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Abstract

Background: We have recently shown by formally modelling human protein interaction networks (PINs) as metric
spaces and classified proteins into zones based on their distance from the topological centre that hub proteins are
primarily centrally located. We also showed that zones closest to the network centre are enriched for critically
important proteins and are also functionally very specialised for specific ‘house keeping’ functions. We proposed that
proteins closest to the network centre may present good therapeutic targets. Here, we present multiple pieces of
novel functional evidence that provides strong support for this hypothesis.

Results: We found that the human PINs has a highly connected signalling core, with the majority of proteins
involved in signalling located in the two zones closest to the topological centre. The majority of essential, disease
related, tumour suppressor, oncogenic and approved drug target proteins were found to be centrally located.
Similarly, the majority of proteins consistently expressed in 13 types of cancer are also predominantly located in zones
closest to the centre. Proteins from zones 1 and 2 were also found to comprise the majority of proteins in key KEGG
pathways such as MAPK-signalling, the cell cycle, apoptosis and also pathways in cancer, with very similar patterns
seen in pathways that lead to cancers such as melanoma and glioma, and non-neoplastic diseases such as measles,
inflammatory bowel disease and Alzheimer’s disease.

Conclusions: Based on the diversity of evidence uncovered, we propose that when considered holistically, proteins
located centrally in the human PINs that also have similar functions to existing drug targets are good candidate
targets for novel therapeutics. Similarly, since disease pathways are dominated by centrally located proteins,
candidates shortlisted in genome scale disease studies can be further prioritized and contextualised based on
whether they occupy central positions in the human PINs.

Keywords: Protein interaction networks, Drug discovery, Metric spaces, Core-periphery structure, Topological
centrality, Essential proteins, Disease genes

Background
In order to develop an understanding of the roles of pro-
teins in cellular dynamics, especially for the purposes of
uncovering key players in disease development and for
discovery of novel therapeutic targets, their physiological
interactions must first be understood [1]. The special-
ized functions of the differentiated cell types which are
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assembled into tissues or organs depend on the com-
binatorial arrangements of proteins and their physical
interactions. [2-4]. A major current challenge is therefore
to understand the functions of various types of biological
networks, including PINs. [5-16].
A predominant question in the analysis of PINs contin-

ues to be whether biological characteristics and functions
of proteins such as lethality, physiological malfunctions
and malignancy are intimately linked to the topologi-
cal role proteins play in the network [17-21]. Much of
the recent efforts in the analysis of protein-protein inter-
action (PPI) networks has therefore focused on finding
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functional dependencies between so-called hubs, defined
as proteins involved in many interactions, and their topo-
logical roles in the network [22-24].
In the literature, nodes of PINs have been ranked by

metrics such as degree, betweenness, eccentricity and
closeness. The latter, which is defined as the reciprocal of
the average geodetic distance between a given node and
others, has particularly featured [25]. Using these metrics,
a classification of proteins into core and periphery classes
has been defined as a way to predict a protein’s relative
importance in the network.
It has been reported that disease lethal genes are

located in the ‘core’ of PPI networks [26-28]. Moreover,
it has also been shown that highly connected proteins
that are also functionally important are also topologi-
cally centered and are locally and globally important
nodes in the core network [29] and that those with
housekeeping functions are mainly located in close prox-
imity to the topological core of the interactome [2].
Similarly, Vinogradov [30] showed that PINs of Saccha-
romyces cerevisiae and Escherichia coli consist of two
large-scale modularity layers: central and peripheral, sep-
arated by a zone of depressed modularity. The categories
of the central layer are mostly related to nuclear infor-
mation processing, regulation and cell cycle, whereas the
peripheral layer is dealing with various metabolic and
energetic processes, transport and cell communication.
Ignacio et al. [25] has developed ‘k-core decomposition’,
a tool which enables the disentangling of the hierarchi-
cal structure of networks by progressively focusing on
their central cores. The k-core analyses of PINs showed

that drug-targets tend to be closer to the topological
core [31].
We have recently showed, by using a more precise

approach that formally models PINs as metric spaces
and classifies proteins into zones based on their distance
from the topological centre, that hub proteins are not
distributed randomly and are in fact the main feature
of zones closest to the network centre. [32]. Further-
more, we intimated that these zones have likely func-
tional significance and proposed that centrally located
proteins of both human functional protein interaction
network (HFPIN) and the a curated human signalling
network (HSN) may present good therapeutic targets.
Here, we present further evidence to support our hypoth-
esis and show that the functional and graph-theoretic
properties of zones of both human PINs have bio-
logical significance. We provide a strategy of identify-
ing possible potential for supporting therapeutic target
discovery.

Results and discussion
Human PINs have a core-periphery structure when
modelled as metric spaces
We modelled the HFPIN [33], which consists of 9448
nodes and 181706 interactions and the highly curated and
currently largest available HSN [34,35], which consists of
6291 nodes and 62737 interactions (http://www.bri.nrc.
ca/wang/). To do so, we first identified each network’s
topological centre(s) using a formal method that finds the
protein(s) that has the smallest maximal distance to other
proteins in the network. This locates the protein at the

Table 1 Graphmetrics of human PINsmodeled with respect to distance from the centre

PIN Nodes Edges Diameter Centre Zones around centre

1 2 3 4 5 6 7 8 9

HFPIN 9448 181706 13 MAPK14

374 4610 3464 578 104 14 2 1 1 Nodes

86 32 52 2 2 1 1 2 1 Ave degree

3 1 1 1 1 1 1 2 1 Min degree

531 430 393 14 6 2 2 2 1 Max degree

0 173 653 307 56 12 1 0 1 # quills

HSN 6291 62737 11 MAPK1

431 3527 1929 206 38 4 Nodes

67 24 7 2 2 3 Ave degree

1 1 1 1 1 1 Min degree

451 362 89 11 9 5 Max degree

4 404 757 133 20 2 # quills

CN 10573 210689 13 MAPK3

542 6011 3352 367 61 4 1 1 1 Nodes

95 34 49 2 2 1 2 2 1 Ave degree

1 1 1 1 1 1 2 2 1 Min degree

590 431 394 12 6 2 2 2 1 Max degree

1 339 831 212 40 3 0 0 1 # quills

http://www.bri.nrc.ca/wang/
http://www.bri.nrc.ca/wang/
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Table 2 Functional specialization of HFPIN zones defined
by distance from the network centre

Enriched Pathway Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Signal transduction 38.1% 26.4% - - -

Immune system 31.3% 8% 5.1% - -

Hemostasis 18.4% 5.9% 2.5% - -

Disease 17.5% 9.1% 4.4% - -

Gene Expression 7.9% 8.8% 11.9% - -

Metabolism 10.7% 9.1% 8.7% 11.3% 16.3%

Transmembrane
transport of small
molecules

- 2% 2.5% 3.9% 13.4%

Metabolic pathways 2.4% 4.8% 6.7% 12.7% 25%

Percentages indicate proportion of proteins in a zone belonging to the specific
functional class.

true centre of the network, and does not assume that it
has the highest number of connections/interactions. Once
each network centre was identified, all proteins were cate-
gorized into zones based on their distance from the centre,
which was defined as the smallest number of interactions
that have to be traversed from any protein to reach the
centre. For example, proteins were categorized as being
in zone 1 if they directly interact with the centre and
are this one distance unit away from it. Similarly, zone 2
proteins interact with at least one zone 1 protein and pos-
sibly also other proteins in other zones, but not directly
with the centre and are thus 2 distance units away from
it, etc.
Themain aim of finding the centre of the network was to

classify proteins into zones so as to further analyse them
from a systems point of view. When we partitioned pro-
teins into zones based on their distance from the centre,
the metric structures of the networks could be summa-
rized as follows:

Table 3 Functional specialization of HSN zones defined by
distance from the network centre

Enriched Pathway Zone 1 Zone 2 Zone 3 Zone 4

Signal transduction 40.6% 21.1% 9.3% 16%

Immune system 33.6% 16.2% 8.4% -

MAPK signalling 28.9% 3.5% - -

Pathways in cancer 21.4% 5.7% - -

Disease 21% 10% 7.2% 9.8%

Hemostasis 16.5% 6.9% 3.3% -

Cell Cycle 5.3% 7.6% 3.4% -

Gene expression 7.2% 7.5% 8.7% -

Metabolism of proteins - 4.6% 4.6% -

Percentages indicate proportion of proteins in a zone belonging to the specific
functional class.

Table 4 Summary of cellular function in the central zones
of HFPIN

Cellular # of proteins Zone 1 Zone 2 Zone 3
function

Signalling pathway 3186 285 (76.2%) 2141 (46.4%) 760 (20.8%)

Positive signals 544 75 (20%) 386 (8.3%) 83 (2.2%)

Negative signals 449 57 (15.2%) 321 (6.9%) 71 (1.9%)

MAPK signalling
cascade

394 93 (24.8%) 258 (5.5%) 43 (1.1%)

Apoptosis
signalling pathway

38 13 (3.4%) 19 (0.4%) 6 (0.1%)

Positive regulation
of apoptosis
signalling

22 6 (1.6%) 13 (0.2%) 3 (0.1%)

Negative regulation
of apoptosis
signalling

10 4 (1%) 3 (0.06%) 3 (0.08%)

Percentages indicate proportion of proteins in a zone belonging to the specific
functional class.

1. Both have a single protein as their topological centre:
MAPK14 and MAPK1 respectively, for HFPIN and
HSN. These proteins are members of the MAP kinase
family and have been featured as drug targets [36,37].

2. HFPIN was found to contain 9 zones and HSN 6. We
identified several features that support the
core-periphery structure proposed for PPI networks.
For purposes of further discussion, the zone closest
to the centre will be referred to as zone 1.

In both networks, proteins in zone 1 was found to be
the most connected with an average degree 86 and 67
respectively for HFPIN and HSN. Overall, 92% and 95%
respectively of nodes are located in zones 1 to zone 3
for HFPIN and HSN. Zones 6 to 9 for HFPIN and zones
5 to 6 for HSN consist only of ‘quills’ (nodes that have
degree 1) [32]. It is clear that the HPFIN and HSN struc-
tures therefore both have densely connected kernels that

Table 5 Distribution of essential, disease, drug target and
classical cancer proteins in HFPIN zones

Zone Essential Disease Drug Oncogenes Tumour
roles associated targets suppressors

1 161 (43%) 159 (42.5%) 59 (15.7%) 15 (4%) 14 (3.7%)

2 1002 (21.7%) 1184 (25.6%) 346 (7.5%) 32 (0.7%) 42 (0.9%)

3 392 (10.7%) 545 (14.9%) 77 (2.1%) 1 (0.02%) 4 (0.1%)

4 55 (9.3%) 85 (14.4%) 11 (1.8%) 1 (0.2%) 2 (0.3%)

5 10 (9.6%) 19 (18.2%) 3 (2.8%) - -

6 - 2 (14.2%) 1 (7.1%) - -
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Table 6 Distribution of essential, drug target and classical
cancer proteins in HSN zones

Zone Essential Drug Oncogenes Tumour
roles targets suppressors

1 157 (36.4%) 69 (16%) 12 (2.7%) 12 (2.7%)

2 815 (23.1%) 291 (8.2%) 33 (0.9%) 41 (1.1%)

3 268 (13.8%) 103 (5.3%) 4 (0.02%) 4 (0.2%)

4 29 (14%) 5 (2.4%) - -

5 4 (10.5%) 1 (2.6%) - 1 (2.6%)

rapidly become more sparsely connected towards their
peripheries (Table 1).

Zones of both human PINs are functionally specialised
A summary of enriched pathway analysis reveals that spe-
cialization in protein functions and organizing principles
are essentially identical in the two networks. While the
total numbers of proteins in the two networks are signif-
icantly different, the proportions of proteins contributing
to key functions and pathways in each zone are remark-
ably similar (Tables 2 and 3). Further, all between-zone
differences in proportions of proteins involved in enriched
functions were found to be statistically significant using
a z-test (P < 0.01) in both networks. The distribution
of all important cellular functions across the zones have
essentially identical patterns.
We observed statistically significant (Bonferroni cor-

rected P-value < 0.01) functional enrichment in spe-
cific zones of the human PINs. Further, we observed

in general that zones proximal to the centre appear
to be more involved and specialized for key biological
functions, with the proteins in those zones involved in
only a few pathways. In contrast, zones distal from the
centre appear to be more functionally diverse and are
enriched for pathways involved in more routine func-
tions. All differences between zones were confirmed to
be statistically significant (P < 0.01). Zone 1 is highly
enriched for proteins involved in signal transduction,
the immune system, hemostasis and disease pathways
and appears to constitute of a core of highly important
interactions required for organism and cellular sensing
and response to adverse environmental, biological and
mechanical stresses. Zone 2 is also enriched for pro-
teins involved in signal transduction and immune system
pathways and is moderately enriched for gene expression
and metabolic pathways, which are the main functional
themes in zone 3. From zone 4 onwards, proteins have
significantly less enrichment than zones closer to the cen-
tre, with metabolism, metabolic pathways, metabolism
of proteins, membrane trafficking and transmembrane
transport of small molecules being the main functional
themes.

The human functional protein interaction network has a
highly connected signalling core
Due to the proportional statistical over-representation of
signal transduction pathways in the zones closest to the
centre, their known importance in cellular functions and
their prominence as a drug target category, we explored
the distribution of proteins having any signalling func-
tion, as well as functions related to regulation of signalling

Table 7 HFPIN zone distribution of proteins consistently expressed in cancer samples

Type of cancer # proteins Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

Breast 330 11 (3.3%) 189 (57.2%) 121 (36.6%) 9 (2.7%) - -

Cervical 711 26 (3.6%) 425 (59.7%) 230 (32.3%) 23 (3.2%) 7 (0.9%) -

Endometrial 1515 57 (3.7%) 839 (55.3%) 514 (33.9%) 83 (5.4%) 20 (1.3%) 2 (0.1%)

Fallopian 1292 49 (3.7%) 715 (55.3%) 446 (34.5%) 67 (5.1%) 14 (1%) 1 (0.07%)

Glioblastoma 1046 38 (3.6%) 589 (56.3%) 368 (35.1%) 44 (4.2%) 6 (0.5%) 1 (0.9%)

Glioma 1180 40 (3.3%) 621 (57.7%) 440 (37.2%) 63 (5.3%) 13 (1.1%) 3 (0.2%)

Kidney 561 14 (2.4%) 331 (59%) 193 (34.4%) 23 (4%) - -

Liver 715 29 (4%) 402 (56.2%) 247 (34.5%) 33 (4.6%) 4 (0.5%) -

Lung 532 19 (3.5%) 314 (59%) 175 (32.8%) 22 (4.1%) 2 (0.3%) -

Ovarian 775 26 (3.3%) 432 (55.7%) 279 (36%) 32 (4.1%) 6 (0.7%) -

Pancreatic 717 30 (4.1%) 411 (57.3%) 244 (34%) 28 (3.9%) 4 (0.5%) -

Pituitary 1126 37 (3.2%) 591 (52.4%) 421 (37.3%) 61 (5.4%) 15 (1.3%) 1 (0.08%)

Rectal 1597 69 (4.3%) 861 (53.9%) 552 (34.5%) 90 (5.6%) 23 (1.4%) 2 (0.1%)

Average 3.5% 56.5% 34.8% 4.4% 0.7% 0.1%
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Table 8 HSN distribution of proteins consistently expressed in cancer samples

Type of cancer # proteins Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

Breast 236 12 (5%) 151 (63.9%) 70 (29.6%) 2 (0.8%) 1 (0.4%) -

Cervical 533 42 (7.8%) 323 (60.6%) 157 (29.4%) 9 (1.6%) 1 (0.1%) 1 (0.1%)

Endometrial 1092 89 (8.1%) 647 (59.2%) 336 (30.7%) 17 (1.5%) 2 (0.1%) 1 (0.09%)

Fallopian 941 72 (7.6%) 563 (59.8%) 287 (30.4%) 16 (1.7%) 2 (0.2%) 1 (0.1%)

Glioblastoma 767 64 (8.3%) 471 (61.4%) 216 (28.1%) 13 (1.6%) 2 (0.2%) 1 (0.1%)

Glioma 824 35 (8%) 278 (64%) 114 (62.2%) 5 (1.1%) 1 (0.2%) 1 (0.2%)

Kidney 434 14 (2.4%) 331 (59%) 193 (34.4%) 23 (4%) - -

Liver 537 45 (8.3%) 328 (61%) 155 (28.8%) 7 (1.3%) 1 (0.1%) 1 (0.1%)

Lung 422 31 (7.3%) 260 (61.6%) 121 (28.6%) 8 (1.9%) 2 (0.4%) -

Ovarian 557 39 (7%) 334 (59.9%) 174 (31.2%) 8 (1.4%) 1 (0.1%) 1 (0.1%)

Pancreatic 536 46 (8.5%) 332 (61.9%) 148 (27.6%) 8 (1.4%) 1 (0.1%) 1 (0.1%)

Pituitary 789 56 (7%) 458 (58%) 253 (32%) 19 (2.4%) 2 (0.2%) 1 (0.1%)

Rectal 1162 95 (8.1%) 677 (58.2%) 365 (31.4%) 21 (1.8%) 3 (0.2%) 1 (0.8%)

Average 7.5% 60.6% 29.6% 1.5% 0.2% 0.1%

Figure 1 KEGG ‘Pathways in Cancer’. (Zone 1: red, zone 2: orange, zone 3: yellow).
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(Table 4). All differences between proportions of sig-
nalling related proteins between zones were found to be
statistically significant (P < 0.01).
As we have shown that the zones closest to the centre

are highly connected, it appears that a very important
feature of the HFPIN is a highly connected signalling
core, which may flexibly modulate responses to extra-
cellular and intracellular stimuli via a large number of
possible shortest paths to the rest of the network. It
is likely that such signals emanate from within and
between the innermost zones of HFPIN (zones 1 and 2),
which are significantly enriched for signalling functions
and where the largest number of possible of interac-
tions occur amongst signalling proteins and with other
important proteins. As almost all known diseases exhibit
dysfunctional signalling networks [38], the extreme
enrichment of zones 1 and 2 for signalling pathway
functions makes the proteins in those belonging to that
functional class potentially high priority novel drug target
candidates.

Essential, disease related, tumour suppressor, oncogenic
and therapeutic target proteins are centrally located in
human PINs
We extracted a list of human proteins that are likely to
be essential based on the fact that knockouts of their
orthologs in mice are annotated in the Mouse Genome
Database as producing pre-, peri- and post-natal lethal
phenotypes. These proteins comprise 43%, 21.7%, 10.7%,
9.3% and 9.6% of proteins in zones 1, zone 2, zone 3,
zone 4 and zone 5 respectively of HFPIN and the differ-
ences between zones were confirmed to be statistically
significant (P < 0.01).
We also determined in HFPIN the distribution of pro-

teins annotated as being involved in at least one dis-
ease by the Disease Ontology Project [39]. Zones 1 to
6 were found to contain 159, 1184, 545, 85, 19 and 2
disease related proteins respectively. While zone 2 con-
tains the largest number of disease gene products, the
same pattern is displayed as for essential gene prod-
ucts, with 42.5%, 25.7%, 14.9%, 14.7%, 18.3% and 14.3%

Figure 2 KEGGMAPK signalling pathway. (Zone 1: red, zone 2: orange, zone 3: yellow).
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of proteins occurring in zones 1 to 6 respectively, being
classified as such. The evidence strongly suggests that
zones closest to the topological centre contain the largest
numbers and proportions of important proteins, with
zone 1 on the whole appearing to be most sensitive to
aberrations.
We further tested this new hypothesis by determining

the distribution of 49 known oncogenes and 62 sup-
pressor genes [40]. Again, the majority of those proteins
are located in zones 1 and 2 with zone 1 again hav-
ing the highest proportion of its proteins belonging to
those functional classes, with 4%, 0.6%, 0.02% and 0.1%
of proteins in zones 1 to 4 being products of oncogenes,
and 3.7%, 0.9%, 0.1% and 0.3%, respectively being tumour
suppressors.
In order to determine whether the clear dominance

of zone 1 and 2 proteins in essential roles and the dis-
eases have potential implications for drug discovery, we
assessed the zone distribution of 497 clinically approved

human drug target proteins extracted from the Therapeu-
tic Target Database [41]. The pattern of distribution is
virtually identical to the aforementioned categories, where
497 proteins tested comprise 15.7%, 7.5%, 2.1% and 1.8%
of proteins in zones 1 to 4, respectively and the differences
between zones were again confirmed to be statistically
significant (P < 0.01). As with the other protein func-
tional classes tested, zone 1 contains proportionally the
largest percentage of drug targets and approximately dou-
ble that of zone 2, despite containing only 10% as many
proteins. Further, more peripheral zones have compara-
tively much lesser numbers, and we therefore propose that
proteins in zone 1 and 2 should be given priority in the
search for novel drug target candidates and disease genes
(Table 5).
Surprisingly similar and statistically significant patterns

were seen in the HSN (Table 6) and the distribution of all
important cellular functions is essentially identical to the
HFPIN.

Figure 3 KEGG Cell-cycle pathway. (Zone 1: red, zone 2: orange, zone 3: yellow).
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Themajority of consistently expressed proteins in cancers
are located in zones closest to the centre of human PINs
Using absence/presence calls from the Gene Expression
Barcode database, we identified genes which are consis-
tently expressed in more than 99% of samples of a given
cancer and mapped them onto the zones in which they
occur in the human PINs. We found that these proteins
are primarily located in zones closest to the centre of
human PINs (Tables 7 and 8). Most of these are located
in zone 2, followed by zone 3 and zone 1. In the periph-
ery, the percentage gradually decreases up to zone 6, after
which they are absent.

Proteins located in zones closest to the HFPIN’s centre
dominate important and disease pathways
In order to determine whether the enrichment for specific
pathways in zones closest to the centre are in concordance
with the proportions of proteins from those zones in the
said pathways, we mapped HFPIN zone locations to pro-
teins in KEGG pathways [42] using the KEGG Mapper
facility (http://www.genome.jp/kegg/tool/map_pathway2.

html). Strikingly, proteins from zone 1 of the HFPIN com-
prise a significant proportion of key pathways despite
the fact that zones 2 and 3 contain approximately 10
times as many proteins. Furthermore, the vast majority of
proteins involved in KEGG ‘pathways in cancer’, ‘MAPK-
signalling’, ‘cell cycle’ and ‘apoptosis’ are from zones 1 and
2 (Figures 1, 2, 3 and 4, respectively). This dominance may
be surprising given that the HFPIN represents less than
half of known human proteins. Similar patterns are seen
in the melanoma pathway and also in pathways for non-
neoplastic diseases such as measles, inflammatory bowel
disease and Alzheimer’s disease (Additional files 1, 2, 3
and 4, respectively). Also interesting is the observation
that distinct sub-pathways are comprised of proteins from
a specific zone. For example, in the melanoma pathway, all
proteins involved in the cell cycle are located in zone 1.
For the cell cycle pathway itself, all components of the ori-
gin recognition complex are from zone 1, while all in the
mini-chromosomemaintenance complex are from zone 2,
which we propose adds further credence to our hypothe-
sis that grouping proteins in PINs based on distances from

Figure 4 KEGG Apoptosis pathway. Zone 1: red, zone 2: orange.

http://www.genome.jp/kegg/tool/map_pathway2.html
http://www.genome.jp/kegg/tool/map_pathway2.html
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Table 9 Functional specialization of CN zones defined by
distance from the network centre

Enriched Pathway Zone 1 Zone 2 Zone 3 Zone 4

Signal transduction 43% 21.6% - -

Immune system 32% 10.9% 5.4% -

MAPK signalling 25.8% 2.3% - -

Pathway in cancer 20.7% 3.5% - -

Disease 22.6% 9.3% 5.4% -

Hemostasis 15.9% 5.3% - -

Cell Cycle 5.4% 5.5% 3.1% -

Gene expression 7.8% 8.3% 12.5% -

Metabolism 13.1% 9.3% 8.8% 15.9%

Percentages indicate proportion of proteins in a zone belonging to the specific
functional class.

the topological centre has biological significance. It is also
apparent that proteins positioned closest to the topolog-
ical centre of the HFPIN are involved in key roles within
important cellular pathways as well as those leading to
disease.

Central zones of a combined network display increased
bias for disease-linked and drug target proteins
We non-redundantly merged the HFPIN and the HSN
into a combined network (CN) of 10573 nodes and 210689
interactions and modelled it as a metric space. Even
though the core-periphery structure of the CN is sim-
ilar to those of the original networks, the proportional
sizes and connectivity of its zones 1 and 2 are signifi-
cantly increased (Table 1). In line with our hypothesis
on the cellular importance of central zones, the involve-
ment of those zones in signal transduction and disease
pathways is also increased (Table 9). Similar to HFPIN
and HSN, zones closest to the centre of the CN also has
the highest proportional representation of signalling func-
tions (Table 10), essential, drug target and classical cancer
proteins (Table 11) and proteins consistently expressed
by specific cancers (Table 12). However, we propose that
the drug discovery potential of our metric space model
of the CN is further increased compared to the individ-
ual networks due to the higher number of proteins and
hubs in its central zones. This was further supported
when wemapped proteins onto KEGG pathways as before

and found that CN zone 1 proteins feature even more
prominently in key pathways than does the equivalent in
HFPIN. Coloured pathway maps can be downloaded from
ftp://ftp.sanbi.ac.za/junaid/bmc2/CN_colored_maps.zip.

Conclusion
Our over-representation analysis on zones depending on
the distance from the centre of network has shown that
innermost zones of the human PINs are enriched for crit-
ically important proteins are functionally specialized. In
addition, the majority of known disease-associated and
drug target proteins are located in the first two zones.
We therefore posit that other proteins in these central
positions have similar importance, with zone 1 being
particularly enriched for signal transduction proteins, an
important class of therapeutic targets. We therefore pro-
pose that when considered holistically, central proteins
having similar functions to existing drug targets are also
potential targets for novel therapeutics. Similarly, based
on our observation that disease pathways are dominated
by central proteins, we propose that genes shortlisted in
genome scale disease studies can be further prioritized
based on whether their protein products occupy cen-
tral positions in the human PINs. Further, the increased
concentration of known therapeutic targets in zone 1
of the combined network compared to the other net-
works, along with its increase in the total number of pro-
teins and average number of interactions, indicates that
adding the information from the highly curated human
signalling network to human PPI networks may signifi-
cantly improve their utility in disease gene and drug target
discovery.

Methods
Zones data sources
We consider zones of the human PINs as described pre-
viously [32]. We also non-redundantly merged the HFPIN
and the HSN into a combined network. Proteins from all
three networks classified into zones relative to the cen-
tre can be downloaded from ftp://ftp.sanbi.ac.za/junaid/
bmc2/Zones_in_PPI_networks.zip.

Functional enrichment analysis
In order to determine whether zones of the human PINs
have biological significance, we divided proteins into

Table 10 Distribution of signalling related functions in HFPIN and CN zones

HPFIN CN

Function Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3

Signalling 285 (76.2%) 2141 (46.4%) 760 (20.8%) 397 (73.2%) 2434 (40.4%) 640 (19%)

Positive regulation 75 (20%) 386 (8.3%) 83 (2.2%) 123 (22.6%) 393 (6.5%) 50 (1.4%)

Negative regulation 57 (15.2%) 321 (6.9%) 71 (1.9%) 82 (15.1%) 344 (5.7%) 54 (1.6%)

MAPK signalling 93 (24.8%) 258 (5.5%) 43 (1.1%) 139 (25.6%) 249 (4.1%) 20 (0.5%)

ftp://ftp.sanbi.ac.za/junaid/bmc2/CN_colored_maps.zip
ftp://ftp.sanbi.ac.za/junaid/bmc2/Zones_in_PPI_networks.zip
ftp://ftp.sanbi.ac.za/junaid/bmc2/Zones_in_PPI_networks.zip
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Table 11 Distribution of essential, drug target and
classical cancer proteins in CN zones

Zone Essential Disease Drug Oncogenes Tumour
genes associated targets suppressors

1 206 (38%) 234 (43.2%) 97 (17.8%) 17 (3.1%) 20 (3.6%)

2 1084 (18%) 1279 (21.3%) 365 (6%) 32 (0.5%) 42 (0.6%)

3 315 (9.3%) 415 (12.4%) 59 (1.7%) 2 (0.05%) 4 (0.1%)

4 28 (7.6%) 56 (15.3%) 3 (0.8%) 1 (0.2%) 1 (0.2%)

5 2 (3.2%) 9 (14.8%) 1 (1.6%) - -

subsets based on their distance from the true topologi-
cal centre. Protein sets representing each zone was then
subjected to a pathway over-representation analysis in
order to determine whether the zones were specialized
for specific functions. The Comparative Toxigenomics
Database’s Gene Set Enricher web service (http://ctdbase.
org/tools/enricher.go) was used to perform the enrich-
ment analysis and a Bonferroni corrected p-value of 0.01
was chosen as a statistical significance cutoff. Lastly, when
such enrichment was observed, we calculated the pro-
portion of proteins involved in each enriched pathway
as a way to assess whether any zones display functional
specialization.

Cancer gene expression data sources
We consider gene expression absence/presence calls from
the following cancers types: breast, lung, kidney, pancreas,
liver, cervix, ovary, glioblastoma, pituitary, glioma, fallop-
ian, endometrium and rectum, which was downloaded
from Gene Expression Barcode database (http://barcode.
luhs.org/index.php?page=genesexp). Genes expressed in
at least 99% of samples of a cancer of interest based on

the Human HGU133 platform were downloaded. Gene
expression was used as a proxy for protein expression and
was mapped onto the PINs of interest in order to identify
the zones in which gene product is located in.

Testing the difference between proportions
We perform a z-test for the difference between two pop-
ulation proportions p1 and p2. We identify the null and
alternative hypotheses and we specify the level of sig-
nificance to be P < 0.01. After that we determine the
critical value(s) from the statistic table. Finally we find the
standardized test statistic as showing below.

Statistical significance of the proportional analysis of
pathway representation of zones
To test differences between proportions among zones,
we need a statistical comparison of observed differences.
A two-sample z-test for the difference between propor-
tions for the top statistically enriched REACTOME path-
ways among zones was conducted. We defined the null
hypothesis H0 to be: classification proportions of zones
in the periphery in human PINs are as have high pro-
portion significance as zones closest to the centre, i.e
the accuracy of the sensing function are in zones clos-
est to the centre and the accuracy of metabolic func-
tion are in zones in the periphery. If the P < 0.01,
we rejected H0 and concluded that the proportions sup-
port our claim that zones closest to the centre have high
proportion significance than the zones in the periph-
ery. In the other words, we have enough evidence at
the 1% level to conclude that zones closest to the centre
have high proportion significance than the zones in the
periphery.

Table 12 CN distribution of proteins consistently expressed in cancer samples

Type of cancer # proteins Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Breast 350 24 (6.8%) 224 (64%) 95 (27.1%) 7 (2%) -

Cervical 760 43 (5.6%) 496 (65.2%) 203 (26.7%) 16 (2.1%) 2 (0.2%)

Endometrial 1644 91 (5.5%) 1007 (61.2%) 474 (28.8%) 61 (3.7%) 11 (0.6%)

Fallopian 1408 71 (5%) 869 (61.7%) 409 (29%) 51 (3.6%) 8 (0.5%)

Glioblastoma 1128 63 (5.5%) 719 (63.7%) 311 (27.5%) 30 (2.6%) 5 (0.4%)

Glioma 1270 67 (5.2%) 765 (60.2%) 380 (29.9%) 48 (3.7%) 10 (0.7%)

Kidney 593 44 (7.4%) 389 (65.5%) 150 (25.2%) 10 (1.6%) -

Liver 769 51 (6.6%) 475 (61.7%) 221 (28.9%) 21 (2.7%) 1 (0.1%)

Lung 571 39 (6.8%) 369 (64.6%) 153 (26.7%) 9 (1.5%) 1 (0.1%)

Ovarian 823 37 (4.4%) 524 (63.6%) 236 (28.6%) 23 (2.7%) 3 (0.3%)

Pancreatic 771 44 (5.7%) 483 (62.6%) 223 (28.9%) 21 (2.7%) -

Pituitary 1228 60 (4.8%) 738 (60%) 373 (30.3%) 47 (3.8%) 10 (0.8%)

Rectal 1753 96 (5.4%) 1061 (60.5%) 515 (29.3%) 70 (3.9%) 11 (0.6%)

Average 5.7% 62.7% 28.2% 2.8% 0.3%

http://ctdbase.org/tools/enricher.go
http://ctdbase.org/tools/enricher.go
http://barcode.luhs.org/index.php?page=genesexp
http://barcode.luhs.org/index.php?page=genesexp
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Additional files

Additional file 1: KEGGmelanoma pathway. Zone 1: red, zone 2:
orange.

Additional file 2: KEGGmeasles pathway. (Zone 1: red, zone 2: orange,
zone 3: yellow), zone 4: green.

Additional file 3: KEGG inflammatory bowel disease pathway. (Zone
1: red, zone 2: orange, zone 3: yellow, zone 4: green).

Additional file 4: disease pathway. (Zone 1: red, zone 2: orange, zone 3:
yellow, zone 4: green).
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