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Abstract

Background: Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors
have been extensively profiled, thus providing a map of the strength of action of each compound on a large number
of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs
and elucidate the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based on a
comprehensive network model of cellular signalling are difficult, due to our partial knowledge of the complex
biological processes downstream of the targeted kinases.

Results: We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates information contained in
drug-kinase networks with in vitro screening. The method uses the in vitro cell response of single drugs and drug pair
combinations as a training set to build linear and nonlinear regression models. Besides predicting the effectiveness of
untested drugs, the KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a given
cell line. We compared different versions of the method, which is based on a regression technique known as elastic net.
Data from two-drug combinations led to predictive models, and we found that predictivity can be improved by
applying logarithmic transformation to the data. The method was applied to the A549 lung cancer cell line, and
we identified specific kinases known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and
CDK4). A pathway enrichment analysis of the set of kinases identified by the method showed that axon guidance,
activation of Rac, and semaphorin interactions pathways are associated to a selective response to therapeutic
intervention in this cell line.

Conclusions: We have proposed an integrated experimental and computational methodology, called KIEN, that
identifies the role of specific kinases in the drug response of a given cell line. The method will facilitate the design
of new kinase inhibitors and the development of therapeutic interventions with combinations of many inhibitors.

Keywords: Drug response predictions, Kinase inhibitors, Elastic net regression, High throughput screening, Drug
combination therapies
Background
The important role of kinases in cancer biology [1] has
spurred a considerable effort towards the synthesis of
libraries of fully profiled kinase inhibitors, providing a
map of the strength of each compound on a large num-
ber of its potential targets [2-4]. In particular, a recently
published dataset has profiled several hundred kinase
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inhibitors using a panel of more than 300 kinases [4].
These profiled libraries define a network of interactions
between drugs and their kinase targets [5], and represent
a valuable resource for the development of new therap-
ies. In this paper, we introduce a novel computational
method that incorporates profiled libraries and in vitro
measurements to predict the response of cells to previ-
ously untested drugs. Besides making prediction about
the cellular response to drugs, the method identifies
critical kinase targets and pathways that are statistically
associated to drug sensitivity in a given cell line.
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Statistical inference and regression methods in con-
junction with gene expression or mutations have been
used to identify specific biomarkers associated with an
increased sensitivity/resistance to drugs. For instance,
the sensitivity to PARP inhibitors of Ewing’s sarcoma
cells with mutations in the EWS gene and to MEK
inhibitors in NRAS-mutant cell lines with AHR expres-
sion have been predicted using analysis of variance and
the elastic net method [6] and then experimentally
validated [7,8]. In these analyses, the statistical variable
associated to drugs was represented by the half maximal
inhibitory concentration (IC50) in different cell lines.
However, besides the IC50, there are many other types of
information that characterize chemical compounds.
These types of information can enhance the statistical
analyses and improve the accuracy of predictions. For
instance, a method to predict drugs sensitivity in cell
lines based on the integration of genomic data with
molecular physico-chemical descriptors of the drugs has
been recently proposed [9]. Another useful type of infor-
mation is the residual activity of kinases after interacting
with a compound. Kinase profiling, patient genetic pro-
files, and sensitivity of primary leukemia patient samples
to kinase inhibitors were recently used by Tyner et al.
[10] to identify functionally important kinase targets and
clarify kinase pathway dependence in cancer.
In this paper, the residual activity of kinases upon drug

interaction is used to make predictions of the cellular
response for in vitro experiments using an elastic net [6]
regression approach. This regression method reduces
the number of predictors to a minimum set, providing a
clear picture of the kinases involved in the response of
cell lines. A primary screen (single drug) and a second-
ary screen (two-drug combinations) are used as the
training set for the regression. The two-drug screening
exhibits a broader distribution in the response and pro-
vides a good level of predictability. In fact, the model
based only on single drug response did not pass the stat-
istical cross-validation test.
We are applying this Kinase Inhibitor Elastic Net

(KIEN) method to predict cell viability of a lung cancer
cell line (A549) and a normal fibroblast cell line (IMR-90)
after drug treatment. We found that the regression can be
improved through a logarithmic transformation on the
data. Using the results of the regression, we identified a
set of kinases that are strongly associated to a selective re-
sponse of A549 and not IMR-90. Then, a pathway-based
enrichment using Reactome [11] revealed ten significant
pathways using this set of kinases, including axonal guid-
ance and related semaphorin interactions as top hits.
This paper is organized as follows: Section In vitro screen

of the kinase inhibitor library contains the experimental
results of the primary and secondary in vitro screening cor-
responding to single drugs and two-drug combinations.
These experimental results and residual kinase activity are
analyzed with Pearson’s correlation in Section Analysis of
correlations. This simple correlation analysis gives a first
glance of the kinases that are statistically associated to a sig-
nificant change in the viability of cancer and normal cell
lines. In Section Elastic net regression, we introduce the
elastic net approach and we present the results of a leave-
one-out cross validation for predictions on single and pairs
of drugs. We also present in this section the results ob-
tained using the logarithmic transformation on the vari-
ables and a pathway enrichment analysis using Reactome
[11]. The Discussion of the results is in Section Discussion,
conclusions in Section Conclusions, and Materials and
Methods in Section Materials and methods.

Results
In vitro screen of the kinase inhibitor library
Our methodology begins with the high-throughput
screening of single drug and drug pair experiments. The
244 kinase inhibitors (KIs) of the EMD drug library were
screened at 1000 nM individually and the treatment
lasted for 72 hours. To quantify a selective response of a
cancer cell line with respect to a control normal cell line,
we define the selectivity S of a single drug or drug com-
bination as

S ¼ vN
vC

where vN indicates the viability of normal cells (IMR90)
after treatment, and vC the viability of cancer cells
(A549) after treatment. From the screening of the 244
KIs, the top hit was PDK1/Akt1/Flt3 Dual Pathway
Inhibitor (CAS # 331253-86-2) as ranked by selectivity
(Figure 1). For the secondary screen, we used the PDK1/
Akt1/Flt3 Dual Pathway Inhibitor as the starting point
and combined this compound with the other KIs as a
drug pair combination. The dose of PDK1/Akt1/Flt3
Dual Pathway Inhibitor was studied to ensure proper
dosing range and minimize toxicity. We used 125 nM,
which maintains the normal cell line IMR-90’s viability
>90% (Figure 2). For the other 243 KIs we used the
standard dose of 1000 nM. Several pairs in the second-
ary screen showed very high selectivity. The top hit from
the secondary screen of the library was Alsterpaullone
2-cyanoethyl (CAS # 852529-97-0) with a selectivity of
S = 6.14 for the pair (Figure 3).

Analysis of correlations
In our second step, we analyzed the Pearson’s correlation
of the primary and secondary screening with a published
dataset [4] containing target profiles for 140 kinase
inhibitors. Therefore, even though we had a library of
244 KIs in the experimental screening, we were limited
to utilizing 140 KIs for the analysis. For each inhibitor,



Figure 1 Primary screen results of the top ten most selective kinase inhibitors. Drugs are ranked based on the IMR-90 to A549 viability ratio.
The 3 digit codes identify the compounds: A15: PDK1/Akt1/Flt3 Dual Pathway Inhibitor (CAS 331253-86-2); E20: Cdk/Crk Inhibitor (CAS 784211-09-2);
O20: SU9516 (CAS 666837-93-0); H15: MEK1/2 Inhibitor II (CAS 212631-61-3); L13: PI 3-Kα Inhibitor VIII (CAS 372196-77-5); G10: Fascaplysin,
Synthetic (CAS 114719-57-2); D07: Cdk2 Inhibitor II (CAS 222035-13-4); C16: Cdk1/2 Inhibitor III (CAS 443798-55-8); M16: GSK3b Inhibitor XII,
TWS119 (CAS 601514-19-6); N05: Reversine (CAS 656820-32-5). The chemical structure of these compounds is given in a Additional file 2.
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the dataset provides the residual activity (0 ≤ A ≤ 1) of
291 kinases after drug treatment. This quantity is a
measure of the strength of inhibition of a drug on each
kinase.
For each kinase k, we calculate the Pearson’s correl-

ation, Ck, between the selectivity Si and the activities
Ak, i, with i ∈ {1, …,M} indicating the single drug or drug
pair in the set. For drug pairs, the activity is estimated as
a product of the residual activities of the two drugs. The
kinases are then ranked based on the p-value of their
correlation with selectivity, and we calculate the False
Discovery Rate (FDR) adjusted p value [12]. The list of
kinases mostly correlated to the selectivity from the
primary and secondary screen are listed in Table 1. We
also did calculations of the correlation between the normal
or cancer cell viability and the activities. The results
for the top kinase-viability correlations for the primary
Figure 2 Dose response curve of PDK1/Akt1/Flt3 dual pathway inhibi
tested to measure the response of A549 to the drug. For the secondary scr
and secondary screen are shown in the supplementary
materials (Additional file 1: Table S1).

Elastic net regression
Next, we build a regression model that predicts the
response of a cell line to a drug or drug combination
i. The response we predict is the normal and cancer cell
viability, from which the selectivity can be derived. For
this purpose, we define a regression problem in which
we use the residual activity of the kinase k under the
effect of drug i, which we indicate as Ak, i, as predictors
of the viability. The response can be written as

vi ¼ β0 þ β1A1; i þ…þ βpAp; i : ð1Þ

A fitting procedure based on a training set of measure-
ments produces the coefficients (β0, β1,…, βp). Equation
tor. Different doses of PDK1/Akt1/Flt3 Dual Pathway Inhibitor were
een we selected 125nM to ensure low toxicity on the normal cell line.



Figure 3 Secondary screen results of the top ten most selective drugs (1000 nM) when paired with PDK1/Akt1/Flt3 dual pathway
inhibitor at 125 nM. Selectivity is the IMR-90 to A549 viability ratio, as defined in Section 2.1. The 3 digit codes identify the compounds: A12:
Alsterpaullone, 2-Cyanoethyl (CAS 852529-97-0); D17: Cdk2/9 Inhibitor (CAS 507487-89-0); K08: K-252a, Nocardiopsis sp. (CAS 97161-97-2); O21:
Staurosporine, Streptomyces sp. (CAS 62996-74-1); P15: WHI-P180, Hydrochloride (CAS 211555-08-7); E13: Gö 6976 (CAS 136194-77-9); C09:
Compound 56 (CAS 171745-13-4); A10: Alsterpaullone (CAS 237430-03-4); O03: AG 1478, Selective inhibitor of epidermal growth factor receptor
(EGFR) protein (CAS 175178-82-2); N05: Reversine (CAS 656820-32-5). The chemical structure of these compounds is given in a Additional file 2.
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(1) can then be used to predict the viability of a new
drug that has not been tested, but of which the profiling
information is available. Note that we are integrating
two different types of data: kinase profiling data is ob-
tained through enzymatic assays that probe directly the
interaction between drug and kinases, while the in vitro
cell response data is the result of complex signaling that
involves many pathways downstream of the affected
kinases. The coefficients βk can be seen as a measure of
the sensitivity of a given cell line due to alterations in
the activity of kinase k.
It is well known that the least square method does not

perform well in the case of linear regression with many
predictors. In our case, we would like to use a database
of drugs that have been profiled on about 300 kinases.
Table 1 Correlations between selectivity and kinase activity f

Kinase Selectivity corr FDR

Primary screening

PRKCZ 0.451 2.28E-08

DMPK 0.435 7.75E-08

STK39 0.430 1.15E-07

EPHA8 0.420 2.33E-07

ADRBK2 0.399 1.01E-06

PRKACG 0.396 1.27E-06

CAMK4 0.394 1.45E-06

MAP2K2 0.393 1.53E-06

ADRBK1 0.392 1.62E-06

PNCK 0.382 3.29E-06

A negative correlation indicates that inhibition of that particular kinases is associate
and CDK4 are known to have an important role in cell proliferation, invasion and m
However, it would be desirable to select and keep in the
final model a minimal set of the kinases that provide a
simple model, useful to gain biological insight. The lasso
technique [13] is a powerful method to reduce the num-
ber of predictors by imposing a penalty on the regres-
sion coefficients. However, in the presence of a group of
kinase predictors with strong mutual correlation, the
lasso could select only one kinase predictor from the
group while missing the others. To prevent this problem,
our method uses the elastic net approach. This method
incorporates the lasso penalty as well as a ridge penalty
to keep the regression coefficients small without com-
pletely removing them [6]. The weights of the ridge and
lasso penalties in the least square procedure can be opti-
mized for best performance of the method.
rom primary and secondary screening

Kinase Selectivity corr FDR

Secondary screening

TGFBR2 −0.501 8.29E-08

CDK4 −0.412 6.40E-05

CDC42BPB −0.409 6.40E-05

RIPK2 −0.399 7.73E-05

DSTYK −0.369 0.000413

ACVRL1 −0.368 0.000413

PAK1 −0.367 0.000413

MAPKAPK2 −0.364 0.000413

PAK7 −0.359 0.000424

CDK1 −0.357 0.000429

d to a higher selectivity. The top two hits with negative correlation, TGFBR2
etastasis in lung adenocarcinoma [21,22].
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We show in Figure 4(a) and (b) the results of a leave
one out cross validation (LOOCV) method for the
primary (a) and secondary screen (b). For each of the
140 drugs, we apply the elastic net method using the
remaining 139 drugs and then we compare the result
to the measured value. This cross validation method is
a particular case of the more general k-fold cross valid-
ation procedure in which k is equal to the size of the
training set [14]. The cross LOOCV shows that the
information contained in the primary screen is not
sufficient to define a predictive model. The fact that
some kinases in Table 1 show some significant correl-
ation with the response when considered individually
is in general not a sufficient condition for defining a
predictive, multiple regression model. On the other
hand, the secondary screen is able to reproduce the
viability of many drugs, especially the ones with the
stronger effect on both cell lines. Overall, the data
from the secondary screen presents a much broader
distribution with a tail representing a few drug combi-
nations particularly effective. The regression works better
in identifying these highly effective pairwise combinations
and the relative ranking of their strengths. Data is not
particularly informative for drugs and drug pair combi-
nations that are not effective, which concentrate in the
neighborhood of ~ 1.
Data transformations can represent a powerful strategy

to improve regression. We applied a logarithmic trans-
formation, which is consistent with the hypothesis of an
independent action on the different kinases on the total
Figure 4 Leave-one-out Cross Validation of the elastic net regression
screens for normal and cancer cell lines. Each of the 140 point in these
viability predicted by the regression model using all data from the other 13
measured for the drug or drug combination. Note that only the secondary
cancer cell types.
viability. In this case we assume that the viability can be
rewritten in the form

vi ¼ eβ0 A1; i
� �β1 ⋅ A2; i

� �β2 ⋅…⋅ Ap; i
� �βp : ð2Þ

By applying a log transformation on both sides of
Eq. (2) we reduce the problem to a linear regression, to
which the elastic net strategy can be applied. We show
in Figure 5 the results of the LOOCV for the primary
and secondary screen using the logarithmic data trans-
formation. As in the linear case, we find that the
method fails the cross validation procedure if we use
data from the primary screen, while the secondary
screen with log transformed data gives better R2.
In addition to a regression model that can be used to

predict the efficacy of drugs that have not been tested,
the βi coefficients can be used to rank kinases in terms
of their relevance in the regression. Therefore, these
coefficients identify the kinases whose inhibition is asso-
ciated to a decrease in the cell viability. A ranking based
on the differential βCi −β

N
i , where the index N and C

identify the regression model of the cancer and normal
cells, gives insight on specific pathways important for a
selective response of cancer cells. Table 2 shows a list of
kinases ranked in terms of βCi −β

N
i

�� �� , where the coeffi-
cients have been obtained using the logarithmic data
transformation on the secondary screen.
In order to test whether selected pathways were

significantly enriched for the identified kinase genes
in Table 2, a pathway-based enrichment analysis was
model based on the primary (top) and secondary (bottom)
figures corresponds to one of the 140 drug. “Regression” refers to the
9 drugs as training set, while “Measured” refers to the actual viability
screen leads to predictive models with significant R2 for the two



Figure 5 Leave-one-out Cross Validation of the elastic net regression model based on the primary (top) and secondary (bottom)
screens for normal and cancer cell lines after logarithmic transformation on the data. Each of the 140 point in these figures corresponds
to one of the 140 drugs. “Regression” refers to –log of the viability predicted by the regression model using all data from the other 139 drugs as
training set, while “Measured” refers to –log of the actual viability measured for the drug or drug combination. Note that, as in Figure 4, only the
secondary screen leads to predictive models with significant R2 for both cell types. The R2 for the Cancer cell lines is considerably better using the
log transformation.
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conducted using the results from the elastic net kinase
analysis and Fisher exact tests. Ten pathways from
Reactome were identified as significant (p < 0.05) using
this kinase list, including axon guidance, activation of
Rac, and semaphorin interactions as top hits (Table 3).

Discussion
Drug-kinase profiling represents a controller-target
network [5] that when combined with in vitro testing,
can be used in regression models to predict drug
response and to identify pathways statistically associ-
ated to drug sensitivity. Network methods in biology
are often based on the analysis of large datasets from
high-throughput experiments. An example is given by
gene regulatory networks, which presents many chal-
lenges either when restricted to a homogeneous set of
data [15,16] or when it includes different classes of
data [17-20]. In our KIEN method, information from
the drug-target network and experimental query of the
biological system are integrated. The goal is not a recon-
struction of a regulatory network, but to identify a set of
kinases linked to a therapeutic response in a given cell
line. In order to establish associations, the system has to
be perturbed by the use of kinase inhibitor drugs. The
response to these single drugs or drug combinations
becomes a training set that when combined with the
kinase profiling, can lead to predictions.
The elastic net method is one of the most widely used

regularization techniques. Regularization techniques
are used in statistical and machine learning models
to achieve an optimal tradeoff between accuracy and
simplicity. Simplicity makes a model less prone to
overfitting and more likely to generalize. In our ana-
lysis, we found that the elastic net regressions based on
single drug responses were not successful, while drug
pair data provided statistically significant predictions.
A possible explanation for this finding is the following:
single drugs might be less able to overcome the robust-
ness of biological networks [5]. The phenotypic signal
is therefore blunted and not easily measured. If a
second drug is added, any compensatory capacity is
already stretched and the effects from the inhibition of
each kinase can be seen more clearly. Using data from
drug pairs, we found that noise can be better filtered out
and stronger statistical associations between kinases
and therapeutic response are revealed. Clearly, if a
different training set with higher variance in efficacy
measures were used in the primary screen, it is likely
that also single drug in vitro response would have
given a significant predictive model.
We identified several kinases that are implicated in

lung cancer that gives biological significance to our
KIEN method. In particular, TGFBR2 appears as a top
hit both in the correlation and in the elastic net
methods. This finding is consistent with recent siRNA
experiments on A549 cell lines [21], which demonstrated
that silencing of this receptor reduces cell proliferation,
invasion, and metastasis. The Cyclin-dependent kinase
4 (CDK4) appears as a second top target in the correl-
ation analysis, and is also highly significant in the KIEN
analysis. Experiments using lentiviral-mediated shRNA
to inhibit CDK4 in A549 have shown inhibited cell cycle



Table 2 Kinases with the highest difference in the
regression coefficients for the log transformed data of
the secondary screen

Kinase Cancer beta
coefficient

Normal beta
coefficient

Difference

TGFBR2 0.061 0.000 0.061

EGFR 0.060 0.000 0.060

PHKG1 0.051 0.014 0.037

RIPK2 0.032 −0.002 0.034

PRKG2 0.012 0.045 0.033

CDK4 0.021 −0.008 0.029

MAP3K10 0.038 0.014 0.024

MARK4 0.000 0.022 0.022

PAK1 0.025 0.004 0.021

MAP4K5 0.021 0.000 0.021

MARK2 0.006 0.026 0.021

MARK3 0.000 0.020 0.020

TBK1 0.012 0.031 0.020

ERBB2 0.021 0.001 0.019

NUAK1 −0.029 −0.010 0.019

ULK2 0.018 0.000 0.018

MYLK2 −0.024 −0.006 0.018

MAP4K4 0.004 −0.014 0.018

CDK5 0.002 −0.016 0.018

GSK3B 0.021 0.004 0.017

PAK2 0.019 0.002 0.017

CDC42BPB 0.023 0.006 0.017

DSTYK 0.006 −0.010 0.016

RPS6KA2 0.000 −0.016 0.016

FGFR1 −0.004 0.012 0.016

PAK7 0.015 0.000 0.015

PIM1 −0.015 0.000 0.015

CDK3 0.015 0.000 0.015

IRAK1 −0.002 −0.017 0.015

A larger difference is associated with a selective response of A549 upon
inhibition. Note that in addition to TGFB2R and CDK4, which were identified
with the correlation approach of Table 1, additional kinases known to have an
important role in lung cancer such as EGFR [24,25] and PHKG1 [26] are found
using the elastic net approach.

Table 3 Reactome pathways with significant
representation of kinases from the regression analysis

Path ID Path name NS NT p-val

422475 Axon guidance 9 31 0.005

428540 Activation of Rac 3 5 0.008

373755 Semaphorin interactions 4 10 0.011

376176 Signaling by Robo receptor 3 7 0.024

1266738 Developmental Biology 8 39 0.026

445144 Signal transduction by L1 4 13 0.030

373760 L1CAM interactions 4 14 0.040

193639 p75NTR signals via NF-kB 2 4 0.051

209543 p75NTR recruits signaling complexes 2 4 0.051

389359 CD28 dependent Vav1 pathway 2 4 0.051

Ns indicates the number of kinases that are found significant in the regression
analysis, while NT is the total number of kinases in the pathway. The top ten
pathways with Fisher exact test p < =0.051 are shown. These pathways are
identified from 518. Reactome pathways containing at least one of the kinases
identified in Table 2. The 9 kinases in the axon-guidance pathway are EGFR,
PAK1, ERBB2, CDK5, GSK3B, PAK2, RPS6KA2, FGFR1 and PAK7.
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progression, suppressed cell proliferation, colony for-
mation, and migration [22], and there is an ongoing
clinical trial using a CDK4/6 inhibitor in lung cancer
[23]. The KIEN analysis identified EGFR, which is
known to be overexpressed in the majority of non-
small cell lung cancers [24]. Furthermore, RNAi experi-
ments targeting EGFR demonstrated cancer growth
suppression in A549 xenograft in mice [25]. The third
kinase in Table 2, PHKG1 has also been found to be
upregulated in human tumor samples, including lung
adenocarcinoma, and aberrations in its gene copy num-
ber is a feature of many human tumors [26].
The pathway-based enrichment provides a broader

view on the role of the kinases identified by our method
in Table 2. Among the top three pathways shown in
Table 3 are activation of Rac and Semaphorin interac-
tions. Rac proteins play a key role in cancer signaling
and they belong to the RAS superfamily [27]. We also
identified a set of semaphorins in our analysis that is
represented in the top significantly enriched pathways.
Semaphorins, previously known as collapsins, are a set
of proteins containing a 500-amino acid sema domain
among others (including PSI and immunoglobulin type
domains), which can be transmembranous or secreted
[28]. It is known that Sema3E cleavage promotes inva-
sive growth and metastasis in vivo [28]. These genes
also have selective targeting by Rac and Rho family
members. This generates hypotheses of possible path-
ways that could be targeted therapeutically. However,
these hypotheses need to be validated by further experi-
ments with different inhibitors for the same targets or
with alternative methods, e.g. using siRNA.

Conclusions
We have introduced an integrated experimental and
computational methodology that identifies the role of
specific kinases in the drug response of a given cell line.
The key element of our KIEN methodology is a multiple
regression procedure that uses in vitro screen data as a
training set. If a new library of kinase inhibitor com-
pounds were to be synthetized and profiled, then our
model would be able to immediately estimate the effect
of these drugs on in vitro experiments on a given cell
line. We have shown an application to a lung cancer cell
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line, but our method can be extended to different cell
lines. The method will facilitate the design of new kinase
inhibitors and the development of therapeutic interven-
tions with combinations of many inhibitors [29]. The
procedure could be extended to three drug combina-
tions, if measurements for these larger combinations
were available. Finally, the method could be extended to
regression models that are specific of cancer cells with
the same set of mutations, or it could be directly used
with patient-derived primary cells to identify a personal-
ized treatment.

Materials and methods
Materials
The primary screening of a kinase inhibitor (KI) library
comprised of 244 KIs was purchased from EMD Chemi-
cals, and diluted with DMSO to 2 mM concentrations
for high-throughput screening purposes. The KI library
was stored at −80°C. Additionally, PDK1/Akt1/Flt3 Dual
Pathway Inhibitor (CAS # 331253-86-2) was ordered
from EMD. Only 140 out of 244 were used in the drug-
target network reconstruction because the drug profiling
information was available only for these compounds.
One kinase inhibitor known to affect the kinase targets
indirectly was excluded. We provide in Additional file 2
the chemical structure of kinase inhibitors with highest
selectivity in the primary and secondary screening.

Cell culture
Cell lines IMR-90 (normal lung fibroblast) and A549 (lung
adenocarcinoma) were cultured in RPMI 1640 (Hyclone)
supplemented with 10% Canadian characterized fetal
bovine serum (Hyclone), 1% 200 mM L-glutamine (Omega),
and 1% penicillin/streptomycin (Omega). The media
for the cells were renewed every 3 days and kept at
80-90% confluency. Cells were maintained in a humidi-
fied environment at 37°C and 5% CO2.

Kinase inhibitor experiments
IMR-90 (1500 cells/well) and A549 (750 cells/well) were
seeded on 384-well microplates (Grenier Bio-One) and
incubated for 3 hours before the addition of kinase in-
hibitor(s). The reason that IMR-90 was seeded at double
the cell density of A549 is due to the difference in cell
division. IMR-90’s doubling time is 36–48 hours whereas
A549’s is 22 hours. We wanted to make sure that the
cells have divided at least once during the 72 hr drug
treatment. Furthermore, both A549’s and IMR-90’s final
confluency at 72 hrs is 90-95% and within the range of
the ATPlite 1step assay. Additional file 1: Figures S1 and
S2 show the growth curve for both cell lines. IMR-90
and A549 cell lines were tested on the same day with
three replicates and the experiment was repeated three
times with randomized well positions to reduce biases.
ECHO 555 Liquid Handler (Labcyte) was used to dis-
pense nanoliter volumes of each KI to 384-well plates
with cells attached (wet dispense). The final volume in
the plate is 40uL and cells were incubated for 72 hours
with KI treatment.

ATP measurements
ATPlite 1Step (Perkin Elmer) was used to evaluate the
cell number and cytotoxicity. ATP measurements were
done by dispensing 20 uL of the ATPlite 1Step solution
to each well to a final volume of 60 uL. The plate was
placed on a shaker at 1100 rpm and the luminescence
activity was detected by Analyst GT Plate Reader. The
percent (%) of control is the quantity of ATPlite 1step
measurement of the treated versus the untreated wells
of each individual cell type. The ATP standard was pre-
pared with culture media to final volume of 40 uL, and
20 uL of ATPlite 1step reagent was added. Additional
file 1: Figure S3 shows the ATP standard curve. The
plate was read immediately.

Computational methods
Correlations between selectivity/viability and kinase
activity were calculated using the python scipy linregress
function, which also provide p-values. Ranking the p-values
and directly applying the Benjamini–Hochberg procedure
gave us the FDR values. The elastic net regression was
carried out using the Scikit-learn package [30] which
finds the coefficients β that minimize the function

F ¼ 1
2 M

v−Aβj jj j22 þ αρj βj jj1 þ 1
2
α 1−ρð Þjjβjj22

where v is the vector of the observed viabilities and A is
the matrix containing the residual activity of the kinases
from the profiling, and M is the total number of drugs
or drug combinations used. The parameters α and β
determine the relative weights of the lasso and ridge
penalties quantified using L1 (|| |1 ) and L2 (|| ||2) norm,
respectively. We used α = 0.15 and ρ = 0.01 in the results
of Figures 4 and 5 and in Table 2. We also tried other
values of these parameters, which did not give a signifi-
cant difference in the results.

Pathway-based enrichment
Reactome pathways were downloaded using a newer build
of the ‘biomaRt’ library (v2.12.0) in Bioconductor/R
(v2.15.0). Gene symbols from the kinase list were con-
verted to Entrez gene identifier numbers (‘entrezgene’)
and mapped against the gene ids in each Reactome
pathway. For each pathway, the set of significant genes
enriched within any given pathway was computed using
a Fisher exact test. The procedure computes the signi-
ficance (p-value) of observing significant kinases, as
deemed significant by our method, within the selected
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pathway. These pathways are identified from 518 Reac-
tome pathways. Given that our gene set consists
entirely of kinases and would be generalized towards
kinase-specific effects, the set of all kinases (~300)
were selected for background adjustment and more
sensitive enrichment of the pathways. This procedure
was repeated for each pathway to generate p-values and
pathway rankings. False discovery rate [FDR] values were
later generated to further restrict significance.

Additional files

Additional file 1: Prediction of kinase inhibitor response using
activity profiling, in-vitro screening, and elastic net regression.

Additional file 2: Chemical structure of drugs with the highest
selectivity in the primary and secondary screen.
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