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Abstract

a well-studied organism.

Background: Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene
level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene
expression data combined with off-target transcriptional responses many times induced by a drug treatment. This
study demonstrates how experimental and computational methods can interact with each other, to arrive at more
accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental
testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in

Results: S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under
different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal
network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different
network training conditions. Gene expression results were evaluated using both gene set and single gene target
analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables
included: (i) Testing conditions — exposure time and concentration and (i) Network training conditions — training
compendium modifications. Two analyses of SSEM-Lasso output — gene set and single gene — were conducted to
gain a better understanding of how SSEM-Lasso predicts perturbation targets.

Conclusions: This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for
a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription
level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations
through a network of gene regulatory interactions is achieved.

Background

RNA microarrays have had a major impact on both
experimental and computational biology. They have
played a role in predicting molecular targets and bioactive
compound modes-of-action [1-3], they have helped
identify genes responsible for disease- and environmental-
induced phenotypes [4-6]. At the same time, statistical
methods for interpreting genome-wide microarray data
have progressed over the past decade. Drug target
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identification methods have gone from labor-intensive
techniques, like chemogenomic fitness or haploinsuffi-
ciency profiling [7-11], to more efficient, statistically
driven models such as those based on network-filtering
[12-16] and network topology association [17].

Supervised learning methods like support vector ma-
chines have also been widely used to develop statistical
methods that predict drug-protein interactions [18-22].
These methods employ training networks, constructed
from protein-ligand binding data, known protein se-
quences, compound similarity scores, and in the case of
Campillos et al.,, known drug side effects. Similar to our
method, these training networks capture interaction
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“patterns” between two molecules (eg, ligand-protein) to
predict known and new drug targets. Although unlike
our method, these patterns are typically taken as known
input, whereas in SSEM-Lasso, they are learned from
the microarray data.

Accurate interpretation of transcriptional changes
resulting from genome-wide microarray data can be
influenced by different variables, including those ma-
nifested by the experimental biologist and the computa-
tional biologist. These variables are especially critical for
drug treatment studies, because drugs tend to produce
multi-gene and/or off-target perturbations [14,23,24].
For example experimental variables, such as RNA qual-
ity, microarray preparation, nutrients, genetic back-
ground, and duration and strength of drug treatment
can all play a role in the final gene target analysis
[25-27]. Similarly, information incorporated into any
training, or learning, phase that is used to infer a gene
interaction network or similar model structure, can im-
pact results at the gene level. The potential effects of
both biological and computational conditions — separ-
ately, or on their own - are widely acknowledged.
Nevertheless, it appears there is little work explicitly
examining how these two types of conditions interact
with each other to produce accurate and reliable mo-
lecular target predictions.

SSEM-Lasso uses a network-based approach consisting
of two phases, training and testing. In the training phase,
the method learns a collection of gene-gene interaction
effects from compendium of microarray experiments
(training compendium), which are captured in an inter-
action network (Figure 1A). Then, in the testing phase,
the method identifies genes experiencing an additive
shift in their mean transcript levels in response to an ex-
ternal perturbation (eg, drug treatment), after adjusting
for the inferred gene-gene interactions (Figure 1B).
Transcript residuals resulting from this step are ranked
by their absolute values for all annotated genes in the
compendium (Figure 1B). Genes with low ranks (large
residuals) are genes SSEM-Lasso distinguishes as stand-
ing out from the background gene regulatory effects.
They are flagged as potential targets of the external per-
turbation of interest. As a result, SSEM-Lasso has the
ability to significantly narrow the gene target window
in comparison to RNA change z-score computations
(Figure 1C).

SSEM-Lasso is unlike standard machine learning
methods in that it is based on an explicit model of how
perturbations propagate through a network of gene
regulatory effects, in the form of a system of sparse sim-
ultaneous equations (which, in turn, may be viewed as a
stochastic version of standard first-order differential
equations) [12]. Other machine learning approaches typ-
ically have been based on models defined through
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relationships learned between known drug-target inter-
actions and various biological inputs [18-22]. SSEM-
Lasso also differs from machine learning in the data be-
ing analyzed and the interaction pairs being identified.
SSEM-Lasso uses microarray gene expression data from
hundreds of experiments carried out under varying ex-
perimental conditions. The machine learning methods
discussed above use for example, protein-ligand inter-
action and compound 2-D similarity data listed in con-
ventional databases like KEGG [28], BRENDA [29], and
SIMCOMP [30].

SSEM-Lasso’s mathematical properties have been fully
characterized [12]. The method has achieved improved
sensitivity and accuracy over the RNA z-test method
(ie, ranking genes as targets based on normalized expres-
sion data, without any additional modelling or process-
ing) and a competitive, alternative network-inference
method, MNI [14]. Furthermore, the two phases of
SSEM-Lasso allow for modifications of both experimen-
tal variables (testing phase) and computational variables
(training phase) to optimize drug target predictions.

SSEM-Lasso is applicable to a range of perturbation
experiments. The method does not impose explicit
constraints on the experimental conditions, such as
particular deletion strain, inducible expression system,
or time-course conditions, for inferring gene network in-
teractions. SSEM-Lasso has been shown to perform well
in the context of in silico experiments. Furthermore, it
has proven successful at predicting gene targets of S.
cerevisiae haploid and diploid deletion strains. However,
the method requires further optimization for predicting
drug gene targets (Additional file 1). This is an antici-
pated caveat due to the biologically complex nature of a
chemical perturbation. Given this combination of fea-
tures, we determine SSEM-Lasso ideal for our goal of
investigating experimental-computational dynamics, and
at the same time, we seek to improve its performance
with drug gene target predictions.

We use the model organism, S. cerevisiae, and a com-
pound with a known mechanism of action, fluconazole
(FL), to explore how choice of variables in testing and
training phases influences the quality of final gene target
predictions. FL specifically binds and inhibits cyto-
chrome P450 (CYP450)-dependent lanosterol C-14-«
demethylase (Ergllp) [31,32], an essential hemoprotein
in the ergosterol biosynthesis pathway (Figure 2). Ergos-
terol is the principle component of yeast cell mem-
branes, similar to cholesterol in animal cells. FL
inhibition of Ergllp causes the accumulation of toxic
14-a-methylated sterols and ergosterol depletion [33,34].
This results in increased cell membrane permeability
and asymmetry and irregular sphingolipid, phospholipid
and long-chain fatty acid synthesis [35-37]. Additionally,
Ergllp is dependent on oxygen and heme production,
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Figure 1 SSEM-Lasso network-inference methodology for prediction of gene targets. (A) In the training phase, transcript signals derived
from a training compendium of Affymetrix yeast expression data estimated a gene interaction network using sparse simultaneous equation
models and Lasso regression (SSEM-Lasso). The gene interaction network accounted for every gene’s effect on another gene within the
compendium and was used to infer subsequent experimental perturbations of interest. (B) In the testing phase, experimental expression data
was processed with the gene interaction network, and mRNA transcript signals were adjusted based on all inferred gene regulatory effects in the
network. An outlier analysis yielded residual values for every gene in the compendium. Residuals were ranked by their absolute values, and genes with
lower ranks were considered more accurate predictions of directly targeted genes of the experimental perturbation. (C) SSEM-Lasso “resolves” experi-
mentally perturbed genes out of the background gene-gene interaction “noise” in the network. This results in a more stringent gene-target filter in
comparison to standard z-score computation. The data shown is from a top24/TOP2 heterozygous yeast deletion microarray experiment conducted in-
house. The gene target, TOP2, is significantly perturbed when evaluated with SSEM-Lasso compared to the RNA z-score prediction.

and ERGI1 deletion strains are nonviable under aerobic  growth, Ergép regulates appropriate sterol and fatty acid
growth conditions. Therefore, Ergllp disruption by FL.  composition and distribution, and is therefore required
can also lead to defects in heme biosynthesis and mito- for normal cell membrane permeability and rigidity
chondrial respiration [38-40]. [41-43].

In addition to ERG11, ERG6, UPC2 and HAPI are im- Sterol regulatory element binding protein, Upc2p, is a
pacted by sterol and heme depletion. ERG6 encodes for ~member of the Zn,-Cys, transcription factor family re-
A(24)-sterol C-methyltransferase, an enzyme that func- quired for exogenous sterol uptake during anaerobic
tions downstream of Ergllp in ergosterol biosynthesis growth. Upc2p, with Ecm22p, regulates the transcription
and is responsible for the transmethylation of zymosterol  of late stage ergosterol biosynthesis genes in response to
to fecosterol [36] (Figure 2). Although Ergép is not the azole-induced sterol depletion [44,45] (Figure 2). Its
direct gene target of FL, nor is it essential for cell ~DNA binding sequence is conserved between C. albicans



Christadore et al. BVIC Systems Biology 2014, 8:7
http://www.biomedcentral.com/1752-0509/8/7

Page 4 of 19

5 5 2

Squalene

Lanosterol

ERG24
ERG25
ERG26
ERG27

Zymosterol

F

/=N
N.N/)

OH
Fluconazole (FL)

Ergosta-5,7,24,(28)-trienol

HO
’
ERG4 ergosterol
N/ upc2 1aVels
Ergosterol
HO

Figure 2 Summary of FL enzymatic and transcription factor gene targets. Genes affected by fluconazole (FL) investigated in this study are
enzymes along the ergosterol biosynthetic pathway (circles) and transcription factors directly regulated by sterol and heme levels (squares). ERG11, the
gene that codes for lanosterol C-14-a demethylase, is the primary target of FL. CYP450 C-22 sterol desaturase, ERG5 (circle), is also a target of FL and its
enzymatic activity is inhibited upon FL binding. FL's nitrogen interacts with the heme groups of both Erg11p and Erg5p disrupting normal ergosterol
synthesis and affecting downstream enzymatic reactions, including those performed by A[24]-sterol C-methyltransferase, Ergép (circle). FL disruption of
sterol biosynthesis additionally affects UPC2 (square), the gene that encodes for a sterol regulatory binding protein responsible for increased transcrip-
tion of ERG genes upon sterol depletion. FL induces defective respiration due to its disruption of heme and oxygen levels. Therefore, HAP1 (square), a
transcription factor responsible for regulating ERGT1 expression under hypoxic conditions, is also targeted.

and S. cerevisiae and is in a region of the ERGI1I pro-
moter critical for azole induction of ERG11 expression
[46,47].

Heme-activator protein, Haplp, is a transcription fac-
tor that controls the expression of aerobic and anaerobic
genes through both its interactions with heme and tran-
scriptional control of heme-dependent repressor of hyp-
oxic genes, [48,49]. Haplp binds the promoters of ERGS
and ERG11 under both aerobic and hypoxic conditions,
however it is most active in repressing these genes’ ex-
pressions under hypoxic conditions [48,50] (Figure 2).
ERGI11 expression through induction of ROXI is also

regulated by Haplp. Additionally, Haplp controls Upc2p
expression to maintain basal expression levels of ERG
genes. However upon sterol depletion, Upc2p no longer
requires Haplp to transcribe ERG genes [51]. These
genes — ERG6, UPC2, and HAP1 — are therefore inter-
connected and exemplary targets to further investigate
FL-induced expression changes.

The expression of the CYP450 C-22 sterol desaturase,
ERGS, is indirectly investigated in this study through the
haploid heme deletion strain, hemlA. The hemlIA strain
cannot synthesize §-aminolevulinic acid, a precursor in
heme synthesis. In the absence of heme, Haplp binds
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the ERGS5 promoter to suppress expression of ERGS.
Therefore hemlIA mutants contain little to no Ergbp
mRNAs [48]. Additionally, Erg5p can be directly bound
and inhibited by azoles, like FL (Figure 2) [52]. Thus,
ERGS is considered the primary target of the hemlA
strain and an additional FL-targeted gene in this study.

This study contributes to the larger goal of improving
microarrays for therapeutic discovery and development.
Using a model organism and an established drug with
known target genes and pathways, we are able to identify
conditions that both the experimentalist and computa-
tional biologists can fine-tune to more accurately predict
drug effects at the gene expression level. Herein we
present a step-wise strategy through SSEM-Lasso that
scientists can take to optimize drug gene target predic-
tions at the genome-wide level.

Results

Testing phase (experimental) variations for predicting FL
gene targets

The overall goal of the testing phase was to determine if
changes in experimental variables, or “input”, altered
SSEM-Lasso ranks, or “output’, of drug gene targets
(Figure 1B). We assessed how well SSEM-Lasso identi-
fied a target gene relative to off -target, or orthogonal,
genes over changing experimental conditions. This was
evaluated by comparing the rank of the target gene rela-
tive to the rank of off-target genes.

Studies have shown that desired physiological re-
sponses can be achieved by controlling the duration a
drug is in contact with the host organism and the con-
centration of drug administered. This in turn can lead to
more effective treatment strategies [53,54]. In the testing
phase we regulated these critical treatment variables,
exposure time and concentration, while maintaining
constant the training compendium used to infer the
gene network interactions. Figure 3 outlines the experi-
mental workflow. Wild-type S. cerevisiae cells were
treated with FL and harvested at either varying exposure
times (ET) or concentrations in aerobic, batch culture
conditions (Figure 3A). Affymetrix microarray experi-
ments were carried out in duplicate, and transcript
signals were RMA-normalized and processed with
SSEM-Lasso (Figure 3B). For all testing phase variations,
the original training compendium from Cosgrove et al.
was used to infer the gene interaction network.

Two analyses of SSEM-Lasso output — gene set and
single gene — were conducted. For the gene set analysis,
genes representative of 6 different biological pathways were
grouped to form 1 target and 5 orthogonal gene sets.
The target gene set unique to FL action, called “FL-interac-
ters”, was comprised of genes affected by FL and/or asso-
ciated with ERGII. FL-interacters included genes from
ergosterol, terpenoid backbone, fatty acid and sphingolipid
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biosynthesis pathways, and sterol transport, heme and
oxygen sensing pathways (Additional file 2). The five
orthogonal gene sets included genes from: DNA replication
and repair, pyrimidine biosynthesis and metabolism, RNA
transport, glycolysis and pentose phosphate and mitosis
(Additional files 3, 4, 5, 6, 7).

Gene set analysis was carried out as follows: Each gene
within a gene set was detected across an increasing gene
rank threshold, resulting in a receiver operating characteris-
tic, or ROC, curve for an FL treatment experiment. ROC
curves are graphical plots of the true positive rate against
the false positive rate as the discrimination threshold is var-
ied. Areas under ROC curves were converted into percent-
ages (AUC%) and compared across FL treatments
(Figure 3C). Steeper ROC curves result in larger AUC
percentages. The expected AUC from random guessing is
0.5, or 50%. AUC values falling below 0.5 denoted a higher
false positive rate than random guessing, while AUC values
above 0.5 denoted more true positives than what were
expected with random guessing. We considered treatment
experiments with AUCs >0.5 to experience stronger bio-
logical pathway effects than experiments with AUC%s <0.5.

For single gene analysis, FL perturbation of its primary
target, ERG11, was tracked along with FL targets associ-
ated with ergosterol biosynthesis, sterol transcription ini-
tiation and heme and oxygen transcriptional regulation,
ERG6, UPC2 and HAPI, respectively (Figure 3D). Ranks
for orthogonal genes essential to cellular survival, MPS]I,
ADEI13, TOP2, CDC9, PABI and UBA1, were also moni-
tored as indicators of FL off-target effects. Lower ranks
suggested more accurate prediction of FL action on an
individual gene (Figure 3D). Rank percentiles were also
computed to assess how well a gene ranked relative to
the background set of all genes.

Training phase (network inference) variations for
improving FL single gene target predictions

In addition to the testing phase strategy, modifications
to the gene interaction network in the training phase
were conducted. The overall goal of the training phase
was to determine if changes to the network increased or
decreased ranks of gene targets.

Variations to the training phase involved the addition of
biologically-motivated microarray expression data into the
original training compendium from Cosgrove et al. Subse-
quent modifications to gene-gene interaction “patterns”
propagated through the network resulted in changes of
varying degrees in SSEM-Lasso rank predictions (Figure 4).
Two measurements, rank change (RC) and RC percentile,
reflected how strongly network variations affected SSEM-
Lasso predictions. If RC of a target gene was positive, pre-
diction of the gene perturbation was said to “improve”. RC
of a target gene was compared against all gene RCs within
an experiment by calculating a percentile of RC, or the
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Figure 3 Experimental methodology for fluconazole treatment experiments. (A) Wild-type yeast cells (BY4741) were treated with flucona-
zole (FL) at various exposure times and concentrations under constant growth conditions. (B) RNA purification, amplification and hybridization to
Affymetrix YG S98 GeneChips were carried out and raw signal data was RMA-normalized and processed with SSEM-Lasso to determine residuals
and subsequent ranks for all genes in the network. Two replicates for each condition were performed from two separate FL treatment experi-
ments. (C) Gene set analysis detected gene perturbations of multiple, related genes across an increasing SSEM-Lasso rank threshold, resulting in a
sensitivity vs. rank threshold curve (ROC curve) for each experimental condition. Area under each ROC curve was calculated, averaged for each
duplicate experiment and reported as AUC%. AUC% values >0.5 (50%) indicated greater FL perturbation on the gene set. Gene set analyses were

conducted for target pathway, FL-interacters (blue), and orthogonal pathways (purple). (D) Single gene analysis predicted FL perturbation on
gene targets, ERG11, ERG6, UPC2 and HAPI, for every FL treatment condition. Target gene ranks were compared to the average ranks of six
orthogonal genes. Low ranked genes were considered more accurately perturbed by FL. Ranks were averaged for two replicate experiments.

percentage of genes with a RC as high or higher than the
target gene. The RC percentile provide a quantitative as-
sessment of RC. Thus, a tuneable network inference vari-
able was established in the training phase.

Testing phase: Exposure time variations have stronger
effects on FL gene set than on FL single gene targets

The first experimental condition manipulated in the testing
phase was FL exposure time (ET). The length of FL treat-
ment in a population of unsynchronized cells was varied
between one and four ETs, at constant FL concentration
(GIyp). For each ET experiment, results from both gene set

(AUC%) and single gene (rank and percentile) were
reported.

Gene set analysis for FL-interacting genes resulted in in-
dividual AUC%s for each ET experiment, which were plot-
ted for each of the 6 gene sets as shown in Figure 5. Longer
FL ETs correlated with higher AUC%s. From one to two
ETs, AUC% increased noticeably from 50 to 55%, and at
four ETs AUC% was at its highest of 60% (Figure 5,
squares). These results indicated that incubation of cells
with FL for four ETs was the optimal time point for SSEM-
Lasso to predict FL effects on multiple, target genes.

AUC%s for the orthogonal gene sets were also plotted,
and similar improvement trends were observed for mitosis
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and glycolysis/pentose phosphate gene sets (Figure 5, dia-
monds and inverted triangles). SSEM-Lasso likely identified
similar trends for these pathways, because they are also in-
fluenced by FL treatment. Severe ergosterol depletion inter-
feres with sparking functions of ergosterol [55]. Hence,
genes involved in mitosis that are critical to late stages of
the cell cycle may have been dysregulated upon FL treat-
ment. Additionally, FL interrupts heme function, and thus
the cell population may have adapted to increased hypoxic
conditions by shifting from glucose metabolism via respir-
ation to anaerobic fermentation [56], thus affecting genes
involved in glycolysis/pentose phosphate. Yet, the other or-
thogonal pathways, RNA transport, pyrimidine biosyn-
thesis/metabolism, and DNA replication/repair, did not
reproduce the same improvement trend nor exhibit AUC%
values >50% (Figure 5). Overall, the average AUC%s for
each of the 5 orthogonal gene sets were lower than those
for FL-interacter gene set, demonstrating that FL exerted
its strongest effects on the FL-targeted gene set (Figure 5).

Single gene targets also were tracked across ETs.
ERGII ranked consistently lower than the collective
population of orthogonal genes (Figure 6A), suggesting
SSEM-Lasso’s predictions were more specific for FL ac-
tion on its therapeutic target.

Interestingly, changing ET (1 => 4) did not improve
the algorithm’s predictions, and ERGII rank remained
constant, between 1716 and 2080 (Figure 6A, squares),
or in the 70" percentile of ranks (Table 1). This was un-
like the FL-interacter gene set results, which demon-
strated a distinct trend with increasing ET (Figure 5).
ERG6 was the only FL target that followed a distinct
trend, in which ERG6 rank decreased at higher ET. At
three and four ETs, ERG6 ranked in the 78th and 87th
percentiles respectively, which were lower than ERGI1I
ranks (Figure 6B, triangles, Table 1). Ranks for UPC2
and HAPI were consistently lower than both ERGI1 and
ERG6. UPC2 and HAPI ranked in the 93" to 99.7™ per-
centiles for two, three, and four ETs. Similar to ERG11,
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Figure 5 Exposure time effects on gene set (AUC%) analysis. Areas under each sensitivity vs. rank threshold curve (ROC curve) for FL-
interacters and orthogonal gene sets/pathways were converted to percentages (AUC%s) and plotted for each FL ET experiment. Mean AUC%s (ET
1 to 4) for each gene set were computed and compared in the table. Larger AUC% values indicated better prediction of FL action on a gene set.
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UPC2 and HAPI ranks did not vary with changes to ET.
(Figure 6B, hexagons and crosses and Table 1).

Testing phase: Concentration changes have minimal to
modest effects on FL gene target predictions

The second testing phase variable optimized was FL con-
centration. S. cerevisiae cells require ergosterol for normal
aerobic growth [39], so it was necessary to determine a
treatment concentration at which wild-type cells contin-
ued dividing with impaired ergosterol synthesis. FL. dose-
response curves and growth inhibitory values (Gls) were
generated from in-house cell growth inhibition assays. FL
dosing strategy was based on concentrations below the
Glsg value — Gl 5, Gls, Glyg, Glyg, Gl3 and Gl — so that
FL would not inhibit growth of more than 50% the cell
population. Thus, gene perturbations were not considered
direct results of cell death signalling pathways, but steady-
state expression changes specific to FL. SSEM-Lasso re-
sults were evaluated within the same gene set and single
gene analysis frameworks as the ET experiments.

Similar to the FL gene set trend for ET, higher FL treat-
ment concentrations improved AUC% values. FL effects
were obvious upon treatment, jumping from 51% for con-
trol to 64% for Glys (Figure 7). AUC%s continued to im-
prove as FL concentrations increased, up to Gly, These
results demonstrated that SSEM-Lasso predicted FL action

more accurately at treatment concentrations between Gl
and Gly, with AUC%s reaching 67-69% (Figure 7, squares).
Orthogonal gene sets failed to show a similar trend as the
FL-interacter gene set nor did they experience enhanced
perturbation upon FL treatment. Average AUC% values
remained below the FL-interacter gene set average of 64%
across all FL concentrations (Figure 7). This was a positive
indication that FL was specifically targeting genes associ-
ated with its activity.

In general, FL single gene ranks were insensitive to
changes in FL concentrations, just as they did not fluctu-
ate significantly with changing ETs. At the onset of FL
treatment, ERG11 rank dropped from 5714 to 1812, a
clear response to FL treatment. However over increasing
treatment concentrations, ERG11 ranks hovered modestly
between 1800-2300 (ranks in the ~70™ percentile) with
no noteworthy fluctuations (Figure 8A, diamonds and
Table 2). Average ranks of the six orthogonal genes were
predicted with SSEM-Lasso and proved unperturbed by
FL. In addition, the orthogonal genes failed to experience
the pronounced rank increase ERG11 had at the onset of
FL treatment (Figure 8A, circles), suggesting SSEM-Lasso
was accurately predicting FL effects on its target.

ERGS6 followed a very similar concentration trend but
with overall lower ranks than ERGI1 (Figure 8B, trian-
gles). Transcription factors, UPC2 and HAPI, had

Table 1 Comparison of single gene ranks for FL targets across increasing ETs

ERG11 ERG6 upPC2 HAP1
ET Expt Rank Percentile Rank Percentile Rank Percentile Rank Percentile
1ET 2080 69 4686 30 588 91 859 87
2ET 1752 74 4078 39 20 99.7 426 94
3ET 1716 74 1461 78 483 93 291 96
4 ET 1835 73 852 87 39 99 56 99

Ranks for each FL gene target were reported for each ET. Ranks are the average of two replicate experiments. Rank percentile was computed as the percentage of
genes with a rank as high or higher than the target gene. Rank percentiles >95 indicated significant perturbation of a gene as identified by SSEM-Lasso.
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overall ranks below 200, or in 98" to 99" percentile
(with the exception of UPC2 for Glys experiment).
However, a pronounced trend over increasing concentra-
tions was not observed (Figure 8B, hexagons and crosses
and Table 2). These results were consistent with the ET
results, wherein the FL-targeted transcription factors
performed significantly better than the metabolic targets,
ERGI1 and ERGS, and also were not as strongly affected
by ET and concentration changes as ERGII and ERG6.

Training phase: Input of microarray expression data and
modification of the gene interaction network influences
FL single gene target predictions

After exploring how experimental testing conditions influ-
enced predictions of drug target predictions, focus shifted
to the computational details of SSEM-Lasso’s training

phase. Specifically, we generated modified training com-
pendiums, or unique training phase variables, and exam-
ined how they altered the network’s gene-gene interaction
“patterns” to improve final gene ranks. Previous SSEM-
Lasso studies demonstrated that removal of experiments
in the same project group from the training compendium
boosted SSEM-Lasso performance, perhaps due to the re-
duction of artifactual effects caused by lab-specific experi-
mental variables [12]. Here, we were interested in how the
addition of microarray experiments related to the applied
perturbation, FL treatment, affected predictions of FL
gene targets.

Taking advantage of the Saccharomyces genome dele-
tion collection [57,58], microarray expression data was
obtained for three deletion strains related to FL. mechan-
ism of action, ergl1A/ERGII, erg6A, hemlA [59], and
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Figure 8 Concentration effects on single gene (rank) analysis. (A) SSEM-Lasso ranks of FL's primary gene target, ERG11 (diamonds), were
compared to gene rank averages for six orthogonal genes, MPS1, ADE13, TOP2, CDC9, PABT and UBAT (circles), across increasing FL concentrations.
Error bars represent standard deviation for orthogonal genes. (B) SSEM-Lasso ranks of all FL targets, ERG11 (diamonds), ERG6 (triangles), UPC2
(hexagons) and HAPT (crosses) versus concentration experiments. Cells were treated with FL concentrations that corresponded to increasing
growth inhibitory percentages, Gl%s (x-axis). Lower ranks indicated better prediction of FL action on an individual gene. All ranks are the averages
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Table 2 Comparison of single gene ranks for FL targets across increasing concencrations (Gl%s)

ERG11 ERG6 urc2 HAP1
Gl Expt Rank Percentile Rank Percentile Rank Percentile Rank Percentile
Control 5714 14 4068 39 1543 77 1133 83
Glos 1812 73 1047 84 498 93 160 98
Gls 2081 69 1489 78 73 99 149 98
Gl 1835 73 852 87 39 99 56 99
Glyo 2302 66 1119 83 93 99 105 98
Glyg 1934 71 775 88 40 99 66 99
Glyo 2007 70 721 89 74 99 116 98

Ranks for each FL gene target were reported for each concentration. Ranks are the average of two replicate experiments. Rank percentile was computed as the
percentage of genes with a rank as high or higher than the target gene. Rank percentiles >95 indicated significant perturbation of a gene as identified

by SSEM-Lasso.

one not linked to FL action, spt3A [60]. Expression data
from the FL drug treatment that yielded the best predic-
tions of ERGII perturbation (Gl 4ET) was also in-
cluded in training phase variations. First, we confirmed
SSEM-Lasso identified the direct gene target for each
deletion strain. In agreement with previous studies,
SSEM-Lasso predicted all genetic deletion targets accur-
ately (Table 3). We proceeded to individually add each
experiment’s expression data into the original training
compendium to generate five new training compen-
diums. Modified gene interaction networks were then
inferred for each modified training compendium
(Figure 4). Changes in gene rank (RC) between the
original and modified training compendiums for FL
targets, ERG11, ERG6, ERGS5, and non-target SPT3, were
subsequently determined.

Graphs in Figure 9A-D display five representative FL
treatment experiments on the x-axis and RC values for
ERGI1, ERG6, ERGS or SPT3 on the y-axis. These re-
sults showed that each modification to the training com-
pendium induced changes to the gene network that were
unique to the deletion strain’s corresponding target gene.
ERG11, ERG6, and ERGS ranks dropped, or improved,
only with the addition of expression data from erglIA/
ERG11, erg6A, and hemlA, respectively. In contrast to
the addition of genetic deletions, inclusion of expression
data from the FL treatment experiment did not impact
network interactions to alter ERG1I, ERG6 and ERGS
ranks. In most cases, ranks stayed the same or worsened
with the addition of FL drug treatment expression data
(Figure 9A-C, Tables 4, 5 and 6).

ERGI1 RCs for all FL treatment experiments dropped
substantially when ERGI1 deletion expression data was
added to the training compendium. ERG11 ranks were
in the 97, 92, 96™, 88™, or 94™ percentile of RCs for
each of the five experiments (Table 4). Inclusion of
ERGE6 deletion expression data into the training compen-
dium also improved prediction of ERG6 perturbations
across all FL experiments. In fact, inclusion of the

haploid erg6A experiment to the training compendium
produced a more pronounced drop in ERG6 ranks than
the heterozygous erglIA/ERGI11 experiment did for
ERGI11I ranks. ERG6 RC percentiles were in the range of
97 to 100, with the exception of the FLg, 4DT experi-
ment (Table 5). Addition of hemlA expression data also
improved ERGS ranks for all FL treatment experiments,
and ERG5 RCs were in the 97, 75", 97, 95™, or 90"
percentiles (Table 6). ERGS rank improvements were
similar in magnitude and direction to those of ERGII.
This result suggested that ERG11 and ERG5 were simi-
larly affected by FL, and also by heme depletion, sup-
porting their synergy along the ergosterol biosynthesis
pathway and FLs interactions with their CYP heme
centers.

To test if network changes induced by erglIA/ERG11,
erg6A and hemlA were specific to FL, we analyzed
whether haploid spt3A expression data improved SPT3
ranks for the same FL experiments. Spt3p, a subunit of
SAGA-type histone acetyltransferase complex, is not
specifically targeted by FL. Indeed, inclusion of spz3A

Table 3 Gene ranks predicted by SSEM-Lasso for
corresponding yeast genetic deletion microarray
experiments

Microarray Gene Rank with original Rank with modified
experiment target compendium compendium

ergl1 14/ERG1 7 ERGT1 277 301

ergéA’ ERG6 1 1

spt3A° SPT3 5 47

hemi4® ERGS 40 41

Christadore, L. Boston University. 2012.

2James, N,, et al. Genetics 177:123 2007 [60].

3Protchenko O,, et al. Eukaryot. Cell 7:859 2008 [59].

SSEM-Lasso gene ranks were determined for gene targets of genetic deletions
and compound treatments. All microarray experiments were performed using
Affymetrix Yeast Genome 98 gene chips, and data was RMA-normalized before
processing with SSEM-Lasso algorithm. The original and modified training
networks (modified with corresponding gene target expression data only)
were used to determine ranks of target genes for each experiment. Raw data
was obtained from published experiments (GEO) or conducted in in-house, as
indicated in footnotes. Average ranks for duplicate experiments are shown.
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expression data did not significantly alter SPT3 rank
across the representative FL experiments; three of the
ranks increased while two widely fluctuated (Figure 9D,
Table 7).

Training phase: A further application of network

variations to nocodazole gene target predictions

We explored if these findings were applicable to nocoda-
zole (NOC), an antimitotic benzimidazole drug that de-
stabilizes microtubules and causes cell cycle arrest in
mitosis [48]. TUBI is one of two functional genes (the
other is TUB3) that encodes for «-tubulin, an essential
protein of the a,-tubulin heterodimer [49]. o,B-tubulin
polymerizes into microtubules, which are critical com-
ponents of the mitotic and meiotic spindles and essential
for cell division [49]. We hypothesized that addition of

Table 4 Comparison of rank changes (RCs) for ERG11 in
network training phase

ERG11

+ Aerg11/ERG11 + Aerg6 + FL

Expt analyzed Rank Percentile Rank Rank
change (RC) change (RC) change (RC)

Flgno 10T 488 97 -82 =75
Flaio, 40T 344 92 —45 142
FL Gioo, 4DT 585 96 -136 -98
FL Giz0, 4DT 301 88 —41 =21
FL G0, 4DT 421 94 =70 =37

RCs were reported for ERG11 across 5 FL treatment experiments, under 3
different training compendiums: + 4erg11/ERG11, + derg6, and + FL treatment.
Percentile of RC was computed as the percentage of genes with a RC as high
or higher than the target gene. RC percentiles >95 indicated significant
perturbation as identified by SSEM-Lasso.
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Table 5 Comparison of rank changes (RCs) for ERG6 in network training phase

ERG6

+ derg6 + Aerg11/ERG11 +FL
Expt analyzed Rank change (RC) Percentile Rank change (RC) Percentile Rank change (RC)
Flgio 1DT 3795 100 139 73 -292
Flaio, 4DT 748 98 71 43 102
FL G0, 4DT 999 99 99 57 [§
FL 30, 4DT 677 97 70 47 54
FL G0, 4DT 123 48 67 45 52

RCs were reported for ERG6 across 5 FL treatment experiments, under 3 different training compendiums: + Aderg6, + 4erg11/ERG11, and + FL treatment. Percentile
of RC was computed as the percentage of genes with a RC as high or higher than the target gene. RC percentiles >95 indicated significant perturbation as

identified by SSEM-Lasso.

microarray expression data from a tubIA/TUBI1 deletion
strain could potentially improve TUBI rank in NOC
treatment experiments.

All experiments were performed in BY4741 strains
using the same media and conditions that were used in
FL experiments. We determined NOC treatment con-
centrations using dose-response curves and growth in-
hibitory values (GIs) as we did for FL. Studies have
shown that S. cerevisiae haploid cells treated with NOC
(6 to 15 pg/mL, or 20 to 50 uM) rapidly disassemble mi-
crotubules in the majority of the cell population, result-
ing in mitotic arrest with intact nuclei [48,50]. We chose
a concentration slightly lower, 16 pM, which corre-
sponded to GlI;p, and incubation intervals of 3 and 4
ETs.

Interestingly, SSEM-Lasso did not predict TUBI per-
turbation as well as it did for ERG11 with the original
training set. Still, upon addition of TUBI deletion ex-
pression data, ranks dropped by over 300, and TUBI
RCs were in the top 98% and 97% of all RCs for GI;,
3ET and Gl;, 4ET experiments, respectively (Table 8).

Discussion

Impact of testing phase variations on SSEM-Lasso predic-

tions of gene sets

SSEM-Lasso was originally developed to identify a dir-
ectly targeted gene of a genetic or drug perturbation
[12]. We sought to expand the algorithm’s utility by test-
ing its ability to predict drug perturbations over several
biological conditions and on a set of biologically-related
genes, rather than on a single gene target. This was the
first study that analyzed SSEM-Lasso output using ROC
curves and corresponding AUC values for a group of
predefined genes.

FL treatment of S. cerevisiae results in inhibition of
lanosterol demethylation and subsequent depletion of
ergosterol and accumulation of toxic methylated sterol
precursors. This results in cell membrane damage and
impaired fatty acid and lipid biosyntheses [35,37]. FL

coordinates to Ergl1p’s heme iron impairing cytochrome-
related processes, such as mitochondrial respiration
(reviewed in Parks, et al. 1995 [36]). We created a gene set
based on these biological processes, called FL-interacters.
Experimental variations in ET and concentration mani-
fested perturbations that followed a clear trend and were
specific to the FL-interacters gene set. An ET of at least
four cell doublings in the presence of drug proved optimal
for accurate prediction of FL-interacters (Figure 5) Con-
centration changes did not exert as strong of an effect as
ET, and any concentration between Gl and Gl proved
optimal to induce target-gene perturbations (Figure 7).
Our results demonstrated that experimental “input” vari-
ables could be successfully optimized to identify a set of
related genes targeted by a drug. Our methodology could
therefore provide an experimental platform for future
studies aimed at predicting drug targets at the multi-gene
or pathway level.

In principle, given the training/testing paradigm com-
mon to the core of statistical and machine learning
methods in general, the spirit of the analyses carried out
in this study may be similarly used in exploring the sensi-
tivity of other methods of drug-target prediction methods.

Table 6 Comparison of rank changes (RCs) for ERGS5 in
network training phase

ERG5

+ Ahem1 + derg11/ERG11 + FL
Expt Rank Percentile Rank Rank
analyzed change (RC) change (RQC) change (RC)
Flgno 10T 569 97 23 -230
Flgio, 4DT 199 75 16 -80
Flgpo 4DT 1064 97 -5 —656
Flgio 4DT 828 95 —6 —444
Flguo 4DT 547 90 26 —251

RCs were reported for ERG5 across 5 FL treatment experiments, under 3
different training compendiums: + Zhem1, + derg11/ERG11, and +FL
treatment. Percentile of RC was computed as the percentage of genes with a
RC as high or higher than the target gene. RC percentiles >95 indicated
significant perturbation as identified by SSEM-Lasso.
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Table 7 Comparison of rank changes (RCs) for SPT3 in
network training phase

SPT3

+ Aspt3 + Aerg11/ERG11
Expt analyzed Rank change (RC) Percentile Rank change (RC)
Flgiio, 1DT =15 n/a =23
Flaio 4DT -226 n/a 95
Flaioo, 4DT 55 63 -17
Fleiso 4DT -12 n/a 4
Flgiao, 4DT 445 98 -18

RCs were reported for SPT3 across 5 FL treatment experiments, under 3
different training compendiums: + 4spt3 and + 4erg11/ERG11. Percentile of
RC was computed as the percentage of genes with a RC as high or higher
than the target gene. RC percentiles >95 indicated significant perturbation as
identified by SSEM-Lasso.

However, researchers should be aware that optimal experi-
mental conditions determined in this study are exquisitely
linked to SSEM-Lasso and FL. Drugs with different
modes-of-action, potencies, and potential for off-target ef-
fects may have dissimilar effects on gene expression under
these reported experimental conditions. Further, FL effects
could manifest dissimilar genetic perturbations when ana-
lyzed with a new statistical model. Finally, depending on
the algorithm or supervised learning method, results may
be more or less sensitive to experimental changes than
those reported with SSEM-Lasso. Therefore, the approach
would need to be adapted to the specifics of the measure-
ments at hand, which have tended to vary in the literature
(e.g., here we utilize only microarray expression profiles).
Nevertheless, this study provides a good starting point for
researchers to obtain accurate drug target predictions
using microarray technology.

Impact of testing phase variations on SSEM-Lasso drug
target predictions at the single gene level

In our study, SSEM-Lasso accurately predicted FL single
gene targets upon drug treatment, yet experimental vari-
ables did not dramatically affect biological outcomes.
With the exception of ERG6 (which showed a distinct
rank improvement after two cell cycles of FL treatment),
ERG11, UPC2, and HAPI ranks did not significantly
fluctuate over varying treatment conditions.

Table 8 Nocodazole study results in network training
phase

TUB1
+ Atub1/TUB1
Expt analyzed Rank RC Percentile
NocGlo, 30T 4283 333 98
NocGlyo, 4DT 4640 371 97

Two nocodazole (NOC) treatment experiments were performed and RCs of a
NOC target gene, TUB1, were evaluated. Ranks listed in table were the single
values each obtained from one treatment experiment.

Page 13 of 19

FL is known to target ERG1I (primary), ERG6, UPC2,
and HAPI, so these genes were tracked to evaluate
optimal experimental conditions. Unlike gene set predic-
tions, SSEM-Lasso prediction of ERGII perturbation
was relatively unchanging over multiple testing phase
modifications (Tables 1 and 2). These results demon-
strated that changes in ERGII expression caused by
changes in ET and concentration were not significantly
detected by SSEM-Lasso above the background gene-
gene interaction “patterns” in the network. ERG6 expres-
sion, on the other hand, responded to longer FL
exposure times, with four ETs yielding an optimal ERG6
rank in the top 87% of ranked genes (Table 1). Further-
more, ERG6 ranked consistently lower than ERGII across
all FL concentration experiments (Figure 8B, Table 2).
ERG6 encodes for A [24]-sterol C-methyltransferase, an en-
zyme downstream of Ergllp that synthesizes fecosterol, an
important precursor to ergosterol (Figure 2). FL effects may
have manifested more prominently on ERG6 than on
ERGI1 because of the cell’s reliance on Ergbp for pleio-
tropic cellular processes, including membrane rigidity and
permeability, genetic transformation, conjugation and tryp-
tophan uptake [42,43]. Furthermore, Ergép places a high
demand on the cell for metabolic energy, 12-14 ATP
equivalents, to perform transmethylation reactions [36].
Another reason ERG6 may have ranked lower than
ERGI1 involves the unnatural accumulation of lanos-
terol and/or the depletion of ergosterol as a result of
Ergllp inhibition by FL. Disruption of later stage ergos-
terol biosynthesis enzymes, like Erg6p, has been attrib-
uted to the build up of reactant metabolites along the
ergosterol pathway [61]. Furthermore, genome-wide
microarray studies have found the most responsive
genes to ketoconaozle function downstream of ERG11I,
suggesting their induction is induced by ergosterol
depletion [61].

Metabolic vs. transcription factor gene target predictions

A different trend, in comparison to metabolic enzymes
ERGII and ERG6, was observed for transcription fac-
tors, UPC2 and HAPI. Upc2p induces the transcription
of ergosterol biosynthesis genes upon sterol depletion
[44,45]. Previous microarray studies in S. cerevisiae had
identified induced UPC2 expression in response to keto-
conaozle [62]. This result was consistent with the FL-
induced UPC2 perturbation observed in this study.
SSEM-Lasso pinpointed UPC2 dysregulation by FL, with
ranks in the 99 percentile at four ETs and a range of
concentrations (Tables 1 and 2). Depending on the pres-
ence of heme, Haplp can bind the promoters of genes
to activate or repress their expressions for aerobic or
hypoxic growth, such as the CYP450 enzymes, ERGII
and ERGS5 [48]. Hence, ERG gene expressions are highly
dependent on HAPI gene interactions and the aerobic
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state of the cell. Additionally, Haplp represses transcrip-
tion of its own gene by at least 20-fold in a heat shock
protein-dependent manner [63]. Ranks for HAP1 were
comparable to UPC2 ranks, all performing significantly
better than other genes at three and four ETs at higher
FL concentrations (Tables 1 and 2). To factor perturba-
tions better than metabolic enzymes in the context of a
drug treatment.

We discovered that the type of molecular target —
metabolic enzyme or transcription factor, upstream or
downstream — can play a large role in the overall per-
formance of the algorithm.

Training phase variables significantly improve single gene
target predictions

The goal of SSEM-Lasso’s training phase was to infer a
gene interaction network that filtered out gene-gene
regulatory “patterns” so that genes experiencing a true
additive shift in their transcript signals emerged above
the gene network background. In this study, modified
training compendiums, the training phase “variables”,
were created by adding of new gene deletion data to the
training compendium. Each modified training compen-
dium shifted the network’s internal gene regulatory in-
fluences so that SSEM-Lasso more accurately predicted
single gene targets. This was evidenced by significant
rank decreases for ERGII, ERG6 and ERGS upon
addition of ergl1A/ERGII, erg6A, and hemlIA data, re-
spectively, to the training compendium (Figure 9A-C,
Tables 4, 5 and 6). The erg6A haploid deletion induced
the most pronounced decrease in ERG6 rank predic-
tions. This could be a result of more potent and specific
transcriptional effects of the erg6A knockout compared
to the partial knockout, erglIA/ERGI11, or the hemlA
strain, which was shown to induce widespread transcrip-
tional effects on many cellular processes [59].

Additional studies involving NOC treatment and
TUBI1 expression supported these FL findings. Rank
changes for NOC target, TUBI, dropped significantly
when the original training compendium was modified
with tubIA/TUBI deletion data (Table 8). Only one rep-
licate experiment of two NOC conditions, Gl;, 3 DT
and Gl 4 DT, was performed for this drug target study,
which is a limitation to the analysis. Finally, rank im-
provements of a non-FL-targeted gene, such as SPT3,
were not manifested with addition of corresponding
haploid spt3A expression data to the compendium
(Figure 9D). When taken together, these results indi-
cated that gene targets and the modified training
compendium should be specific to the drug under inves-
tigation in order to improve SSEM-Lasso’s performance.
Still, further training phase variations concerning other
drug treatments and deletion strains, and including
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more replicates, are necessary to assess the applicability
of this strategy to various drug-target predictions.

It was initially hypothesized that addition of FL treat-
ment expression data to the training compendium could
also minimize background gene-gene interactions spe-
cific to FL’s effects. This was not the case, as inclusion of
the FL experiment, Glyo, 4ET, modified gene regulatory
“patterns” in a negative manner, increasing ranks for FL
targets. This led to the conclusion that genetic knock-
outs produced more distinct and local effects on the net-
work as opposed to “noiser” and potentially off-target
perturbations induced with an exogenous compound.
Additionally, S. cerevisiae is susceptible to “neighboring
gene effects”, whereby the phenotype of a particular
strain (e.g., deletion strain) could be due to the effect the
perturbation exerts not on the target gene, but on an
“adjacent” gene [64]. With around 10% of all yeast genes
experiencing this type of influence [64], it was possible
that there were too many “neighboring” expression
changes induced by a foreign compound, and thus
“noise” was enhanced and direct FL gene targets were
pushed further into the background.

The training phase variables caused dramatic improve-
ments in SSEM-Lasso performance compared to the
minor rank fluctuations observed for experimental test-
ing variations. Thus, when examining a drug’s potential
effects using microarray data and our methodology, the
experimental conditions played a more important role in
predicting a gene set. On the other hand, fine-tuning of
the computational variable, i.e. the gene interaction net-
work, proved more critical for accurate predictions of
single gene drug targets.

SSEM-Lasso utility for the prediction of unknown drug
targets

These results suggest a unique, two-stage approach to
predict an unknown drug target using genome-wide
microarray data and a network-inference model, such as
SSEM-Lasso. First, detection of one or more perturbed
gene sets should hone in on one or more biological
pathways affected by the drug in question. In the case of
SSEM-Lasso, these pathways were set a priori by the ex-
perimentalist, permitting a more focused analysis of
drug-induced effects. Once a target pathway is eluci-
dated, genetic deletion data specific to genes along the
target pathway can be added to the training data. Single
gene results can then be analyzed under different net-
work training conditions and compared to arrive at
more accurate drug gene target predictions. Genes ex-
periencing greater rank changes with the addition of
their respective genetic deletion data to the training
compendium can be considered more likely candidate
drug targets.
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Conclusions

The goal of this study was to improve our understanding
of the interaction between biological testing and compu-
tational training variables in order to produce more ac-
curate predictions of drug action at the transcriptional
level. Previously, the network-inference model, SSEM-
Lasso, predicted molecular targets of genetic mutations
more accurately than drug treatments. We discovered a
two-stage approach that addressed this issue and out-
lined improved experimental and computational condi-
tions for predictions of first, drug pathway and second,
single gene targets. Experimentally, the duration cells are
in contact with a compound and the changes in com-
pound concentration do not have a dramatic effect on
single gene targets. However, these variables must be op-
timized for more accurate target predictions at the gene
set/pathway level. Computationally, addition of specific
biologically-motivated expression data to the interaction
network can influence the gene regulatory effects in a
manner that better resolves perturbations at the single
gene level. With these variables in mind, SSEM-Lasso,
and by extension, similar computational methods, can
be a tremendously useful tool for therapeutic discovery
when implemented under the appropriately informed
testing and training conditions.

Methods

Yeast strains and treatment conditions

All FL treatment experiments maintained constant back-
ground, growth conditions, and mRNA preparation and
hybridization procedures. The wild-type S. cerevisiae
strain derived from BY4741 (MATa his3A1 leu2A0
metl15A0 ura3A0) was used for all FL treatments. This
cell line has been used for systematic sequencing and
deletion projects in which open reading frames were
replaced by kanamycin cassettes (KanMX) to generate
haploid and heterozygous knockouts [44]. Heterozygous
knockout strains, ergliA/ERGII and tublA/TUBI in a
BY4743 background (MATa/MAT«a  his3A1/his3A1
leu2A0/leu2A0 lys2A0/+ metl15SA0/+ ura3A0/ura3A0),
and haploid strain, erg6A in a BY4741 background were
generated by the Saccharomyces genome deletion project
[45] (Invitrogen) and used for genetic deletion micro-
array experiments. Haploid strain, hemlIA in a BY4742
background (MAT« his3A1 leu2A0 lys2A0 ura3A0) was
cultured under heme depletion conditions and micro-
array hybridization was performed according to Protch-
enko et al., 2008 [46].

Yeast growth is typically measured in cell population
doubling times, determined by turbidity [65]. Consequently,
a treatment collection time point, or exposure time (ET),
was defined as the time it took a cell population to double
in the presence of FL. ETs were longer than a typical
90-minute doubling time for wild-type S. cerevisiae cells at
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30°C, an anticipated result attributed to FL fungistatic
activity.

Determination of treatment concentrations

To determine FL. and NOC growth inhibitory value (GI), a
single colony of wild-type cells was inoculated into 10 mL
YPD media (1% yeast extract, 2% bacto-peptone, 2%
dextrose) overnight, diluted with YPD medium to give an
ODggo of 0.005, and pipetted (200 pl) into a flat-bottom
96-well plate. Serial dilutions of FL (Sigma) or NOC
(Calbiochem) were prepared in 100% DMSO and added
(5 pL) to cells to obtain final concentrations of 200 UM -
10 pM (for FL) and 60 - 10 pM (for NOC). Each concen-
tration was represented 6x on a single plate. The plates
were incubated at 30°C overnight and the ODggyy of
control and treated wells were determined. Control ab-
sorbance values were normalized to 0% inhibition. Dose-
response curves were generated by plotting the % growth
inhibition (final) versus the log;o (drug concentration). GI
percentages (0.5, 5, 10, 20, 30, 40) were then determined
with GraphPad using the four parameter fit model.

Genome-wide microarrays

A single colony of wild-type or deletion yeast strains was
inoculated into 10 ml YPD media overnight, then diluted
with YPD medium to give an ODgoy between 0.08 and 0.1.
G418 was used for KanMX selection conditions of the dele-
tion strains (final concentration 200 mg/L). Cells were
immediately treated with the appropriate concentration of
FL, NOC, or DMSO (final concentration 1 v/v % DMSO),
incubated at 30°C with shaking (250 rpm), and collected at
mid-log growth phase for one, two, three, or four ETs. Cells
were harvested by centrifugation at 500 x g, 5 minutes,
room temperature, flash frozen and stored at -80°C. Total
RNA was isolated using the acid phenol chloroform
method. Briefly, cell pellets were thawed, re-suspended in
lysis buffer, and RNA was extracted with hot acid phenol:
chloroform (Fisher). After three extractions, the super-
natant, containing RNA, was added to 100% cold ethanol,
and RNA was allowed to precipitate at -20°C for 4-6 hours.
RNA was pelleted and washed with 70% ethanol before
dissolving in DEPC-treated water. Poly(A)" RNA was next
isolated using Oligotex mRNA kit (Qiagen Inc.) and ampli-
fied and hybridized to Affymetrix YG S98, except only 25
ng of mRNA was used. Raw expression data was RMA-
normalized and processed with SSEM-Lasso.

Establishing gene sets

Relationships between genes in a gene set were based on
published literature and biological pathway and yeast
genome databases, Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO). Each gene
set contained between 72 and 74 genes. See Additional
files for specific genes.
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SSEM-Lasso algorithm and predictions of gene targets
Methods of Cosgrove et al., 2008 [12] were adopted to
identify gene perturbations using Lasso regression in a
sparse simultaneous equation model (SSEM-Lasso). We
briefly sketch the key elements of this approach here;
refer the reader to Cosgrove et al., 2008 [12] for full de-
tails. With SSEM-Lasso, the mean level of gene expres-
sion from a single gene is described as a function of two
elements (1) the gene expression of all other genes in a
network and (2) an external perturbation parameter.
The notion of a “targeted gene” refers to an external per-
turbation to the mean mRNA level of a gene that cannot
be explained by gene-gene interactions alone. For p
genes and n observations, the model can be written as:
Y=BY + ® +E, where Y is a p by n matrix of gene tran-
script measurements (for p genes in n samples), B is a p
by p matrix of gene-gene interaction effects whose diag-
onal elements are fixed to zero (gene interaction net-
work/matrix), ® is a p by n matrix of external
perturbations (derived from the experiment being tested)
and E is a p by n matrix of random noise assumed
Gaussian with zero mean.

Note that the model used in SSEM-Lasso is an auto-
regressive model, with the variable Y serving as both re-
sponse and predictor. Auto-regressive models have a
long history in traditional time series and spatial data
analysis [66], and in recent years have proven popular
for network-based modelling as well [67] (See Kolaczyak,
2009 Ch7.3). The manner in which we write the model
above is a standard and concise representation [66]. In
this form, the relationship among the gene expression is
summarized (1) across all microarrays (i.e., it is a multi-
variate statistical representation, involving the entire
matrix Y, rather than a single column), and (2) at the
level of the joint marginal distribution within each
microarray (i.e., it involves the full columns in Y, rather
than just their individual elements). However, at the
level of an individual measurement in Y, say single gene
k in sample i, denoted as y; the model may be shown
to specify that the conditional distribution of yy; given
all other genes j =k in experiment i, denoted as y;;, is of
the form

Vi = /§<Bhyjz + @i T e

That is, conditionally, the expression of any one gene is
modelled as a linear combination of that of the others,
plus a possible perturbation, plus a noise term [12]. Thus,
this type of model is a natural way of capturing the notion
of the expression levels of each gene being influenced by
the expression levels all other genes. Additionally, this
conditional form shows why a regression-based strategy is
natural for estimating the unknown parameters in B.
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As in Cosgrove et al., 2008, the method was imple-
mented in two steps. First, the original training compen-
dium of RMA-normalized Affymetrix data was used to
infer the gene-gene interaction network B. This training
compendium consisted of 1039 Affymetrix YG S98
GeneChips, representing 465 experimental conditions
[12]. A simpler, simultaneous equation model was
assumed by setting @ to zero and estimating B row-
by-row using a sparse regression technique.

Lasso regression is a form of penalized regression, in
which the standard least squares goodness-of-fit criter-
ion is augmented with an additional term capturing the
sum of the absolute values of all regression coefficients
in the model. Such penalties, developed and studied
extensively over the past two decades, are known to
encourage sparse models and are particularly useful in
contexts (such as the current one) in which a relatively
small number of variables (i.e., genes) need to be
selected from among a very large number. See Cosgrove
et al., 2008 [12] for additional details on implementation
of the Lasso methodology, and [68], for a formal
characterization of the performance of SSEM-Lasso
(including the expected accuracy of the Lasso-based
regression), both theoretical and under simulation.

In the second step of the SSEM-Lasso method, using
the estimate of B resulting from the first step, an outlier
analysis of the residuals is conducted: 7Pt = yPer‘—ByPert,
where yP*"" is a p x 1 vector of expression values across p
genes in a single experiment (in our case a FL experi-
ment). The residual, 77 is a combination of the external
influence @P*"* of the perturbation and noise. Residuals
were then ranked by their absolute values for all anno-
tated yeast genes (1-6681). Genes with low ranks (and
thus high residuals) were genes that SSEM-Lasso distin-
guished from the gene network background and were
considered potential targets of the applied perturbation.

Modification of the training compendium

For FL training phase modifications, raw expression data
from two, individual microarray experiments performed
under identical conditions (e.g. two replicates of an Affy-
metrix GeneChip from an erglIA/ERGI11 heterozygous
mutant experiment) were RMA-normalized. Expression
data were input into the training compendium as a sin-
gle experiment file. A new, distinct training network was
inferred as described above. In this way, the gene inter-
action matrix acted as the variable for the training phase
modification experiments. RMA-normalization for all
modified training compendiums was done in one step
and included GeneChips from the original training
compendium [12] plus additional experiments: ergl1A/
ERG11I, erg6A, hemlA (GSM241150 and GSM241150),
spt3A  (GSM239658 and GSM239659), Fluconazole
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treatment, rpl7aA (GSM217617 and GSM217618) and
Pterostilbene treatment (GSM266726 and GSM266728).

Determining gene ranks, rank changes, and percentiles
After implementing SSEM-Lasso, gene ranks for all FL
treatment experiments were obtained and averaged for
each experimental condition (see Background and
Figure 1). Gene ranks for NOC experiments were single
experiments from each condition. All ranks fell between
1 and 6681, which were the total number of genes in the
compendium. The percentile of a target gene in the test-
ing phase was computed by dividing the total number of
genes with ranks less than the target gene by the total
number of genes (6681). Rank changes (RCs) were com-
puted for the training phase by subtracting the rank
obtained with the modified training compendium from
the rank obtained with the original compendium. The
RC percentile of a target gene in the testing phase was
similarly computed.
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