PBNs, i.e., the CSPBNs. This
presents a novel structure of context-sensitive SBNs
(CSSBNs) for modeling the stochasticity in a context-
dependent GRN. In particular, gene perturbation and
intervention are considered in CSSBNs. Through an effi-
cient simulation of a CSSBN, the computational complexity
in the evaluation of a CSPBN is reduced from O(nk222n) to
O(nLk2n) for computing the STM, where L is a factor
related to the required sequence length in CSSBN for
achieving a desired accuracy. The use of non-Bernoulli
sequences of random permutations of fixed number of 1’s
and 0’s further increases computational efficiency and
allows for a tunable tradeoff between accuracy and effi-
ciency. A time-frame expanded CSSBN can further simu-
late the stationary behavior of a CSPBN and produce
results that are more accurate than an approximate
analysis, thus making the CSSBN useful in modeling
complex context-sensitive GRNs. The CSSBN models
are applied to the study of a simplified p53-Mdm2
network and the results using an SSD control policy
are reported on the effect of external gene intervention in
a glioma network [18,20].

Methods
Context-Sensitive Probabilistic Boolean Networks
(CSPBNs)
For a network of n genes, a probabilistic Boolean network
(PBN) is defined by G(V, F), where V = {x1, x2, …, xn}, a set
of binary-valued nodes, F= (F1, F2, …, Fn), a list of sets of

Boolean functions: Fi ¼ f ið Þ
1 ; f ið Þ

2 ;…; f ið Þ
l ið Þ

n o
and l(i) is the

number of possible functions for gene i, i = 1, 2, …, n
[12-14]. A node xi represents the state of gene i; xi = 1
(or 0) indicates that gene i is (or not) expressed. The
set Fi contains the rules that determine the next state

of gene i. Each f ið Þ
j ið Þ : 0; 1f gn→ 0; 1f g for 1 ≤ j(i) ≤ l(i) is

a mapping or predictor function determining the state of
gene i. In a context-sensitive PBN (CSPBN) with k

contexts, a network function is defined as f j ¼
f 1ð Þ
j ; f 2ð Þ

j ;…; f nð Þ
j

� �
, where f ið Þ

j : 0; 1f gn→ 0; 1f g is the pre-

dictor function for gene i, i = 1, 2, …, n, in context j (j = 1,
2, …, k) [15,29].
Due to the stochasticity in genetic networks, the next

state of gene i is determined by all the l(i) functions in

Fi, i.e., by f ið Þ
1 ; f ið Þ

2 ;…; f ið Þ
l ið Þ , with probabilities c ið Þ

1 ; c ið Þ
2 ;…;

c ið Þ
l ið Þ . For an instantaneous PBN of n genes, there are a

total number of
Yn
i¼1

l ið Þ possible Boolean networks (BNs),

each of which is a possible realization of the genetic
network. Each BN can be considered as the network
function for a context [20]. In the jth context, assume the



Zhu et al. BMC Systems Biology 2014, 8:60 Page 3 of 19
http://www.biomedcentral.com/1752-0509/8/60
network function is given by f j ¼ f 1ð Þ
j 1ð Þ; f

2ð Þ
j 2ð Þ;⋯; f nð Þ

j nð Þ
� �

,

where each f ið Þ
j ið Þ : 0; 1f gn→ 0; 1f g for 1 ≤ j(i) ≤ l(i) is a

mapping or predictor function determining the state of
gene i. The probability that the jth context is selected, is

obtained as Cj ¼
Yn
i¼1

c ið Þ
j ið Þ for j = 1, 2, …, k, where k is the

number of contexts in a context-sensitive network [20].
The state of a gene is updated in the selected context; thus
the next state depends on both the present state and the
selected context.
In a context-sensitive network, a context may remain

for certain time until a random event occurs. A context
switching usually occurs with probability q. For q = 1, the
CSPBN becomes an instantaneous PBN. For q < 1, if a
new context is to be selected, it is randomly chosen from
the set of network functions: {f1, f2, …, fk}, with a set of
context selection probabilities: {C1, C2, …, Ck} [29]. If noise
is considered in a CSPBN, it is often referred to as a
perturbation, by which a gene flips its state with a
probability p (p ≠ 0). It has been shown that a PBN
with perturbation is an ergodic Markov chain in that
all the states are connected in the PBN [13]. The
transition probability for any two states is determined
by the values of p and q pairs. Following [19], one of
four mutually exclusive events occurs at time t in a
CSPBN with perturbation:
∅1: The predictor functions in the currently selected

context are applied to update the gene expressions and
this context remains for the next transition.
∅2: The predictor functions in the currently se-

lected context are applied to update the states of the
genes and then a new context is selected for the next
transition.
∅3: A random perturbation occurs and the currently

selected context remains for the next transition.
∅4: A random perturbation occurs and a new context

is selected for the next transition.
The effect of a switching order, i.e., whether a network

switches its context before or after its state transition, is
considered in [23], whereas in this paper, we focus on
the transition rules, i.e., the network function is applied
first and then the context switches.
A gene activity profile (GAP) is defined as a vector for

describing the state of a network at time t, x(t) = (x1(t),
x2(t), …, xn(t)), where xi(t) ∈ {0, 1} for i = 1, 2, …, n. The
state of a CSPBN can be represented as a combination
of a context and a GAP, i.e., S = (context j, GAP i). By
this definition, the number of states in a CSPBN
increases from 2n to 2nk for a network with n genes and
k contexts. A GAP can also be represented by its decimal

index, i.e., d ¼
Xn
j¼1

2n−jxj tð Þ þ 1. A state of a CSPBN is then
given by S = (fi, d) for i ∈ {1, 2, …, k} and d ∈ {1, 2, …, 2n},
where d is the decimal index of a GAP. For convenience, a
state (fi, d) is referred to as (i, d) in the following analysis.
In a CSPBN with a perturbation probability p and a

switching probability q, the transition probability for any
two states a and b is given by [23]:

pðStþ1 ¼ bjSt ¼ aÞ ¼ 1−pð Þnf r1 ;x1;x2 þ 1−pð Þn−hphs hð Þ
n o

⋅ 1−q þ qcr1ð Þg a; bð Þ þ qcr 2 1−g a; bð Þð Þ� �
ð1Þ

where

f r1;x1;x2 ¼
1;
0;

if x1 directly transitions to x2 in context r1
otherwise

�

ð2Þ

g a; bð Þ ¼ 1;
0;

if r1 ¼ r2 ¼ r
otherwise

�
ð3Þ

s hð Þ ¼ 0;
1;

if h ¼ 0
otherwise

�
ð4Þ

and h is the Hamming distance between two GAPs with
decimal indices x1 and x2, x1, x2 ∈ {1, 2, …, 2n}. This
distance indicates the number of genes with different
expressions in the two GAPs x1 and x2.
The state transition matrix (STM) of a CSPBN without

perturbation is of the size 2n ∙ k × 2n ∙ k, given by [23]:

A ¼
1−q þ qc1ð ÞP1

⋯
qc1Pk

qc2P1

⋯
qc2Pk

⋯
⋯
⋯

qckP1

⋯
1−q þ qckð ÞPk

2
4

3
5;
ð5Þ

and the STM of a CSPBN with perturbation is given by:

A ¼
1−q þ qc1ð Þ~P1

⋯
qc1~Pk

qc2~P1

⋯
qc2 ~Pk

⋯
⋯
⋯

qck ~P1

⋯
1−q þ qckð Þ~Pk

2
4

3
5;
ð6Þ

where Pi and ~P i denote the STMs for the Boolean
network i, i ∈ {1, 2, …, k}, without and with perturbation
respectively.

Context-Sensitive Stochastic Boolean Networks (CSSBNs)
A CSSBN without perturbation
Because of the similarities between logic circuits and bio-
logical networks, digital circuits have been used to simulate
genetic networks [30], as well as to determine the node
vulnerability in cellular networks [31]. Stochastic logic
has been demonstrated in several biological applications
[32,33]. Stochastic computation implements probabilistic
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analysis using Boolean logic by encoding a real number or
probability into a random binary bit sequence [34]. A
probability is usually represented by a proportional
number of 1’s in a stochastic sequence. The complement
of a probability can be computed by an inverter and the
multiplication of probabilities can be implemented by
an AND gate for independent inputs. A multiplexer
computes a weighted sum of its input probabilities, with
the weights given by the selection inputs. Figure 1 shows
an inverter (NOT), an AND gate, a buffer, an OR gate, an
XOR gate and a multiplexer [24,35]. Due to stochastic
fluctuations, the computational results by stochastic logic
are not deterministic but probabilistic. However, this
stochastic fluctuation can be reduced through the use of
non-Bernoulli sequences of random permutations of fixed
numbers of 1’s and 0’s as initial inputs, thus producing
more accurate results than using Bernoulli sequences [35].
It has been shown that a probabilistic distribution of
genes’ states can be accurately determined in a stochastic
Boolean network (SBN) with a reasonably long stochastic
sequence length [24].
In a CSPBN, the selection of a context is determined by

the context switching probability. This probability indicates
the likelihood to maintain the current context i or to select
a new context from the k contexts (including the currently
selected context i). Based on the present state and the se-
lected context, a gene’s state is updated. If no perturbation
occurs in an n-gene CSPBN with a switching probability
Figure 1 Stochastic logic. (a) A buffer (or an identity gate). (b) An inverte
Stochastic logic performs a probabilistic analysis by encoding probabilities
example, the mean number of 1’s in a binary sequence.
of q, the transition probability from state (s, y) to (r, x) is
given by [23]:

pð r; xð Þ s; yð ÞÞ ¼ f s;y;x 1−q þ qCsð Þ
f s;y;x qCrð Þ

if r ¼ s
if r≠s

����� ð7Þ

where

f s;y;x ¼
1;
0;

if ydirectly transitions tox incontext s
otherwise

�
ð8Þ

s and r denote the sth and rth contexts, y and x repre-
sent two gene activity profiles (GAPs, in decimal indices),
and Cs and Cr indicate the probability of selecting the sth
and rth contexts respectively.
An SBN structure is proposed in [24] to implement an

instantaneous PBN. For a CSPBN, a context-sensitive
SBN (CSSBN) is constructed to consider the switching
of contexts, as shown in Figure 2. In this CSSBN model, the
probabilistic switching is implemented using a multiplexer
in stochastic computation and the switching probability q is
encoded as a random binary sequence Q that serves as the
control sequence of a 2-to-1 multiplexer (MUX). If the jth
bit in the sequence Q is 1, a new context will be selected for
the next transition. Otherwise, the current context
will remain. The selection probability of the new context
is determined by the original and current context selection
probabilities. As shown in the lower section of Figure 2,
this process is implemented by 2-to-1 multiplexers with
r. (c) An AND gate. (d) An OR gate. (e) An XOR gate. (f) A multiplexer.
into random binary bit streams as a proportional number of bits, for



Figure 2 A context-sensitive stochastic Boolean network (CSSBN) without perturbation (at time t). The multiplexer (MUX) with control
sequences S1 ~ Sm probabilistically determine the selection of a network function for context i, while the multiplexer with control sequence Q
determines whether a switch of contexts occurs. The selection probabilities of the new context are computed by the 2-to-1 multiplexer (MUX)
with the original and current context selection sequences as inputs and Q as the control sequence.
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the original and current context selection sequences as
inputs and Q as the control sequence. The selection
probability of the new context is then obtained as
encoded in the output stochastic sequences of the
multiplexers. If q = 0, the CSSBN functions as a fixed
Boolean Network (BN). If q = 1, the CSSBN is simplified
to an instantaneous SBN.
If a switch does occur, the context selection process is

implemented by another multiplexer for choosing one
from the k contexts, according to predefined selection
probabilities. As a network function is a combination of
each gene’s predictor function, a combination of the m
control sequences of S1 ~ Sm is used to encode the
predefined selection probabilities; this in turn determines
the selection probability of each new context. For a
CSPBN with n genes, the CSSBN needs to be run for each
of the 2n input states and sequences need to be generated
for the m control signals of the multiplexer.
For a switching probability of q in the proposed

CSSBN, the currently selected context i remains at
time t with a probability of q and switches to one of
the k contexts with a probability of 1− q. If the network tran-
sitions from a GAP y to x in the sth context (i.e., fs,y,x= 1),
then context s will remain with probability 1 − q + qCs

at the next time step. Otherwise, the network moves
into a new context r with probability qCr. From this
analysis, it can be seen that the CSSBN in Figure 2
computes the transition probability from state (s, y) to
(r, x) as given by (7). This indicates that the proposed
CSSBN model accurately implements the function of
a CSPBN.

A CSSBN with perturbation
In a PBN with random perturbation, a gene may change
its state with a probability p during a state transition.
Following [12], the effect of perturbation is considered to
flip a gene’s state. Assume in an n-gene CSPBN, the
current GAP at time t is given by x = (x1, x2, …, xn) and γ
is the perturbation vector, the GAP at t + 1, x′, is given by:

x
0 ¼ x⊕γ

f j xð Þ
withaprobability of 1− 1−pð Þn
withaprobabilityof 1−pð Þn

�
ð9Þ

where⊕ is the addition modulo 2 and fj(⋅) is the network
function for the jth context at time t. To account for the
effect of perturbation, a CSSBN with perturbation is
constructed, as shown in Figure 3. In this CSSBN, XOR
gates are used to implement the addition modulo 2 of
the perturbation vector and the present state, while an
n-input OR gate is used to compute the probability that
a perturbation occurs. The output of the OR gate is then
used as the control sequence of a bus (or multiple-bit)



Figure 3 A context-sensitive stochastic Boolean network (CSSBN) with perturbation. A perturbation network is implemented by the XOR
logic of the perturbation vector and the present state. The probability that either a new context works or a perturbation occurs is given by the
output sequence of an n-input OR gate, which in turn determines the selection of a new context (without perturbation) or a perturbed network
by a bus (or multiple-bit) multiplexer (MUX).
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multiplexer to decide the selection of sequences with
or without perturbation. If the output sequence of the
OR gate contains all 0’s, which means that there is
no perturbation, then the next state is given by the
predictor functions in the currently selected context in the
original CSSBN without perturbation; otherwise, the next
state is determined by the perturbation effect. A stochastic
analysis of the function of the CSSBN with perturbation
shows that the next state of the network is given by:

x
0 ¼ x⊕ γð Þ⋅ 1− 1−pð Þnð Þ þ f j xð Þ⋅ 1−pð Þn ð10Þ

which is equivalent to (9). This indicates that a CSPBN
with perturbation can be accurately implemented by a
CSSBN with perturbation.

Intervention in a CSSBN
In contrast to perturbation, gene intervention refers to
the process of deliberately changing the states of
some genes to guide a network into a desired state
[12]. External stimuli are applied to a network to
avoid undesirable states that might be associated with
certain diseases. For an effective intervention, control
policies are developed for different intervention strategies;
as several genes may affect the state of the target gene, a
single gene that is most influential on the network state is
usually identified as the control gene, due to its simplistic
biological implications [15]. The STM is then changed by
an external intervention [15,21,22].
In a CSPBN, the context information is usually
hidden and thus difficult to obtain in practice. How-
ever, gene expressions can readily be observed, so a
GAP within all possible contexts is considered to be
undesirable if the GAP is an undesirable state of the
network [36]. Hence, gene intervention refers to
changing the state of a network as represented by a
GAP.
For an n-gene network, a vector s = (s1, s2, s3, …, sn)

with si ∈ {0, 1} for any i ∈ {1, 2, …, n}, is defined as the
control gene vector, that is, if si = 1, then gene i is
selected as a control gene [37]. An intervention vector is
defined as u ¼ u1; u2;u3;…; u2nð Þ , uj ∈ {0, 1} for any j ∈
{1, 2, …, 2n}, where uj = 1 (or 0) indicates a flipping (or
remaining) of the state of a control gene at GAP j. If
gene i is selected to be a control gene, for example, then
si = 1. The expression level of the control gene i is then
determined by its current state and the status of u. If
uj = 1, i.e., siuj = 1, the state of control gene i is flipped by
the external intervention when GAP j emerges; otherwise,
the state of control gene i remains unchanged and
thus the current state is preserved in GAP j [38,39]. An
intervention vector can be obtained by various methods;
in this paper, a control policy using the steady state
distribution (SSD) [40] is used to obtain u.
The state of a network under intervention, i.e., a GAP, is

determined by the control signal, the state prior to
the intervention and the intervention vector. Let x̂t
and xt be the GAPs before and after intervention at
time t; if the gth gene is the control gene (i.e., sg = 1),
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the state of the network under intervention is given
by [29]:

xt ¼ x̂t ⊕ sg
� 	

⋅1 u x̂tð Þ ¼ 1ð Þ þ x̂t⋅1 u x̂tð Þ ¼ 0ð Þ; ð11Þ
where sg is a vector of n bits with 0 at every bit
except the gth bit. 1(∙) is an indicator function: 1
u x̂tð Þ ¼ 1ð Þ ¼ 1 if u x̂tð Þ ¼ 1 and 1 u x̂tð Þ ¼ 1ð Þ ¼ 0
otherwise. When u x̂tð Þ ¼ 0, the GAP x̂t is maintained;
otherwise, the GAP x̂t is an undesirable state, for which
the control bit is to be toggled, thereby improving the
occurring probability of a desirable state.
The CSSBN model under intervention is given in

Figure 4. If gene i is selected as the control gene, i.e.,
si = 1, the output of the AND gate is determined by
the state of u. If state j is an undesirable state, i.e., uj = 1,
the state of the control gene i is toggled. This is imple-
mented by an XOR gate: if siuj = 1, the state of gene i,
given by the output of an XOR gate, is flipped at the
state, or GAP, j; otherwise, the state is not changed
by the intervention. From this analysis, the state of a
network after intervention is given by:

xt ¼ x̂t ⊕ si;
x̂t ;

if u x̂tð Þ ¼ 1
otherwise

�
ð12Þ

which is equivalent to (11). This indicates that the CSSBN
model in Figure 4 accurately implements the process of
external gene intervention.

State transition matrix (STM) and steady state analysis
As discussed previously, the state of a CSPBN can
be represented as S = (context, x) by considering the
selected context and GAP information. Using a CSSBN,
the STM can be obtained through the statistics encoded
in the output sequences. Given an input state, each
Figure 4 A context-sensitive stochastic Boolean network (CSSBN) for
probability. si indicates whether gene i is selected as a control gene and u
(GAPs) of a network.
simulation of a CSSBN produces the transition prob-
abilities from this input to all output states, i.e., the
row in the STM for this input. For a CSPBN with n
genes and k contexts, the CSSBN needs to be run for
each of the 2nk input states and an O(n) number of
sequences need to be generated for the control signals of
the multiplexers. As in [24], a factor, L, is used to account
for the computational overhead required by using a longer
stochastic sequence. Therefore, a complexity of O(nLk2n)
results for computing the STM of a context-sensitive
network. In a CSSBN, the required minimum sequence
length is typically on a polynomial order of the numbers
of genes and contexts, as shown in the simulation results
in Table 1. Since the number of possible BNs, k, generally
increases exponentially with the number of predictor
functions for each gene, the complexity of using a CSSBN
to compute the STM, i.e., O(nLk2n), is smaller than O
(nk222n) of an accurate analysis for a CSPBN [23]. As
indicated by the shorter average run time in Table 1,
this difference becomes significant for a network with
a large number of gene states. In Table 1, the simulation
results are also provided for CSSBNs with a single context,
i.e., k = 1. In this case, the CSSBN degenerates into a
deterministic BN, for which an analytical approach is
more efficient, due to the use of random binary bit
sequences in the stochastic approach. However, the
CSSBN approach is more efficient in computing the
STM for a gene network with a large number of states.
See Additional file 1: The pseudocode for computing the
STM of a CSSBN.
In general, a (2n ∙ k) × (2n ∙ k) STM is required for an

accurate CSPBN analysis [23] while a 2n × 2n STM is
needed by an approximate method [20]. As the number
of genes increases in a network, a matrix-based analysis
becomes infeasible due to a significant increase in the
external gene intervention. p: perturbation rate; q: context switching
is the derived intervention vector for all states or gene activity profiles



Table 1 Minimum sequence length and average run time in computing the state transition matrix (STM) for context-
sensitive stochastic Boolean networks (CSSBNs)

n k Num CSSBN (Norm 2 = 0.05) CSSBN (Norm 2 = 0.03) CSPBN [23]

L (bits) Average time(s) Standard deviation L (bits) Average time(s) Standard deviation Average time(s) Standard
deviation

2 1 4 40 0.00148 0.00048 100 0.00181 0.00048 0.00049 0.00046

2 4 16 900 0.00553 0.00167 2000 0.01116 0.00036 0.01248 0.00251

2 16 64 1000 0.64383 0.41941 6000 1.02666 0.10779 0.09593 0.00901

3 1 8 140 0.00446 0.00132 340 0.00812 0.00094 0.00157 0.00045

4 1 16 250 0.01438 0.00287 750 0.03685 0.00268 0.00443 0.00027

4 16 256 8000 1.43115 0.01844 20000 3.29188 0.03830 1.66014 0.10349

5 1 32 420 0.04602 0.00261 1200 0.12341 0.00314 0.01862 0.00214

5 32 1024 8000 10.7359 0.01350 25000 35.5412 0.04335 24.0659 0.08390

6 1 64 600 0.09993 0.00458 1700 0.33797 0.00197 0.06662 0.00705

6 64 4096 24000 74.5058 1.20649 60000 195.793 4.86945 531.068 6.36186

7 1 32 1000 0.52519 0.02762 2800 1.34503 0.06377 0.25873 0.00719

7 16 2048 8000 18.8938 0.42939 25000 50.0857 0.27419 221.922 1.65582

8 1 256 1400 1.45711 0.02798 3500 3.67661 0.16084 1.05147 0.01302

8 4 1024 4000 5.50577 0.05167 12500 15.6728 0.11539 37.4102 2.20907

9 1 512 2600 5.36480 0.07636 8000 16.2693 0.14106 4.06749 0.06899

9 4 2048 8000 23.1989 0.40195 18000 45.9247 0.78522 72.4459 2.62472

10 1 1024 4000 18.4761 0.12540 11000 49.2457 0.36526 17.5134 0.12540

10 4 4096 10000 59.9416 0.41164 30000 162.686 1.13288 619.311 13.4098

n: the number of genes; k: the number of contexts. Perturbation and context switch probabilities: p = 0.1 and q = 0.8 (for k > 1). L: the required minimum sequence
length for a given accuracy measured by Norm 2. Num: the number of states for the CSSBN. The results that at least one case of the CSSBN study is more efficient
than the CSPBN, are highlighted in bold.
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required computational resources. The analysis of the
SSD is even more challenging for a CSPBN. For a
CSSBN, however, the STM can be accurately and
efficiently computed. Furthermore, the SSD can be
evaluated through an iterative simulation in the temporal
domain (or the so-called time-frame expansion technique
[24]). By this technique, an iterative structure of the
CSSBN is used to simulate the temporal evolution of
a GRN. The required number of iterations is determined
by the number of state transitions before reaching a
steady state.
Given an initial state distribution x(0), let x(m) and x(m + 1)

be the state distributions after m and m + 1 transitions
respectively. Assume that the STM of the network is given
by A, then the state transitions from x(m) to x(m + 1) are
described by:

x mþ1ð Þ ¼ x mð Þ⋅A ð13Þ

If ‖x(m + 1) − x(m)‖∞ is used to compute the maximum
absolute value of the summed difference of each row in
x(m) and x(m + 1), the condition for reaching a steady
state is given by [18]:

x mþ1ð Þ−x mð Þ

 


∞ < ε ð14Þ
where ε indicates a threshold for determining whether
the steady state has been reached or not. If (14) is met, a
network is considered to have reached a steady state, i.e.,
x(∞) = x(m); thus x(m) is considered as the stationary
distribution. Alternatively, a reasonable number of network
transitions (e.g. a few hundreds) can be run to obtain the
SSD in practice. As shown in the Results and Discussion
section, a time-frame extended simulation of CSSBNs is
more efficient than an analytical approach while producing
more accurate results than an approximate analysis. See
Additional file 2: The pseudocode for computing the SSD
of a CSSBN.
In a time-frame expanded CSSBN, random binary bit

streams are generated for predictor function selection,
gene perturbation and context switching probabilities. As
in [24], non-Bernoulli sequences of random permutations
of fixed numbers of 1’s and 0’s are used for encoding initial
probabilities. These sequences then propagate through
the CSSBNs and the statistics encoded in the output
sequences are used to obtain the SSD. Compared to
the use of Bernoulli sequences, as shown in [35], the use
of the non-Bernoulli sequences produces more accurate
results for a given sequence length or requires a shorter
sequence length for a desired evaluation accuracy. As
an efficient alternative to an STM-based analysis, the
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stochastic simulation of CSSBNs provides flexibility in
achieving a tunable accuracy-efficiency tradeoff by
using stochastic sequences of different lengths. Hence,
the proposed CSSBN approach is potentially useful in
the analysis of large GRNs.
Results and discussion
Simulation with a p53-Mdm2 Network
As a tumour suppressor gene, p53 plays an important
role in preventing the development and progression of
tumour cells [41,42]. In a p53 network, signaling pathways
are triggered by external stimuli. For example, DNA
damages activate pathways that involve the genes p53
and Mdm2. It has been shown that the expression
level of the p53 protein is reversely related with that of the
Mdm2 gene, which leads to an oscillatory behavior of the
p53-Mdm2 network [25,43]. Various Boolean models
have been developed to simulate the dynamics of a
p53 network [44-46]. In this section, the two-gene
probabilistic Boolean network (PBN) model developed in
[24] for the p53-Mdm2 network is used to illustrate
the applicability of context-sensitive stochastic Boolean
networks (CSSBNs). This (instantaneous) PBN of the
two genes p53 and Mdm2 consists of V = {x1, x2} and

the predictor function sets F1 ¼ f 1ð Þ
1 ; f 1ð Þ

2 ; f 1ð Þ
3 ; f 1ð Þ

4

n o

and F2 ¼ f 2ð Þ
1 ; f 2ð Þ

2 ; f 2ð Þ
3 ; f 2ð Þ

4

n o
. The truth table for the

state transitions of this PBN is given as Table 2 [24].
An internal entry indicates whether a logical 1 or 0

would result at the next state of a gene from a selected

Boolean function. c ið Þ
j indicates the transition probability

by a function f ið Þ
j [24].

In [24], a stochastic Boolean network (SBN) of the
p53-Mdm2 network is proposed. Based on the general
CSSBN model in Figure 2, a CSSBN for the p53-Mdm2
network is shown in Figure 5. In this model, a network
function (or a Boolean network (BN)) is selected at time
t − 1 for context i and at time t, the network remains at
context i with a probability of q or switches to one of
the k contexts (k = 16 for this network) with a probability
Table 2 Truth table of a PBN for the p53-Mdm2 network:
x1, x2 are the present states of p53 and Mdm2

x1x2 f1
(1) f2

(1) f3
(1) f4

(1) f1
(2) f2

(2) f3
(2) f4

(2)

00 1 1 1 0 0 0 0 1

01 1 1 0 0 0 0 1 1

10 0 0 1 1 1 1 0 0

11 0 1 1 1 1 0 0 0

c ið Þ
j 0.5 0.4 0.09 0.01 0.5 0.4 0.09 0.01

An internal entry indicates whether a logical 1 or 0 would result at the next
state of a gene from a selected Boolean function. c ið Þ

j indicates the transition
probability by a function f ið Þ

j [24].
of 1 − q. This context switching behavior is modeled
by a 2-to-1 multiplexer (MUX) for each gene and the
switching probability q is encoded in the control bit
sequence Q. At the same time, the selection probabilities
of the new context are determined by the 2-to-1 multi-
plexers with the original and current context selection
sequences as inputs and Q as the control sequence,
as shown in the upper section of Figure 5.
The context-sensitive p53-Mdm2 network has 2 genes

and 16 contexts. If both context and gene activity profile
(GAP) are considered, there are 22 × 16 = 64 states for
the p53-Mdm2 CSSBN. Given the transition probability
for each predictor function (in Table 2), the probability
for selecting each context can readily be computed for
independent functions, as shown in Table 3.
With random perturbation to the genes, a CSSBN with

perturbation is constructed as shown in Figure 6. For
this two-gene network, a two-input multiplexer is used
for each gene to probabilistically select a perturbed state
or the original CSSBN state without perturbation.
The CSSBN is then used to obtain the state transi-

tion matrix (STM) for the p53-Mdm2 network. See
Additional file 3: The Matlab program that describes the
structure of the CSSBN in Figure 6 and computes its STM
for the p53-Mdm2 network with perturbation.
The norms ‖ ⋅ ‖1, ‖ ⋅ ‖2, and ‖ ⋅ ‖∞ are used to measure

the differences of the STMs obtained for the CSSBN and
CSPBN. ‖ ⋅ ‖1 and ‖ ⋅ ‖∞ indicate the maximum absolute
values of the summed differences of the columns and
rows respectively, while ‖ ⋅ ‖2 measures the average dif-
ference of all entries. Assume ACSSBN and ACSPBN are the
obtained STMs for the CSSBN and CSPBN respectively.
Let ΔA =ACSSBN −ACSPBN; the norms of the differences
of the computed matrices (‖ΔA‖1, ‖ΔA‖2 and ‖ΔA‖∞) are
then shown in Table 4 for different values of the switching
probability q and perturbation rate p. The average run
time is also shown for using the CSSBN.
As revealed in Table 4, the difference in the STMs

computed using the CSSBN and an analytical CSPBN
approach is significantly reduced by increasing the
sequence length L. However, the inaccuracies, due to the
inherent stochastic fluctuations in stochastic computation,
are generally small and thus negligible. Hence, the
proposed CSSBN model can be used to accurately and
efficiently compute the STM of a CSPBN.
A steady state analysis is further performed on the

proposed CSSBN. For the p53-Mdm2 network, there
are four states or GAPs. The probability of each GAP is
given by the sum of the probabilities for all contexts.
The simulation results for the four GAPs with respect
to different p and q values are shown in Figure 7
(using a sequence length of 500k bits).
As can be seen in Figure 7, while the SSD is determined

by both the perturbation and switching probabilities, the



Figure 5 A context-sensitive stochastic Boolean network (CSSBN) for the p53-Mdm2 network.
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perturbation rate has a greater effect on the final distribu-
tion of the steady state compared to the switching probabil-
ity. The SSD changes drastically with the increase of the
perturbation rate, whereas the effect of context switching is
rather limited for a given perturbation rate.
As p, q ∈ [0, 1], several p and q pairs are chosen for

further analysis. The difference in the SSDs obtained by
using the time-frame expanded CSSBN technique, the
Table 3 The network function and selection probability for ea

Context S2S3, S0S1 Combination Selection probability

1 00,00 f 2ð Þ
1 f 1ð Þ

1 0.25

2 00,01 f 2ð Þ
1 f 1ð Þ

2 0.2

3 00,10 f 2ð Þ
1 f 1ð Þ

3 0.045

4 00,11 f 2ð Þ
1 f 1ð Þ

4 0.005

5 01,00 f 2ð Þ
2 f 1ð Þ

1 0.2

6 01,01 f 2ð Þ
2 f 1ð Þ

2 0.16

7 01,10 f 2ð Þ
2 f 1ð Þ

3 0.036

8 01,11 f 2ð Þ
2 f 1ð Þ

4 0.004

The control bits to select a predictor function in Figure 5 are also listed. S0S1: the c
approximate [20] and accurate analysis [23] are shown
in Table 5.
As revealed in Table 5, the CSSBN approach can

compute the SSD more accurately than the approximate
analysis. In fact, the difference in the results between the
CSSBN and the accurate analysis is negligible when
reasonably long stochastic sequences are used. With
the STM obtained for a CSSBN, an SSD is evaluated
ch context in the p53-Mdm2 network

Context S2S3, S0S1 Combination Selection probability

9 10,00 f 2ð Þ
3 f 1ð Þ

1 0.045

10 10,01 f 2ð Þ
3 f 1ð Þ

2 0.036

11 10,10 f 2ð Þ
3 f 1ð Þ

3 0.0081

12 10,11 f 2ð Þ
3 f 1ð Þ

4 0.0009

13 11,00 f 2ð Þ
4 f 1ð Þ

1 0.005

14 11,01 f 2ð Þ
4 f 1ð Þ

2 0.004

15 11,10 f 2ð Þ
4 f 1ð Þ

3 0.0009

16 11,11 f 2ð Þ
4 f 1ð Þ

4 0.0001

ontrol bits for p53; S2S3: the control bits for Mdm2.



Figure 6 A context-sensitive stochastic Boolean network (CSSBN) with perturbation for the p53-Mdm2 network.
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and the results are very accurate compared to those
obtained using the accurate approach, as shown in
Figure 8. A further analysis shows that the relative
error is limited to less than approximately 0.2% for
the CSSBN approach.
The SSDs obtained using different methods, as well

as the corresponding values of norms, are shown in
Figure 9. It can be seen that the SSD can be accurately
evaluated by the CSSBN model compared to the accurate
analytical approach.
Table 4 Differences in the state transition matrices (STMs) ob
network (CSSBN) with perturbation, compared to the results
Boolean network (CSPBN) approach in [23]

L (bits) q = 1 p = 0

‖ΔA‖1 1k 0.1820

10k 0.0754

100k 0.0291

‖ΔA‖2 1k 0.0642

10k 0.0258

100k 0.0101

‖ΔA‖∞ 1k 0.0382

10k 0.0144

100k 0.0050

Average time (s) 1k 0.0601

10k 0.3172

100k 2.8781

The average run time of 20 simulations using the CSSBN is also shown for different pe
It has been shown that a PBN with perturbation evolves
as an ergodic Markov chain [12]. For a larger perturbation
probability p, there is an increased randomness in the
network activities, thus the steady states of the network
are more evenly distributed [23]. This can be seen in the
simulation results in Figure 9. Figures 7 and 9 further
show that context switching has little impact on the SSD
of the network with perturbation. This is due to the
fact that the context switching activity only affects the
selection probability of a context, but not the predictor
tained using the context-sensitive stochastic Boolean
by using the analytical context-sensitive probabilistic

q = 0.99 p = 0 q = 0.5 p = 0 q = 0.8 p = 0.01

0.2067 0.2320 0.3469

0.0754 0.0605 0.0890

0.0239 0.0306 0.0210

0.0754 0.0706 0.1012

0.0259 0.0207 0.0297

0.0091 0.0097 0.0080

0.0413 0.0530 0.0888

0.0145 0.0164 0.0249

0.0055 0.0064 0.0074

0.0547 0.0534 0.0623

0.3180 0.3863 0.3186

2.8531 2.8467 2.9226

rturbation rates, p, and context switching probabilities, q. L: sequence length.
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Figure 7 The steady state distribution (SSD) of the p53-Mdm2 network for different perturbation rate, p, and context switching
probability, q. The steady-state probabilities are shown for (a) state 00, (b) state 01, (c) state 10, and (d) state 11. (L = 500k bits).
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functions. Also shown in Figure 9 is that an oscillation of
the states of p53 and Mdm2 exists, indicated by the higher
probabilities of the network states (or GAPs) 01 and 10
compared with the other states. However, this two-state
oscillation is less evident when the perturbation rate
is significantly higher. On the other hand, a modest
perturbation to the network only has a minor effect
on the oscillatory behavior, confirming the stability and
robustness of the p53-Mdm2 network in a dynamic
environment [47].
Table 5 Differences in the steady state distributions
(SSDs) computed using the context-sensitive stochastic
Boolean network (CSSBN) model, compared to the results
by using the approximate [20] and accurate analysis [23]

p = 0.01 p = 0.1 p = 0.3

q = 0.9 q = 0.8 q = 0.9

‖ΔSSDAP − AC‖1 0.0228 0.0214 0.0041

‖ΔSSDCSSBN − AC‖1 L (bits) 10k 0.0094 0.0099 0.0073

50k 0.0061 0.0060 0.0057

100k 0.0047 0.0056 0.0040

‖ΔSSDAP − AC‖2 0.0118 0.0118 0.0025

‖ΔSSDCSSBN − AC‖2 L (bits) 10k 0.0055 0.0057 0.0041

50k 0.0036 0.0036 0.0030

100k 0.0028 0.0031 0.0025

‖ΔSSDAP − AC‖∞ 0.0074 0.0081 0.0020

‖ΔSSDCSSBN − AC‖∞ L (bits) 10k 0.0047 0.0045 0.0027

50k 0.0030 0.0029 0.0021

100k 0.0020 0.0022 0.0017

ΔSSDAP − AC: the difference between the results obtained by using the
approximate and accurate analysis. ΔSSDCSSBN − AC: the difference between the
results obtained by using the CSSBN approach and the accurate analysis.
p: perturbation rate, q: context switching probability, L: sequence length.
Experiments on a glioma network
A network in [16] obtained from a human glioma
gene expression data set [48] is further used to illustrate
the efficiency of the CSSBN model and the time-frame
expansion technique. Based on this data set, a PBN was
inferred by a method using the coefficients of determin-
ation (CODs) and an SSD analysis was performed in [18].
An approximate method was developed in [20] as an
extension to estimate the SSD of a CSPBN with perturb-
ation. The gene TOP2A was not considered in either study
as it is an input gene with an in-degree of zero. In our
study, the network setting is considered the same as in
[18,20] with the gene TOP2A removed; this leads to a total
of 214 GAPs. Figure 10 shows a detailed structure of the
considered glioma network with double (or single)-headed
arrows indicating the bi (or uni)-directional relation-
ships of gene pairs. The selection probabilities for the
predictor functions are shown in Table 6 [20] and the
Boolean functions for each gene are obtained through
an analysis of the data in [18].
In Table 6, each column for Fi, i ∈ {1, 2, …, 14}, contains

the selection probabilities for the Boolean functions of
gene i, with the value in the jth row as the probability for

f ið Þ
j , thus the probabilities sum to 1 in each column. Table 6

also shows that six genes have only a single predictor
function; only the state of gene 6 is determined by
three functions, while the states of the other genes are
determined by two predictor functions.
Steady state analysis
For the 14-gene glioma network, there are a total of 384
contexts, as can be determined from Table 6. It requires
an STM with 214 × 384 = 6291456 columns and rows for
an accurate analysis. This makes it infeasible to estimate



Figure 8 Accuracy comparison of the proposed context-sensitive stochastic Boolean network (CSSBN) approach and the accurate
analytical approach [23] for p = 0.01, q = 0.9 and L = 10k bits. The relative error is generally less than 0.2% for the CSSBN approach.

Zhu et al. BMC Systems Biology 2014, 8:60 Page 13 of 19
http://www.biomedcentral.com/1752-0509/8/60
the steady states of a CSPBN using a matrix-based
analysis. The approximate analysis in [20] would require
the computation of an STM of the size 214 × 214. Thus,
it is difficult in general to use an analytical approach to
evaluate a large network, due to the demanding compu-
tational resources required. However, a CSSBN model
can be constructed for the glioma network; this CSSBN
is based on the constituent SBN, as shown in Figure 11.
With the CSSBN, the SSD can be estimated using the
aforementioned time-frame expansion technique with a
greatly reduced complexity. The obtained SSD is then
compared with that obtained from the approximate
analysis in [20]. In this paper, a network is considered to
have reached a steady state if the discrepancy between
two adjacent iterations is smaller than a required
threshold ε (by (14)) or the number of simulation itera-
tions has reached a maximum constant value. See
Additional file 4: The Matlab program that evaluates the
steady state distribution using the time-frame expanded
CSSBN technique for the glioma network with context
switching and perturbation.
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Figure 9 Steady state distributions (SSDs) of the four states, or gene
stochastic Boolean network (CSSBN) approach for different perturbat
The state or GAP of the glioma network can be repre-
sented by a binary vector as (x1, x2, …, x14), xi ∈ {0, 1}
for i ∈ {1, 2, …, 14}, or its decimal index. For example,
the state (01001100011011) can be represented as state
4892. The SSDs of the context-sensitive glioma network
with all 16384 states, obtained using the CSSBN approach
and the approximate analysis [20], are shown in Figure 12.
The norms of the differences of SSDs, obtained

using the CSSBN with different sequence lengths and the
approximate method in [20], are shown in Table 7.
As shown in Table 7, the CSSBN time-frame expansion

technique efficiently evaluates the SSD of the glioma
network and produces results comparable to those
obtained by the approximate analysis [20]. Evaluation
accuracy is further improved by using longer stochastic
sequences with yet a shorter runtime compared to the
approximate method. Since it is difficult, if not impossible,
to compute the STM or SSD of a large GRN by using an
accurate or approximate analysis, the CSSBN time-frame
expansion approach provides an alternative means to
accurately and efficiently estimate the SSD of a large
2.5 3 3.5 4
ates

CSSBN (p=0.3 q = 0.8)

CSSBN (p=0.001 q = 1)
CSSBN (p=0.001 q = 0.8)

activity profiles (GAPs), obtained using the context-sensitive
ion and switching probabilities. L = 10k bits.
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Figure 10 A glioma network (adapted from [18,20]).
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network with a tunable accuracy by using stochastic
sequences of different lengths.
Intervention analysis
In an n-gene network, if gene Xi is the target gene, the
states of all genes can be divided into a set of desirable
states, D, and a set of undesirable states, U, by the
expression level of the target gene [40]. As can be seen
in Figure 10, gene X14, the (BCL2A1); BFL1 protein; GRS
protein is one of the most influential genes that interacts
closely with others, thus it is chosen as the target gene.
The desirable and undesirable states are then separated by
the expression level of X14. Assume that the inactivation
Table 6 Selection probabilities of the Boolean functions,
Fi, i ∈ {1, 2, …, 14}, for each gene in the glioma network
in Figure 10 [18,20]

F1 F2 F3 F4 F5 F6 F7

0.8560 0.2768 0.6759 1.0000 1.0000 0.0263 1.0000

0.1440 0.7232 0.3241 0.4983

0.4754

F8 F9 F10 F11 F12 F13 F14

0.0857 1.0000 1.0000 0.8508 1.0000 0.8697 0.6004

0.9143 0.1492 0.1303 0.3996
of X14 is preferred; the cumulative probabilities of the de-

sirable and undesirable states are given by
X

x14¼0πx andX
x14¼1πy , respectively, where πx and πy are elements in

the desirable and undesirable SSDs respectively.
As discussed previously, a GRN can be intervened by

applying external stimuli to minimize the likelihood of
being in an undesirable state. Various methods have been
proposed for deriving control vectors for an effective inter-
vention [29,40]; in this study the SSD algorithm proposed
in [40] is used to determine an intervention vector. For
simplicity, 16 most significant contexts that account for a
total selection probability of 57.27% are chosen from the
total 384 contexts of the glioma network for an interven-
tion analysis. For these 16 contexts, the expression levels of
gene X5 and X7 have no effect on the states of other genes,
so these two genes are removed; this yields a simplified
12-gene glioma network. The cumulative distributions
of the desirable steady states of the context-sensitive
12-gene glioma network are shown in Table 8 for using a
different gene as the control gene.
When a different gene is selected as the control gene,

the effect of intervention varies with respect to improving
the probabilities of desirable states in the SSD. For the
glioma network, as revealed in Table 8, gene X1, Tie-2, is
the most effective for maximizing the percentage of the
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Figure 12 The steady state distributions (SSDs) of the glioma network obtained using the CSSBN time-frame expansion technique and
the approximate analysis [20]. L = 800k bits.
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desirable states. The cumulative distribution of the
desirable states is increased from 45.97% to 70.91% by
an intervention using Tie-2 as the control gene. Also
revealed in the table is that an intervention via gene
X4, (HSP40); (HDJ1; DNAJ1), has nearly no impact on
the distribution of the desirable states, as the percentage
of the desirable states has not been changed much by
the intervention (i.e., 45.90% vs. 45.97%). A modest
improvement in the desirable state distribution is obtained
by an intervention with another gene as the control gene.
For any target gene, this process can be applied to find the
most significant gene that maximizes the probabilities of
desirable states.
The effects of intervention can also be seen in Figure 13,

where three different scenarios are considered: (a) no
intervention, (b) an indirect intervention via gene X1, i.e.,
Tie-2, and (c) a direct intervention via the target gene X14,
the (BCL2A1); BFL1 protein; GRS protein. The cumulative
probabilities of the desirable states are 45.97% for no
intervention, 70.91% and 99.99% for the two intervention
strategies. As revealed in these results, a direct interven-
tion of the target gene is perhaps optimal for avoiding the
Table 7 Norms of the differences in the computed steady sta
glioma network

p = 0.01 q = 0.9

L (bits) 50k 200k

‖ΔSSDAP − CSSBN‖1 0.2314 0.1323

‖ΔSSDAP − CSSBN‖2 0.0055 0.0032

‖ΔSSDAP − CSSBN‖∞ 0.0013 8.01 × 10− 4

Average time (s) CSSBN 10.106 311.55

Approximate 21421

A maximum of 300 iterations are used for obtaining the SSD. p: perturbation rate; q
difference between the SSDs obtained by the approximate analysis [20] and the co
undesirable states and almost certainly taking the network
into a desirable state. However, when an intervention
on the target gene is not possible, an intervention
through Tie-2 is the most effective means to maximize the
probability of the down-regulation of the target gene X14.

Conclusion
Context-sensitive stochastic Boolean networks (CSSBNs)
are proposed as an efficient approach to modeling the
effects of gene perturbation and intervention in gene
regulatory networks (GRNs). In a CSSBN, the state transi-
tion matrix can be accurately and efficiently computed
with a complexity of O(nLk2n), where n is the number of
genes in a context-sensitive probabilistic Boolean network
(CSPBN), k is the number of contexts and L is a factor
determined by the stochastic sequence length. This result
is an improvement compared to the previous result of O
(nk222n) for an accurate analysis. The use of non-Bernoulli
stochastic sequences further increases computational
efficiency and allows for a tunable tradeoff between
accuracy and efficiency. A steady state analysis using a
time-frame expansion technique has shown a significant
te distributions (SSDs) and average run time for the

p = 0.1 q = 0.9

1M 50k 200k 1M

0.0861 0.4251 0.2104 0.0939

0.0023 0.0045 0.0023 0.0010

4.13 × 10− 4 3.05 × 10− 4 2.16 × 10− 4 7.85 × 10− 5

1377.5 10.069 315.65 1380.7

21417

: context switching probability; L: sequence length. ΔSSDAP − CSSBN: the
ntext-sensitive stochastic Boolean network (CSSBN) approach.



Table 8 Cumulative distributions of the desirable states with a different gene selected as the control gene for the
simplified 12-gene context-sensitive glioma network, with perturbation rate p = 0.001 and context switching
probability q = 0.99

Gene X1 X2 X3 X4 X6 X8 X9 X10 X11 X12 X13X
x14¼0

πx 70.91% 62.93% 52.61% 45.90% 48.98% 54.78% 53.76% 61.61% 57.23% 56.99% 61.78%

The cumulative probability of the desirable states with no intervention is 45.97%. Sequence length L = 800k bits.

Figure 13 Steady state distributions (SSDs) of the 12-gene context sensitive glioma network (p = 0.001, q = 0.99) obtained by: (a) no
intervention, (b) an indirect intervention via gene X1, Tie-2, and (c) a direct intervention via the target gene X14, the (BCL2A1); BFL1
protein; GRS protein.
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speedup and produced more accurate results than an
approximate analysis in the computation of the steady
state distribution.
CSSBNs are constructed for the analysis of gene

perturbation in a p53-Mdm2 network and gene intervention
in a glioma network. Biologically meaningful insights
are gained into the oscillatory dynamics of the p53-Mdm2
network in a context-switching environment with random
gene perturbation. It has been shown that the steady state
distribution (SSD) changes drastically with the increase of
the perturbation rate, whereas the effect of context
switching is rather limited for a given perturbation
rate. Therefore, random gene perturbation may have a
greater effect on the final distribution of the steady state
compared to context switching activities. By predicting
the SSD, the CSSBN approach can further evaluate
the effectiveness of external gene intervention. A case
study of the glioma network shows that the CSSBNs are
useful in modeling the effects of gene perturbation and
intervention in a complex context-sensitive GRN. This
will eventually help drug discovery for an effective drug
intervention therapy.
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