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Abstract

Background: High-throughput studies continue to produce volumes of metadata representing valuable sources of
information to better guide biological research. With a stronger focus on data generation, analysis models that can
readily identify actual signals have not received the same level of attention. This is due in part to high levels of
noise and data heterogeneity, along with a lack of sophisticated algorithms for mining useful information. Networks
have emerged as a powerful tool for modeling high-throughput data because they are capable of representing not
only individual biological elements but also different types of relationships en masse. Moreover, well-established
graph theoretic methodology can be applied to network models to increase efficiency and speed of analysis. In this
project, we propose a network model that examines temporal data from mouse hippocampus at the transcriptional
level via correlation of gene expression. Using this model, we formally define the concept of “gateway” nodes,
loosely defined as nodes representing genes co-expressed in multiple states. We show that the proposed network
model allows us to identify target genes implicated in hippocampal aging-related processes.

Results: By mining gateway genes related to hippocampal aging from networks made from gene expression in young
and middle-aged mice, we provide a proof-of-concept of existence and importance of gateway nodes. Additionally,
these results highlight how network analysis can act as a supplement to traditional statistical analysis of differentially
expressed genes. Finally, we use the gateway nodes identified by our method as well as functional databases
and literature to propose new targets for study of aging in the mouse hippocampus.

Conclusions: This research highlights the need for methods of temporal comparison using network models and
provides a systems biology approach to extract information from correlation networks of gene expression. Our
results identify a number of genes previously implicated in the aging mouse hippocampus related to synaptic
plasticity and apoptosis. Additionally, this model identifies a novel set of aging genes previously uncharacterized
in the hippocampus. This research can be viewed as a first-step for identifying the processes behind comparative
experiments in aging that is applicable to any type of temporal multi-state network.
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Background
High-throughput assays have become a staple of biological
research; however the volume of data available is difficult
to analyze without automation. Experiments that examine
an entire cellular system at single or multiple states (where
a state can refer to a time point, disease stage, or healthy
versus diseased environment) require not only computa-
tional power, but also efficient algorithms and data models
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that are able to deliver reliable analyses in a short amount
of time. Further, the recent inception of data-driven [1]
bioinformatics has evinced a new landscape of research
requiring analytic methods that can handle massive, het-
erogeneous datasets. For example, as the costs of sequen-
cing sinks and the demand for personalized genomics
rises, the data will become even more multidimensional;
the concept of “long data,” or data that is sampled repeat-
edly over a long period of time, is already collected for
analysis in social media, advertising, and sales markets [2];
it is only a matter of time before this concept is embraced
by high throughput bioinformatics studies. Thus, there is
and will continue to be a growing need for technologies
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and benchmarks in this new landscape of data-driven
bioinformatics.
Network representation is becoming a popular tool for

modeling these types of data-driven experiments; for
gene expression analysis, network models are able to
store and showcase relationships between genes and gene
products. Statistical functional enrichments can then be
performed based on structural aspects of these relation-
ships, whereas in traditional statistical analyses, capturing
enrichments based on gene relationships is difficult at best
[3]. Further, application of graph theoretic concepts to
biologically data-driven networks has been shown to read-
ily identify structures that can be directly tied to the
mechanisms behind cellular function in biological net-
works such as the protein-protein interaction network [4]
and the metabolome [5], among others [6]. The years of
study spent on graph theory have optimized the efficiency
of commonly used algorithmic network algorithms, mak-
ing the marriage between graph theory and the large net-
work model a natural next step in network analysis. Our
research here probes the effectiveness of graph theoretic
modeling/application by identifying key structural nodes
in a dual-state temporal correlation network made from
high-throughput data. It has been observed that in a
modular correlation network, certain genes connect
clusters between different states (i.e. stage I vs. stage II)
[7] but the clusters connected by those genes rarely share
more than a handful of genes. Those genes, serving almost
as a pivot between two states thus become interesting tar-
gets of study in this research as they tend to link large,
dense clusters of genes, and would serve as a readily avail-
able and reproducible candidate in many publicly available
gene expression datasets. The research described here
proposes a formal definition of these pivot or “gateway”
genes based on the degree of a node in a 2-state network.
A proof-of-concept is presented using expression data
from the hippocampus of C57/Bl6 mice at 2 months and
16 months; the results of which suggest that these gateway
genes provide insight into what drives the aging process in
the murine brain.

Network structure & analysis
Network structure has been tied to cellular function from
since the discovery of the link between degree and essential
proteins in the yeast interactome [8]. Initial studies per-
formed on protein-protein interaction networks indicated
that these networks adhered to the power-law degree distri-
bution, meaning that many nodes in the network are poorly
connected and a few nodes are very well connected; these
nodes are known informally as “hubs [4,8]”. Hubs have
been found in the yeast protein-protein interaction network
(also known as an interactome) to correspond to essential
genes [8] and have been found to be critical for mainten-
ance of structure in other biological networks as well, such
as the metabolome [5] and the correlation network [9-11].
Clustering coefficient can point toward the modularity of
the network [4], and previous studies to identify modules
in clustered networks indicate that when found, tend to
correspond to genes or gene products working together to-
ward some discrete function, such as a protein complex in
an interactome [4] or as a regulatory cohort [12]. Many al-
gorithms currently exist that are able to find clusters within
networks that employ clustering via random seed selection
and growing, spectral clustering, or clustering coefficient
[13-15]. It is worth nothing that while gene clusters tend to
correspond to biological functions, the actual structures
they form in the network can be mined based solely on net-
work structure, often without the help of biological annota-
tion data. Thus, the link between network structure and
function can be exploited to identify known and unknown
network elements.
While other forms of biological networks have been

found to be modular and scale-free [4], benchmarking of
the structure-function relationship in correlation net-
works remains ongoing. In many cases the generation of
the co-expression network relies heavily on filtering and
correlation measures of a snapshot of the cellular gene
expression at a certain time or environment; further, cor-
relation measures are almost always accompanied by the
caveat that correlation “doesn’t imply causation.” As
such, it can be difficult to discern noise from signal. Fur-
ther complicating the analysis, it is known that gene
co-expression is robust to transcriptional control changes
[16,17]. As such, the set of genes identified as being
co-expressed with others at a given time or state may
include subgroups of genes under multiple levels of
transcriptional control; further, it has been found that
co-expressed genes tend to be robust toward change
[18] (and thus more readily identifiable) when they
have stable regulatory programs [17]. Structurally, it is
known that scale-free protein-protein interaction net-
works are robust toward mutations unless those attacks
are targeted at a hub node [4,10]. Another characteristic
of these scale-free networks is modularity, or the tendency
of the network to form modules. Theoretically, as the
density of a cluster increases, the more connections and
as such, redundancies it has toward single node deletion.
It stands to reason, or at least to speculation, then, that
dense clusters in a biological network may represent gene
or protein cohorts that are functionally important due to
this robustness, as the cell is programmed to be able to
quickly and efficiently compensate for loss of expression.
Thus, this research investigates the link between tran-
scriptional robustness and cluster redundancy by focusing
on dense clusters that can be readily identified using a var-
ied density filter, rather than communities or motifs.
While adding in auxiliary data (such as incorporating

Gene Ontology (GO) associations into clustering scores)
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may aid in finding true structures with biological impact
faster, the problem remains that publicly available data-
bases remain incomplete due to the vast array of possible
functionality at the cellular level [19]. Many ontological da-
tabases contain a large amount of false positive informa-
tion, remain incomplete, and/or may misrepresent data as
a result of improper functional ontology descriptors. While
these databases remain helpful resources, a method that is
able to find structures with real biological implications in
the network without incorporation of a prior bias lends it-
self toward a higher impact result. This search for a link
between structure and function is currently the focus of
many studies in network structure [9,20-24]; however,
identification of these true biological processes or elements
within a network currently has a finite upper limit that is
often dependent on network size and complexity [25].
The issue remains that many networks built from high-
throughput data are too large for current structure finding
algorithms to find complex graph theoretic structures
(such as graph partitioning, multi-way cuts, graph coloring,
etc.) in reasonable time even with parallel computing re-
sources at one’s disposal. The crux of this work therefore
focuses on the identification of critical structures in a no-
toriously noise-heavy two-state network that can be imple-
mented without access to large computational resources.

Correlation networks
The application of network theoretical concepts to de-
scribe models of cellular systems in expression data re-
mains in relative infancy and thus benchmarks are still
being established [9-11]. In this study, correlation net-
works are used to capture relationships between probes.
The correlation network is a graph model built of edges
and nodes, where nodes represent gene probes and a set
of sample expression levels for that gene, and an edge rep-
resents the level of correlation the two expression vectors.
Different measurements of correlation have been used to
build these networks, such as the partial correlation coeffi-
cient, well-suited for finding co-expressed motifs [12,26],
the Spearman correlation coefficient, which best identifies
non-linear relationships [27], or more commonly the
Pearson correlation coefficient, which identifies linear re-
lationships [11,28,29]. The network built from a dataset
where all nodes (genes) are connected to each other is
called a complete network, Kn (where n = the number of
nodes/genes in the network). In Kn network, the number
of edges is equal to n*(n-1)/2; this implies that in the case
of datasets with a large number of genes, analysis of the
Kn network can be computationally taxing when high per-
formance computing options are not available. For ex-
ample, a network made from 40,000 nodes will have
almost 800 million edges. Thus, some type of thresholding
or network filtering [25] is a common method used for
network reduction.
The most straightforward method of thresholding in-
volves removing edges with a low correlation (~0.00 in a
Pearson correlation generated model). In larger networks,
this threshold must become more stringent to maintain a
size of network that can be quickly and properly analyzed.
A threshold range of maximum ±0.70 to ±1.00 is typically
used because it retains a coefficient of determination (vari-
ance) of at least 0.49. This indicates that correlations
remaining within the network will represent genes whose
expression levels can be described as approximately 49%
dependent on each other’s expression. Carter et al. 2004
used this method of “hard” thresholding by correlation
level and additionally used a p-value < 0.0001 threshold to
ensure that only significant correlations had been retained
[9]. Other methods that incorporate soft thresholding
allow for variance in the actual correlation value based on
distribution of node degree [29]; this method goes on to
use topological overlap matrices to identify modules of
functional significance with great accuracy. Pawitan et al.
2005 notes the need for multiple testing by FDR in
their analysis of microarray statistics, noting that using
a p-value solely in data cleaning can result in low sen-
sitivity. Attempts to correct for this and other types of
statistical concerns have been addressed in a variety of
ways [30]. As previously stated, Carter et al. 2004 used
a version of a network permutation test to reduce size
[9].Other methods focus less on statistical significance
of the correlations used, but look instead at other net-
work characteristics. For example, in a 2004 compari-
son of multiple species data, Bergmann et al. kept the
amount of genes to be analyzed relatively similar, result-
ing in a relatively constant size of network, i.e., it would be
biased to compare networks of vastly different size [31].
Zhang et al. 2005 suggested that it may be most helpful to
filter networks such that they fit a scale-free topology cri-
terion, such that the linear regression of the log/log repre-
sentation of the node degree distribution falls within an R
[2] > 0.80 where R [2] measures the coefficient of deter-
mination [11]. Still other methods for network reduction
include merging of common or commonly attributed
nodes, helpful in a top-down approach. We acknowledge
that different methods of thresholding may be appropriate
for differing objectives and as such, the method to use
should be decided upon on a per case basis until bench-
marking studies can further suggest an appropriate opti-
mized correlation model. It appears that all methods of
network generation via some measure of correlation is
able to return some measure of high impact result; sug-
gesting the power of the correlation network and add-
itionally a possible future need for benchmarking studies
to investigate which measure is the most appropriate for
which domain.
Typically, correlation networks are ideal for use in the

analysis of relationships. Traditional methods for microarray
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analyses tend to miss by focusing on identifying lists of tar-
get genes based on differential gene expression, determined
through a number of statistical tests over a two or more
time-series snapshots. The advantage of the correlation net-
work is the ability to capture relationships between gene
pairs, and additionally between gene replicates, over time.
The inherent ability of state comparison using differential
co-expression has been used recently to identify complexes
with discrete biological function in Alzheimer’s disease using
network modeling [1]. Thus, the ability to represent rela-
tionships gives the correlation network a distinct advantage
over traditional methods. However, correlation networks are
notorious for having noise or unnecessary edges [32];
additionally, the volume of data to be analyzed remains
a problem for users without access to parallel comput-
ing resources. As such, until the technology surround-
ing computational resources improves, other methods
must be found to exploit the power of the correlation
network by reducing the size and complexity of the
problem (for instance, by network filtering, which looks
to graph theoretic properties to reduce edge and node
count [25]). In our research, we allow some noise to re-
main (what is left after thresholding and hypothesis
testing) and show that network structure can identify
causative genes by verifying that our results are indeed po-
tential targets for further experimentation. This work is
largely agreed upon as data-driven research [33], and as
such, a typical hypothesis that describes specific goals of
the work isn’t given. Informally, we are proposing a study
in modeling gene expression via correlation network that
identifies overlapping genes or gene products between
modular structures in different states will reveal potential
targets for further study in the aging mouse hippocampus.
The results show that target identification via this method
is able to uncover a small set of genes with major impact
in the developing hippocampus from a large, highly di-
mensional set of high-throughput, publicly available data.
Should this technique be applicable to the study of other
diseases, it could possibly provide a low-cost, low-labor re-
quirement method for identifying potential target genes in
diseases with poorly understood mechanisms.

Results
Data for network creation was collected and prepared
according as described in “Network Creation” in the
Methods section, and an overall description of the
method is shown in Figure 1. After the young mouse
networks (YNG) and middle-aged mouse networks
(MID) networks were created and clustered, three in-
tegrated networks were generated: the union of clus-
ters of density ≥65% from YNG and MID, the union of
clusters of density ≥6 = 75% from YNG and MID, and
the union of clusters of density ≥85% from YNG and
MID. Gateway nodes were then identified from each of
these three integrated networks (see “Structure identifica-
tion” in the Methods section).

Gateway nodes are not necessarily essential
Gateways were detected for each of the three networks
and lethality of the gateway datasets was assessed. Table 1
shows the resulting gateway nodes from each network, as
the Affymetrix ID, Genbank ID, and Gene Symbol. The
cluster densities are shown in the 4-6th columns; if a node
is a gateway in the consecutive networks, the box contains
the gatewayness score and is colored gray. There was not
a significant loss of gateway nodes when switching from
65% to 75% filter (30 gateways to 26 gateways, respect-
ively), but changing the cluster threshold from 75% to
85% resulted in a major loss (26 gateways to 4). Addition-
ally, lethality fell for each increase in cluster threshold;
40% of the gateways were lethal in the 65 network, com-
pared to 38% in the 75 network and 25% in the 85 net-
work. Significance testing was performed as described
under Methods – Simulated Networks; compared to sim-
ulated Erdos-Reyni and Scale-free networks of similar
size, these gateway nodes were found to be significant
for P-value <0.0005 at 65% and 75% and P-value <0.05
at 85%. This indicates that regardless of threshold, gate-
way nodes do not tend to represent essential genes when
compared to other node ranking measures. In their 2001
study, Jeong et al. found that yeast hub nodes tend to have
a 60% lethality rate [8], and studies in correlation network
centrality has shown that degree, betweenness, and close-
ness can be an indicator of essential gene likelihood
(~40%), but with less clarity than what has been found in
protein-protein interaction networks [7].
If we examine this table further, a pattern seems to

emerge between those nodes whose gatewayness is shared
(0-99%) or solely the responsibility of that node (100%). If
we compare lethality between shared vs. sole gateways, we
find the following lethality in Table 2.
Future studies include further examining the proper-

ties of these gateway nodes to determine if a subset
within them has relevant biological properties. This in-
cludes identifying whether or not shared gateway nodes,
which appear to have a higher lethality rate than typical
central nodes in a correlation network, exhibit this prop-
erty in other temporal datasets.
Visual inspection of the integrated graph G with two

edge types/states (Figure 2a) confirms that individual clus-
ters from differing networks are indeed connected by one
or a few nodes between clusters. The gateway nodes,
highlighted in Figure 2a as larger yellow diamond nodes,
are not hubs in the traditional sense (i.e., as in an interac-
tome). Hubs within correlation networks are typically
found to exist within large dense clusters of genes, and as
such some gateway nodes are also hub nodes in their ori-
ginal networks [34]. In the biological sense, these are genes
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Figure 1 A flowchart of the process described to build networks and find gateway nodes. The first step is to create a Kn network base
(where n = number of probes) on which layers of information are applied, including state data from gene expression correlation. The Kn network
skeleton is then filtered and annotated to only include edges with correlations within threshold range, and each edge is annotated with its state.
This results in graph G with two types of edges, an integrated network. Identification of biologically relevant clusters and gateway nodes follows,
and functional annotation is then performed using Gene Ontology node enrichment and edge annotation. Once these target genes are
identified, importance is determined via manual literature curation toward the experimental objective at hand, in this case, the implications of
gateway nodes in the aging mouse hippocampus.
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or probes that exhibit correlated expression to one set of
genes in one state, and are correlated to an almost com-
pletely different set of genes in another state (unless they
are connected to other gateways in their set). When these
nodes are removed from the network, they completely dis-
connect the clusters; when the domain is defined as two
subsets or clusters. Figure 2b represents the network with
the nodes removed (arrows representing the clusters they
connect) highlights that this special sets of nodes becomes
a minimum cut set between the YNG and MID networks.

Gene ontology enrichment reveals different functions in
young and middle aged mouse hippocampus
Gene Ontology enrichment was performed as described
in Methods on each cluster in the integrated network
without gateway nodes. Clusters are numbered as shown



Table 1 The gatewayness of nodes at 65%, 75%, and 85% cluster density

Affymetrix ID GenBank accession # Gene symbol 65% cluster
density

75% cluster
density

85% cluster
density

MGI phenotype
“lethality”

160799_at AW060549 100.00% 100.00%

162085_r_at AV334165 Actr10 100.00% 100.00%

95552_at U49861 Dio1 100.00% 100.00% Yes

96918_at AI790931 Fbp1 100.00% 100.00% Yes

97546_at AF072127 Cldn1 100.00% 100.00% Yes

102089_at Y10521 Matn3 100.00% 100.00%

99876_at U29056 Sla 100.00% 100.00%

96483_at C80828 Dhrs7b 100.00% 100.00%

102763_at AF064748 Plin4 100.00% 100.00%

160733_at AI035317 Akr1c21 100.00% 100.00%

97523_i_at ×02578 Amy2a4|2a5|2b 100.00% 100.00%

162391_r_at AV260455 Ltc4s 100.00% 100.00%

92289_at ×58289 Ptprb 100.00% Yes

161714_f_at AV250133 Maoa 100.00% 100.00% 100.00%

160504_at AI197077 Ceacam12 100.00%

93809_at U41736 Aup1 100.00% 100.00%

97238_at AW209238 Tacc3 100.00% 100.00% Yes

160772_i_at AW214428 Slu7 100.00% 100.00% 100.00%

96004_at AI851641 Sri 100.00% 100.00%

92283_s_at Il4 100.00% Yes

98803_at L77247 Zfp354a 100.00%

97508_at M29462 Mdh1 100.00% 100.00% Yes

95546_g_at ×04480 Igf1 51.97% 51.59% Yes

162101_f_at AV290649 Mylpf 51.67% 50.86% 32.20% Yes

161622_f_at AV356315 Lman1 50.00% 49.14% 49.15%

161229_at AV261930 48.82% 48.41%

162302_f_at AV035020 Folr1 23.20% 21.16% Yes

93330_at L02914 Aqp1 23.20% 20.91% Yes

100956_at AB005141 Kl 21.91% 20.40%

95350_at D00073 Ttr 20.62% 18.89%

95471_at U22399 Cdkn1c 20.10% 18.64% Yes

P-Value 5.53E-15 3.63E-12 0.028137

Significance *** *** * 1

1Significance: *p-val <= 0.05, **pval<=0.005, ***pval<=0.0005.

Table 2 Sole and shared gateway node lethality for each
cluster density threshold

Gateway type 65% density 75% density 85% density

Sole 31.8% 27.8% 0%

Shared 55.6% 55.6% 50%
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in Figure 2b. No significant enrichment was found for
clusters 1,9,10, 13–16, and 18–23. Enrichment scores for
the other clusters can be found in Additional file 1:
Table S1. Individual cluster enrichment revealed mostly
metabolic/biological process results, but nothing that in-
dicates a role in hippocampal aging. Cluster 3 (a YNG
cluster) was enriched in terms apoptosis, programmed
cell death, death, and regulation of cell death. A 2006
study in hippocampal aging have found that neuronal
degeneration occurs in senescence accelerated mice, but
further investigation of apoptosis relating to morphological



A B

Figure 2 The integrated graph G with two edge types/states (2A) shows individual clusters from differing networks that are indeed
connected by one or a few nodes between clusters. The gateway nodes, highlighted in 2A as larger yellow diamond nodes, are not hubs in
the traditional sense (i.e., as in an interactome). Figure 2B represents the network with the nodes removed (arrows representing the clusters they
connect) highlights that this special sets of nodes becomes a minimum cut set between the YNG and MID networks.
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changes in neurons was not able to tie pro- or anti-
apoptotic factors to this phenomenon [35]. A later study in
Klotho deficient mice, typically used as models for CNS
aging and exhibiting signs of cognition impairment, found
that apoptotic and anti-apoptotic protein expression in the
brain is changed compared to WT, specifically that pro-
apoptotic factor Bax and apoptotic inhibitor Bcl-XL are re-
duced in Kl−/− mice [36]. Interestingly, Klotho is a gateway
gene identified in our 65% and 75% density networks.
Cluster 4 (YNG) was found to be enriched in many

terms, but the relevant among them was found to be tis-
sue morphogenesis (over-enriched), and embryonic de-
velopment genes (under-enriched), and genes relating to
development of anatomical structures. The two main
MID clusters with non-biological process GO enriched
terms were clusters 5 and 7. Cluster 5 was over-enriched
with 57% of terms that included the term “regulation”,
and cluster 7 displayed under-enrichment in cell-cycle
genes, phosphorylation, and regulation of cell prolifera-
tion and developmental processes.
Individual cluster results returned some interesting

terms, but it was noted some of the clusters from the
same networks exhibited similar terms but that were not
significantly enriched. As such, we performed GO En-
richment as well on the entire YNG and entire MID net-
works independently. Gateway nodes were included in
both the YNG and MID network enrichments as well.
The results of this enrichment are found in Table 3. We
find again that the YNG network is over-enriched in
apoptosis, programmed cell death, and maintenance of
homeostasis. The MID network was found to be enriched
in terms that suggested a change in metabolic activity
(under-enrichment of positive regulation of metabolic
process) and changes in transcription. Based on this in-
formation, we can conjecture that functions involved
in the young hippocampal process involve programmed
cell death, and the middle-aged hippocampus involves a
stronger grasp on transcriptional control.
Gene Ontology edge annotation allows for visualization

of functional relationships between gateways.
In addition to traditional ontology enrichment per-

formed on the nodes, we also performed edge ontology an-
notation using GO’s Biological Process tree. The method
identifies common parents in the GO parent–child struc-
ture such that each edge is annotated with the common
parent and a score for that relationship based on how far
apart or close the nodes are in relationship to the parent,
and the depth of the parent in the tree [20]. This method
focuses on annotating the edges of the network and thus
removes some noise by only looking at pairwise relation-
ships between genes, with a score of 0 or lower reflecting
less important relationships and scores > 0 representing



Table 3 GO Enrichment of YNG and MID clusters in the integrated network

Age Annotation GO Term ID Observed P-value Enrichment

YNG positive regulation of biological process GO:0048518 43 0.0300 up

response to stimulus GO:0050896 41 0.0492 up

plasma membrane part GO:0044459 25 0.0329 up

small molecule metabolic process GO:0044281 20 0.0471 up

apoptosis GO:0006915 18 0.0356 up

programmed cell death GO:0012501 18 0.0356 up

homeostatic process GO:0042592 11 0.0226 up

positive regulation of cell death GO:0010942 10 0.0343 up

positive regulation of apoptosis GO:0043065 9 0.0150 up

positive regulation of programmed cell death GO:0043068 9 0.0150 up

MID organelle part GO:0044422 23 0.0482 up

intracellular organelle part GO:0044446 21 0.0338 up

catalytic activity GO:0003824 16 0.0222 up

plasma membrane GO:0005886 16 0.0476 up

regulation of biological quality GO:0065008 15 0.0033 up

plasma membrane part GO:0044459 14 0.0100 up

positive regulation of metabolic process GO:0009893 11 0.0221 down

protein complex GO:0043234 11 0.0280 up

regulation of transcription from RNA polymerase
II promoter

GO:0006357 10 0.0386 down

transcription from RNA polymerase II promoter GO:0006366 10 0.0386 down

Observed column represents the number of genes in the network with the specified annotation.
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increasing importance of that relationship in the GO. The
resulting integrated network after the edge annotation
method was applied is a network in which edges are in-
cluded 1) only if they were in the original network and 2)
only if there was a common parent found between the two
nodes in the network. The GO edge annotated network is
shown in Figure 3. In this network, only edges with a score
of 0 or higher (maximum score = 11) are opaque, and the
edge with represents this score (the thicker the edge the
higher the score. Edge color represents score in the follow-
ing ranges: gray ➔ -12 to 0, blue ➔ 1 to 3, purple ➔ 4 to 7,
red ➔ 8 to 11. Gateway nodes are represented as large gray
diamonds, and other nodes are reduced in size for easier
viewing. Immediately visible are thick red edges connected
to gateway nodes Igf1, Cdkn1c, and Actr10. Edges with the
next lowest visible (purple) edges of importance appear to
be Klotho and Aqp1. To determine the most likely func-
tional candidates according to functional association, we
average the total depth score of all edges connected to a
given gateway; the results are shown in Table 4. Nodes in-
cluded or connected to cluster 3, 4, 5 or 7 are in italics.
Based on this knowledge from our GO Enrichment stud-

ies and the edge annotation analysis, we have a few pro-
cesses on which to focus (apoptosis and transcriptional
regulation) and some genes that are possibly playing a role.
The genes that are involved in the most likely clusters of
relevance (3, 4, 5, and 7) are scattered among the GO
edge annotation list, so we can rank those in terms of
most likely importance. Potential candidates for target-
ing changes in mouse hippocampal aging, then, become
the following in decreasing order: Igf1, Aqp1, Ckdn1c,
Lman1, Kl, Folr1, Cldn1, Ttr, Dio1, Fbp1, and Actr10.

Discussion
Further investigation of these candidate gateway nodes in
literature reveals that there is definite potential for system-
atic impact of these gateway nodes in the aging mouse
hippocampus. We include a model (Figure 4) that includes
any relevant pathway/interaction information of these
genes, manually curated from literature and intended to
highlight any possible links between the gateway nodes
proposed. Genes/gene products highlighted in red are
gateway nodes, and genes/gene products highlighted in
blue and green represent genes that are also in the inte-
grated network model, in the middle-aged or young clus-
ters, respectively.
Igf1 is a homolog of Ins, both of which have been im-

plicated in multiple adult hippocampal development as
crucial for normal aging and health in mice [35,37,38]
and rats [39]. Igf1, when bound to its receptor Igf1r, acti-
vates the PI3K-Akt Pathway, which has been found to be
critical for neuronal axon growth [40]. Additionally, the
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Figure 3 The GO edge annotated network. The GO edge annotated network where only edges with a score of 0 or higher (maximum
score = 11) are opaque, and the edge with represents this score (the thicker the edge the higher the score. Edge color represents score in
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Dempsey and Ali BMC Systems Biology 2014, 8:62 Page 9 of 16
http://www.biomedcentral.com/1752-0509/8/62
Pi3k-Akt pathway is directly upstream of apoptosis and
glucose homeostasis (as shown in Figure 4). Igf1 is a
gateway node between clusters 2 (YNG) and 5 (MID).
Igf1 in particular has been found as a critical component
of aging in mouse models – Igf1 deficient mice were
found to have reduced brain sizes suggesting an Igf1 role
in axon maturation [41]. Ames dwarf mice with Igf1 defi-
ciencies exhibit longer lifespan and studies have specu-
lated that Igf1 and growth hormone (GH) are responsible
for structural integrity in the brain [42]. A 2008 review of
Igf1 related literature found that it is actually pathways in-
volved in neurotrophin signalling downstream of the Igf1
receptor that plays a role in brain aging and suggests it as
an aging related target [43].
The evidence supporting the role of Aqp1, or aquapo-

rin 1, in hippocampal development is less clear, however;
it has been shown in Aqp−/− mutants that neuron excit-
ability is diminished [44]; it has also been shown that
Aqp1 expression is higher than normal in patients with
Alzheimer’s disease (AD) [45]. It is unclear the role
Aqp1 may have in pathways associated with apoptosis
and regulation in the hippocampus. Aqp1 is a gateway
node connecting clusters 3 (YNG) and 5 (MID).
Cdkn1c, a cyclin responsible for inhibiting prolifera-
tion, is usually associated with cell cycle regulation, but
also finds roles in programmed cell death. It connects
clusters 3 and 5 with Aqp1. Particularly, Cdkn1c has
been implicated as a cyclin-dependent kinase that is ac-
tive during embryogenesis, and Cdkn1c−/− mice have
major developmental problems involving differentiation
[46]. A study in HeLa cells revealed a link between
Cdkn1c and increased expression caspase-3 encoded by
Casp3, thereby implicating it as a pro-apoptotic [47]
(shown in Figure 4).
Knockouts of the gene Kl result in mutants exhibiting

growth deficiencies, shortened lifespan, and a myriad of
other issues including bone deficiencies and hardening
of the arteries [36]. Conversely, Klotho over-expression
mutants live on average 20-30% longer than wild-type
[48]. Further, Kl has been found to have a role as an in-
hibitor in the Insulin and IGF signalling pathway [49]
(modified role shown in Figure 4). Klotho connects clus-
ter 3 and 5 with Cdkn1c and Aqp1. Acting as a mem-
brane and a secreted protein, Klotho can interfere with
upstream receptors in the Ins/Igf pathway, resulting in
lowered activity with PI3K [49]. Many more studies have



Table 4 Ranked gateways

Gateway name GO annotated
network degree

Average GO
depth

Igf1 42 3.190

Aqp1 60 2.017

Mdh1 5 1.800

Tacc3 9 1.444

Sri 7 0.714

Cdkn1c 51 0.309

Lman1 47 0.170

Kl 56 −0.393

Ltc4s 22 −0.682

Maoa 13 −0.769

Folr1 68 −1.044

Cldn1 67 −1.254

Slu7 6 −1.500

Mylpf 39 −1.769

Ttr 53 −2.036

Dio1 77 −2.338

Fbp1 76 −2.368

Dhrs7b 35 −2.657

Actr10 79 −3.051

Matn3 55 −3.345

The gateways that turn up when the GO Edge annotation method is applied,
including their degree in the annotated network, and their average GO depth
(only for immediately adjacent edges).
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implicated Kl as an ‘aging’ gene [36,48-53]; it is highly
expressed in first the kidney and then the brain in
mouse models, and also results in abnormalities such as
hypogonadism, ectopic calcification, epidermal atrophy,
emphysema, hearing loss, elevated Vitamin D and cal-
cium levels, and neurodegeneration [51]. Neurodegener-
ation in Kl−/− mice has been found as increased rate of
programmed cell death [51] and mutants show cognitive
impairment in recognition and fear testing [52].
Like Kl, Cdkn1c, and Aqp1, Folr1 connects clusters 3

(YNG) and 5 (MID). While the average of its GO edge
annotations is lower than all the previous gateways dis-
cussed at −1.044, it may still have functional relevance
due to its high number of annotated connections in the
network (degree = 68, the top ranking node in terms of
degree in the GO edge annotated network). As a gate-
way, it is the final of the 5 gateways between clusters 3
(YNG) and 5 (MID). However, studies of Folr1’s role in
the murine hippocampus remains limited. A 2010 study
in 12-month-old mice transfected with human Tau23 pro-
tein 51 genes total were found to be up- or down-
regulated by the phosphoprotein [54]; Folr1 was found
to be the second highest up-regulated gene compared
to controls with the a fold change score of 7.18 [54].
Other genes in the 51 gene dataset included gateway
genes Aqp1 (up, FC = 6.17), Kl (up, FC = 3.43), Cldn1
(up, FC = 2.89), Cdkn1c (up, FC = 2.27), and Igf1 para-
log Igf2 (up, FC = 2.03) [54]. In total, 6 of the 11 pre-
dicted target gateway genes are identified as regulated
by human hTau encoded Tau23 protein. Another study
of human Tau knockouts in mice found that mutants
exhibit suppressed cell growth and neuronal counts in-
creased compared to wild type [55], and suggests that
Tau can cause activation of programmed cell death in
neurons of the hippocampus by cleavage of Casp3 [56].
This suggests the possible role of a murine hTau homolog
in regulation of the control of normal murine hippocam-
pal development (shown in Figure 4).
The last gateway connecting clusters 3 (YNG) and 5

(MID) is Ttr, is also known as Transthyretin. Few studies
have been performed on Ttr in the normal developing
hippocampus, but Ttr has been studied in the context of
Alzheimer’s Disease (AD) as an interactor with amyloid-
β protein [57]. Ttr also interacts with hormone thyroxine
(T4). In one of the AD –related studies, it has been
found that neuronal degeneration was accompanied by
increased levels of transthyretin [57]. This is verified
by a 2011 study that found Ttr variants to be the highest
up-regulated gene (FC = 57.04, 39.52, 32.01, and 23.4 ) in
mice with HuD-Tg overexpression, which is involved in
neural growth and connectivity [58].
Dio1, a gateway node between clusters 12 (YNG) and

7 (MID) is included in the potential target list for its
membership in GO Enriched cluster 7. Deiodinase-1 as
well has not been studied extensively for its role in the
developing hippocampus, although it should be noted
that it also interacts with thyroid proteins T3 and T4,
similar to Transthyretin. A 2012 study in Danio rerio re-
vealed that alterations in T3 and T4 levels in larvae re-
sulted in increased expression of Dio1 and paralog Dio2,
while levels of Ttr was down-regulated. While these studies
are not directly conducive to how these genes affect hippo-
campal development, they offer a possible link between
gateways and the thyroid system [59].
Fbp1, gateway node for clusters 3 (YNG) and 7 (MID),

is typically associated with glucose generation, but a
2005 study linked Fbp1 in Saccharomyces cerevisiae to
aging and oxidative stress [60].
Actr10, the sole gateway node for clusters 4 (YNG) and

7 (MID), plays a role in actin and microtubule movement.
Cldn1, the sole gateway node for clusters 5 (MID) and 8
(YNG), is involved in tight junction formation. Neither of
these gateway nodes has been studied in the context of
the aging mouse hippocampus.
Readily detected network structures such as hubs, clus-

ters, pathways, or bottlenecks, are measured typically in a
static network. While these can be measured in an inte-
grated network with relative ease as well, the relationship
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between structure and function in the integrated network
does not necessarily hold in the integrated network; at the
very least, this relationship has not been explored. The
gateway node offers a way to measure relevant structure
created by the integrated network model, and a major pur-
pose of this study is to investigate potential biological rele-
vance of this structure. The results suggest that gateway
nodes may represent some sort of developmental pivot in
aging mouse studies.
Conclusion
Studying relationships between genes and gene products
provides an important perspective in the study of biological
function. Network models provide an excellent tool for
modelling intergenic relationships associated with a par-
ticular domain. In this research we have proposed a formal
method for the identification of critical elements associated
with a biological process such as aging. This method ex-
plores the temporal similarities and dissimilarities among
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relationships at different stages of aging in the mouse
hippocampus. Elements play significant roles in the transi-
tional process among those stages are characterized using
graph theoretic properties. We show that these elements
we call gateway nodes represent genes that link critical
functions at different stages of development. A majority of
these nodes have previously been identified as elements as-
sociated with normal aging, which serve as a validation to
our proposed approach. The remaining elements captured
by gateway analysis correspond to genes previously linked
to aging or aging-related processes outside of the hippo-
campus. The strength of the proposed method lies in its
ability to model biological systems at various states and ex-
ploring changes associated with certain diseases or the deg-
radation of cellular health.

Methods
The proposed overall method is described in visual detail
in Figure 1. The first step is to create a Kn network base
(where n = number of probes) on which we apply layers
of information, including state data from gene expres-
sion correlation. (Redundant genes in the dataset were
allowed to remain.) The Kn network skeleton is then fil-
tered and annotated to only include edges with correla-
tions within threshold range, and each edge is annotated
with its state. This results in graph G with two types of
edges, an integrated network (shown in Figure 1). This
approach method can be expanded to include multiple
types or conditions and is planned for future work. Iden-
tification of biologically relevant clusters and gateway
nodes (described below) follows, and functional annota-
tion is then performed using Gene Ontology node en-
richment [61] and edge annotation [20]. Once these target
genes are identified, we manually examine their import-
ance toward the experimental objective at hand, in this
case, the implications of gateway nodes in the aging mouse
hippocampus.

Network creation
Data Series GSE5078 generated by Verbitsky et al. in
2004 [62] was obtained from NCBI’s Gene Expression
Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/
geo/) in December 2009. The C57BL/6 mice used in this
dataset were separated into two age groups – young and
middle-aged – and were untreated and expression data
was drawn from hippocampus after latency testing in
the Morris water maze [62]. The dataset was separated
into 2 month old samples (YNG) versus 15 month old
samples (MID), for 2 states total. Probes with undetect-
able expression or missing values were not used in the
analysis; probes with any value of expression were allowed
to remain including those with weak values. As indicated
in Verbitsky et al. 2004 and their supplemental material,
data were normalized using RMA techniques. The values
given in the GEO Series Matrix Files were used exactly as
presented in the table itself. This series was chosen be-
cause of relation to aging in the mouse brain, mouse
model type, state number and sample size.
Networks were created in parallel by pairwise compu-

tation of Pearson Correlation [63] (ρ) for each possible
combination of probes within the dataset on the Univer-
sity of Nebraska at Omaha’s Blackforest computing clus-
ter. Nodes in the network represent probes and edges
represent the weighted correlation of each gene and an
associated p-value. Correlations with p-value < 0.005
(Student’s T-test [63]) were not considered statistically
significant and thus those edges were thrown out. Net-
works were then filtered to a correlation threshold of
0.85 ≤ ρ ≤ 1.00 to capture only very highly correlated ex-
pression values; this threshold was chosen to capture
only genetic relationships where 70% or more of one
genes behavior could be ascribed to the behavior of an-
other gene (R [2] of the proposed lower correlation
bound of 0.85 is 72.25%). After duplicate edges and self-
loops were removed, both networks created were found
to adhere to a power-law degree distribution and exhibit
qualities of a modular network (networks are included
in .sif format in Additional file 2).

Structure identification
Clustering
For this particular proof-of-concept, cluster identifica-
tion was performed Cytoscape plug-in AllegroMCODE
v2.0 [64] on each network with settings set at Degree
Cutoff = 4 and K-Core = 4 to eliminate K3 cluster identi-
fication. Clusters with a density of <65% were thrown
out. AllegroMCODE was chosen for its ability to identify
dense clusters within a large network quickly; this struc-
tural characteristic has been found to be representative
of probable biological function in correlation network
studies [11,29]. As gateway node identification is largely
dependent on node inclusions within a cluster, we used
clusters at 65% + density, 75% + density, and 85% + density
to identify gateway nodes. Often increasing the threshold
in this way removed only a few clusters from 65% density
threshold to 75%, but these minor cluster removals also
had a big impact on the type and number of gateway
nodes present. Further examining the effects of correlation
and cluster thresholding on gateway nodes is planned for
future studies, as well as additional clustering methods.
Recently, clustering methods have been assessed on gold
standard complexes in the known Saccharomyces cerevi-
siae interactome and it has been discovered that different
clustering methods have different performance in terms of
cluster accuracy and sensitivity [14,15]. These studies re-
veal that MCODE [13] (AllegroMCODE’s base method-
ology) has a tendency to over-predict clusters in terms of
size but methodologically is able to find dense clusters

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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with great accuracy; while this may be inefficient for de-
tecting protein complexes, this is ideal for identifying clus-
ters in correlation networks, that do not necessarily have to
correspond to co-functional relationships, just co-expression.
Further, while this work acknowledges the capability of other
clustering methods, it remains that an assessment of all pos-
sible methods is out of the scope of this particular study.

Gateway nodes
In earlier studies, it has been empirically observed that
when two murine networks of same tissue but different
temporal states are compared, there is little overlap of
dense network clusters [7,20,25]. However, there are sev-
eral nodes, or “gateway nodes”, that connect the clusters
from different states individually or as a group. Prelimin-
ary work with these gateways suggests they may point to
important genes for the observed transition between
temporal states. Here, we define a formal method for
identifying these nodes between two states in a temporal
correlation network, and formally define a “gateway node”
as a gene identified by this approach.
The concept of gateway nodes is a relaxed notion, or a

mathematical generalization, of the well-established con-
cepts of cut-nodes and node cut sets in graph theory.
Given a general connected graph, a node is defined as a
cut node if its removal leaves the graph disconnected.
Similarly, a set of nodes in any connected graph define a
node cut set if the removal of the nodes in the set leaves
the graph disconnected. A cut node is a special case of a
node cut set where the set contains only one node. In
the context of integrated correlation networks, we are
interested in identifying a small set of nodes that play in
a significant role in connecting two sets of highly-dense
sub-graphs of a graph that represents the underlying re-
lationships obtained from multiple correlation networks.
Consider two correlation networks, represented by

graphs G1 and G2, which reflect correlation relation-
ships among genes of same tissue and organism at vari-
ous states. Let undirected graph G1 = (V, E1) represent
state 1 and let undirected graph G2 = (V, E2) represents
state 2, such that graphs G1 and G2 share same node set
V = {v1, v2,…, vn} with different edge sets E1 and E2. For
each graph, we identify clusters (highly dense sub-
graphs); for example, Cluster X represent some dense
sub-graph in G1 where V(X)⊆V(G1) and E(X)⊆ E(G1),
and Cluster Y represent some dense sub-graph in G2 if
V(Y)⊆ V(G2) and E(Y)⊆ E(G2). To obtain the gateway
nodes associated with clusters X and Y, we first form an
integrated graph G’ such that G’ = (V,(E1 ∪ E2)), and for
a given node s in V, we identify Es(X,Y) as the set of
edges connecting s to any node in the set V(X) in graph
G1 or any node in the set V(Y) in graph G2. The goal is
to identify a set of gateways that connect the nodes of
Cluster X and the nodes of Cluster Y, both now present
in the integrated graph G’. Hence, for the two clusters X
and Y in G’, we identify the subset of nodes S between
clusters X and Y such that the set S = V(X) ∩ V(Y). Since
S is the intersection of the two sets of nodes V(X) and V
(Y), in the subgraph induced by V(X)∪V(Y) in G’, every
connection path from a node in X to a node in Y has to
go through one of the nodes in S. In other words, the
nodes of S represent all the gateways connecting the two
clusters X and Y in G’. Also, since the goal is to identify
a relatively small set of nodes responsible for most of
the connections between the two clusters, we insist that
the size of S is always less than half the size of either V
(X) or V(Y) in order to identify any node in S as a gate-

way (or, Sj j≤min Xj j
2 ; Yj j

2

n o
). This restriction will also

guarantee that the two clusters X and Y and sufficiently
different and eliminate the scenario of having the triv-
ial case where V(X) = V(Y) = S. To determine the gateway-
ness of each node s in S, that is its role in connecting
nodes of X to nodes of Y in the integrated graph G’, or the
amount of impact it has in the “transition” from one state
to another, we define the following metric:

gatewaynesss ¼ Es X;Yð Þj j
Es X;Yð Þj j

Where ES(X,Y) is defined as the set of edges connect-
ing any node in V(X)-S to any node in V(Y)-S in G’.
Thus, we are essentially identifying the total number of
edges connecting the nodes of X to the nodes of Y
through the node s, and comparing that to the total
number of edges connecting the nodes of X to the nodes
of Y through every node in S. Note that edges connect-
ing two nodes in the set S are excluded from calculation
ES as they are not edges that connect cluster nodes to a
gateway node. If two clusters X and Y are connected by
though a set S of size 1, the gatewayness for that only
node s in S will be 1.00, or have 100% gatewayness.

Simulated networks
Simulation analyses were used to compare the significance
of randomly generated networks to the networks used in
these studies via two methods. Two types of networks
were simulated using iGraph functions in R: Erdos-Reyni
random networks and Scale-free networks. The simulated
Erdos-Reyni networks were generated using the “erdos.
reyni.game” command and networks were generated with
12,300 nodes using a 10/10000 edge probability parameter,
yielding networks that are randomly distributed with
regards to degree and of similar size to the YNG and
MID networks. These networks by nature do not con-
tain clusters; clustering via AllegroMCODE on these
networks revealed indeed that no clusters were generated.
Gateway node analysis was then performed considering
each network individually and density requirements were
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not enforced. The result indicated that each node (12,300)
in both networks was determined to be a gateway node
with a uniform gatewayness null distribution; significance
testing using the student’s t-test comparing actual gateways
versus random network gateways found that all gateways in
the YNG vs MID network were significant for P-value <0.05.
The simulated Scale-free networks were generated

using the “static.power.law.game” command in iGraph
and networks were generated to match the YNG and
MID network sizes (respectively named “YNGSIM” and
“MIDSIM”). Both networks were generated Exponent Out
and In values of 2.5. Clustering via AllegroMCODE on
these networks under previous standards (K-Core of 4 and
Degree Cutoff of 4) revealed no clusters; Default param-
eter clustering revealed one large cluster per simulated
network. Gateway node analysis was then performed con-
sidering each cluster individually and density require-
ments were not enforced. The result found 173 gateway
nodes with a uniform gatewayness null distribution; sig-
nificance testing using the student’s t-test comparing ac-
tual gateways versus random network gateways found that
all gateways in the YNG vs MID network were significant
for P-value <0.05. These values are reflected in Table 1.

Functional analysis
Essential gene/lethality assessment and enrichment
The MGI Marker to Phenotype Annotations file (ftp://ftp.
informatics.jax.org/pub/reports/MGI_PhenotypicAllele.rpt)
from the Mouse Genome Informatics database [65] (MGI)
was downloaded on January 02, 2013. For each node in the
network, we determined in an in vivo knockout or knock-
in mutation had been performed on that gene. If that
mutation had been performed and caused any phenotype
containing the word “lethality,” that gene was annotated as
an essential gene. Using this we can perform basic lethality
an enrichment analysis to determine the log-odds ratio en-
richment of lethal genes in hub nodes versus the rest of
the network. Enrichment is performed as stated below:

Enrichment ¼ log2
b=n
B=N

� �

Where b = count of lethal genes in test set, n = total
count of genes in the test set, B = count of lethal genes
in background set, and N = total count of genes in the
background set. P-value was determined by performing
hyper geometric distribution on the enrichment scores.

Gene Ontology (Node) Enrichment
All Gene Ontology (node) Set Enrichment analyses were
performed using GeneTrail [61] (http://genetrail.bioinf.
uni-sb.de/) using Gene Symbols from the Mus musculus
genome. Only manually curated annotations from the
Gene Ontology were considered, with a p-value of <0.05
and no corrections applied. Background set used was the
entire set of known mouse genes.

Gene Ontology edge annotation
Gene Ontology edge annotation was performed using the
methods as described by Dempsey et al. in [20]. Briefly,
this method iterates through every edge in the integrated
network and identifies the GO terms associated for each
node pair connected by every edge. The method then
identifies the deepest common parent (DCP) of those two
nodes within the tree, how deep the DCP is from the tree
root (depth) and how far many hops the nodes are apart
from the DCP (breadth). The edge is then annotated with
a GO term (the DCP) and a score (depth – breadth). Stud-
ies using this method have shown that this method sup-
plements traditional GO enrichment by capturing missing
GO annotations and revealing functional association
based on edges, not nodes [20]. This is critical for net-
work study, as two clusters may have the same amount
of nodes, but a different amount of edges.
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