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Abstract

candidate drug targets.

Background: Aberrant DNA methylation is often associated with cancers. Thus, screening genes with cancer-
associated aberrant DNA methylation is a useful method to identify candidate cancer-causing genes. Aberrant DNA
methylation is also genotype dependent. Thus, the selection of genes with genotype-specific aberrant DNA
methylation in cancers is potentially important for tailor-made medicine. The selected genes are important

Results: The recently proposed principal component analysis based selection of genes with aberrant DNA
methylation was applied to genotype and DNA methylation patterns in squamous cell carcinoma measured using
single nucleotide polymorphism (SNP) arrays. SNPs that are frequently found in cancers are usually highly
methylated, and the genes that were selected using this method were reported previously to be related to
cancers. Thus, genes with genotype-specific DNA methylation patterns will be good therapeutic candidates. The
tertiary structures of the proteins encoded by the selected genes were successfully inferred using two profile-based
protein structure servers, FAMS and Phyre2. Candidate drugs for three of these proteins, tyrosine kinase receptor
(ALK), EGLN3 protein, and NUAK family SNF1-like kinase 1 (NUAK1), were identified by ChooselD.

Conclusions: We detected genes with genotype-specific DNA methylation in squamous cell carcinoma that are
candidate drug targets. Using in silico drug discovery, we successfully identified several candidate drugs for the
ALK, EGLN3 and NUAKT genes that displayed genotype-specific DNA methylation.

Background

Promoter methylation is widely recognized as an impor-
tant factor that regulates gene expression, especially in
cancers [1,2]. Many genes with tumor-specific methylated
promoters have been identified. For example, the promo-
ters of the PAK3, NISCH, KIF1A, and OGDHL genes are
specifically methylated in several cancers, including
breast, esophagus, lung, pancreas, colon, prostate, gastric,
cervix, thyroid, kidney, head and neck, ovary, and bladder
cancers [3]. Because genes with methylated promoters
are believed to be suppressive, genes with tumor-specific
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hypermethylated promoters were assumed to be tumor
suppressors. Similarly, genes with tumor-specific hypo-
methylated promoters were supposed to be oncogenic
(i.e., expressed in tumors) and potential oncogene targets.
Identification of promoter methylation in cancer genes is
important in helping to find critical genes that can cause
cancer formation.

Genotype, on the other hand, is another critical factor
that can affect cancer formation [3]. Many genotypes are
known to be associated with cancers. Currently, there are
no established mechanisms that can relate gene mutations
to cancer formation. For example, a cancer-specific single
nucleotide polymorphism (SNP) is often associated with
specific cancers [4], but this SNP is located in an intron of
the gene. It is still unclear how intronic SNPs affect gene
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expression. Typically, cancer-associated genotypes work
solely as biomarkers.

Despite of the known importance of DNA methylation
and genotype on cancer formation, how DNA methylation
and genotype cooperatively mediate cancer formation has
rarely been discussed. An exception is the recent associa-
tion study reported by Scherf et al. [5] who found that
genotype-specific promoter DNA methylation of the onco-
gene CHRNB4 was related to lung cancer. Opavsky et al.
[6] also found that the P53, E2f2 and Pten genes in a
mouse model of lymphoma were methylated in a geno-
type-specific manner. Thus, genotype and DNA methyla-
tion may contribute cooperatively to cancer formation in
many other cancers.

In this paper, we sought to detect genotype-specific
DNA methylation in esophageal squamous cell carci-
noma (ESCC). Many previous studies have reported
ESCC-specific genotypes. For example, Abnet et al. [7]
found that genotypic variants at position 2q33 on the
human chromosome were related to risk of ESCC.
Maeng et al. [8] found that phosphoinositide-3-kinase
and BRAF mutations were associated with metastatic
ESCC and Wang et al. [9] found that ESCC was related
to polymorphisms in ALDH2 and ADH1B in Chinese
females. Thus, genotype-specific DNA methylation is
expected to exist widely in ESCC. In this study, we used
two publicly available distinct SNP microarray data sets
to identify genotype-specific DNA methylation in ESCC.

Methods

DNA methylation profiles and genotypes

DNA methylation profiles and genotypes of blood, and
normal and tumor tissues for 30 patients from two SNP
arrays, Nsp and Sty, were downloaded from the Gene
Expression Omnibus (GEO) at the National Center for
Biotechnology Information [GEO:GSE20123] [10]. A total
of 90 samples for each of the DNA methylation and geno-
types were obtained. The normalized data were used with-
out further preprocessing.

Principal component analysis of DNA methylation profiles
and genotypes

The downloaded samples were analyzed by principal com-
ponent analysis (PCA) after substituting a zero for missing
values. Principal components (PCs) that exhibited differ-
ences between the blood, normal tissue, and tumor tissue
samples were selected for further analysis.

Selection of SNPs (probes) based on PCs and a t-test

The top N outliers among the PCs were selected as
described previously [11]. The DNA methylation profiles
and genotypes were investigated by three pairwise one-
sided ¢-test comparisons: normal tissue vs tumor, blood vs
tumor, and blood vs normal tissue. Then, the SNPs
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(probes) with significant P-values (P <0.05, adjusted by the
Bonferroni correction [12]) for all three pairwise compari-
sons were considered to be genes that displayed significant
differences between all three cell types. Finally, genes that
are selected in common for DNA methylation and geno-
types were picked up for further analysis.

Gene annotation using the Gendoo server

Gene annotation was performed with Gendoo (gene, dis-
ease features ontology-based overview system) [13,14].
The RefSeq mRNA IDs for the selected genes were
extracted from GEO and transformed to the gene symbols.
The gene symbols were then uploaded to the Gendoo ser-
ver and diseases that were associated with gene symbols
were listed with their P-values, which indicated the signifi-
cance of the associations.

Feature selection based on correlation coefficients
Suppose x;; is the microarray measurement for the ith
probe (SNP) at the jth sample and y; depends on the
class to which the jth sample belongs, then

1 (j € blood)
vi= 1 2 (j € normal tissue).
3 (j € tumor)

The Pearson and Spearman correlation coefficient for
the ith probe (SNP) was then computed between x;; and y;.
Finally, the 300 probes (SNPs) with the largest correlation
coefficients were selected.

Feature selection based on partial least squares

Partial least squares (PLS) provides a bilinear representa-
tion of data and PLS-based feature selection aims to select
features that have the most weight to linear combinations
[15]. For simplicity, we employed the PLS+MCLASS strat-
egy [15], where PLS was applied directly to multiclass
samples. This strategy is, at most, the third-best depending
on the data set being tested (Other strategies include, for
example, a voting strategy based on pairwise PLS applica-
tions [15]). However, because there are only three classes
in our study, very little improvement can be expected even
if the best strategy is employed, as shown previously [15].

Stepwise feature selection

Stepwise feature selection was performed by adding/
removing features iteratively, until the performance
reached its maximum. In this study we performed step-
wise variable selection using the stepclass function with
the lda function as implemented in R [16].

Lasso-based feature selection
Least absolute shrinkage and selection operator (Lasso)
[17] is another frequently used feature extraction
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method. Lasso applies linear discriminant analysis with
minimizing sum of regression coefficients. This results
in the elimination of redundant features. To apply Lasso
to our data set, we employed the LARS function imple-
mented in R [16] by specifying the type="lasso” option.

t-test of the microarray measurements between genotype
and DNA methylation

For the SNPs that were selected in common between
genotype and DNA methylation, we used the one-sided
t-test that rejects the null hypothesis that the microarray
measurement of genotype is as large as the DNA methy-
lation value in favor of the microarray measurement of
genotype is more than the DNA methylation value. For
random sampling, the same set of SNPs was used for
the genotype and DNA methylation measurements.

Protein tertiary structure prediction

To predict the tertiary structure of the proteins encoded
by the selected genes we used the FAMS [18,19] and
Phyre2 software [20,21].

Screening drug candidate compounds from the DrugBank
database

We downloaded 6583 compounds in smiles format from
DrugBank [22,23]. The smiles format was transformed
to three dimensional structures by Babel [24]. The
structures of 6510 of the compounds were obtained.
Tanimoto indices were computed between the individual
compounds and ligands that bind to template proteins.
Compounds with Tanimoto indices larger than the
threshold values (0.25 for tyrosine kinase receptor
(ALK), 0.20 for the other proteins) were selected as can-
didate drug compounds.

Selection of template proteins and ligands

The template protein structures that we used for
in silico drug discovery were selected as follows: first,
each template must be used as a model protein for the
ligand binding region of the target protein; second, the
protein structures that ligands could bind to were selected
as templates; and third, as many as possible of the ligands
that could bind to several of the model proteins, including
those not selected as templates, were selected and fitted to
a template protein. These ligands were the “fingerprint”
for drug discovery and were used for to compute the Tani-
moto index.

Docking simulation using ChooseLD

Docking between the screened compounds and template
proteins was performed using ChooseLD [25]. The FPA-
Score [25] (minimization of free energy between each
compound and template protein) were computed ten
times for each compound. The compounds were ranked
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based on the best score among the ten values. Whole
computations were performed independently three times
and consistency between the three trials was evaluated.

Estimation of coincident of highly ranked compounds
between three independent trials

Suppose that ri(”), (i=1,.., N,n=1,2,3) is the des-
cending rank order of the FPAScore attributed to the
ith compound at the nth trial, where Nc is the total
number of compounds considered, then,

S (k) = (ilr(” < k)

is the set of k highly ranked compounds at the nth
trial. Then, the expected number of compounds selected
in common up to the kth rank, ny(k), is computed when
there are no correlations between the rl.(")s. Because the
probability that SP(k) includes compounds in SVK) is
k/Nec, SP (k) is expected to include kK*/Nc¢ compounds
that exist in SV(k). Thus, the number of unique com-
pounds in S (k) and SP(K) is expected to be

k2 k
=kl 2—
Y
and the probability that S®(k) includes compounds in
either SP(k) or SP(k) is

(o n)
2 —
N N

Thus, S®(k) is expected to include

v (2x)
2 —
N N,

compounds that exist in either SP(k) or SP(k). Finally,
the total number of unique compounds in S (k), SP(k),
and S®(k) is expected to be

=)ok (o= ) (- ) - )

When the number of highly ranked compounds
selected in common between the three independent
trials is much less than this number and is close to &,
we can conclude that consistency between the three
trials is high.

k+k—

Results

Estimation of genotype-specific DNA methylation

There is no unique criterion that can estimate genotype-
specific DNA methylation. Aberrant methylation itself
can be estimated by various criteria; for example, using
the ratio or the difference of mean values between nor-
mal and tumor tissues or using P-values obtained by a
statistical test such as a t-test. Each of the criterion may
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give a different genotype-specific DNA methylation set
of genes. In addition, some genotypes are either heavily
demethylated or methylated in tumor tissue compared
with normal tissue. If this genotype is very rare in the
tumor tissue, it is clearly unreasonable to regard this
genotype-specific DNA methylation as being the cause
of the tumor. Ideally, to be sure that a particular geno-
type-specific DNA methylation could cause the tumor,
the following conditions should be satisfied:

1. The genotype is specifically demethylated/methy-
lated in the tumor tissue compared with other geno-
types (strength of aberrant DNA methylation).

2. The genotype is abundant in the tumor tissue
(abundance of aberrant DNA methylation).

The best balance between these two conditions is not
easy to estimate, because there is no standard under-
standing about the kind of gene abnormalities that gener-
ally cause tumors. In this study, we used three kinds of
samples: blood, normal and tumor tissues. This made the
comparisons more difficult than a comparison between
only normal and tumor tissues, because we are not sure
if normal tissue is an expected intermediate between
blood and tumor. To avoid uncertainties that this com-
plicated situations might cause when estimating geno-
type-specific DNA methylation, we employed a recently
proposed PCA-based unsupervised feature selection
method [11]. This procedure does not require the user to
select the criterion that is used to estimate genotype-
specific DNA methylation. It is necessary simply to select
the suitable PC by which the SNPs with genotype-specific
DNA methylation are selected.

Genotype-specific DNA methylation estimated using the
Nsp microarray data

The PCs obtained when PCA was applied to the Nsp
microarray measurements of genotype are shown in
Figure 1. Although the first PC (PC1; Figure 1a) had the
dominant contribution (80%), no significant differences
between blood, and the normal and tumor tissues were
seen. On the other hand, the second PC (PC2; Figure 1b)
clearly distinguished between blood, and normal and
tumor tissues. Therefore, we used PC2 to select probes
(SNPs) that exhibited significant differences between the
blood, and normal and tumor tissues. Because PC3 (not
shown here) exhibited no significant differences between
the blood, normal and tumor samples and had very little
contribution, we did not use the third PC (PC3) to select
SNPs.

The PCs obtained when PCA was applied to the Nsp
microarray measurements of DNA methylation are
shown in Figure 2. PC2 (Figure 2b) was again the PC
that clearly distinguished between blood, and normal
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and tumor tissues. PC2 was, therefore, used to select the
SNPs that exhibited significant differences between the
three samples.

The two dimensional (PC1 and PC2) embedding of
SNPs (probes) for DNA methylation and genotype are
shown in Figure 3. Because PC2 showed significant dif-
ferences between the blood, and normal tissues and
tumor tissues, we selected the 300 topmost outliers
along the PC2 axis for both DNA methylation and geno-
type. To see if genotype-specific methylated SNPs were
selected correctly, we filtered the selected SNPs based
on the following criteria:

1. Intersection between top N outliers between DNA
methylation and genotype.

2. All three associated P-values adjusted by the BH
criterion [26] are less than 0.05, when three pairwise
one-sided #-tests (tumor tissue vs normal tissue, nor-
mal tissue vs blood, tumor tissue vs blood) are
applied.

A total of 68 SNPs were selected in common from the
top 300 outliers between genotype and DNA methyla-
tion after applying the first criterion. Because there
were more than 250,000 SNPs on the Nsp microarray,
the P-value for 68 SNPs being selected in common
from 300 is less than 1 x 107'°. The topmost 5, 10, 20,
27, 42 and 59 selected SNPs from within the top N
(=50, 100, 150, 200, 250, and 300) outliers, respectively,
after applying the P-value filtering (the second criterion)
are listed in Table 1. More detailed annotations for
selected SNPs and their associated genes are available in
Additional file 1.

Genotype-specific DNA methylation estimated using the
Sty microarray data

The PCs obtained when PCA was applied to the Sty
microarray measurements of genotype are shown in
Figure 4. Although PC1 (Figure 4a) had the dominant
contribution of 81%, no significant differences between
blood, normal and tumor tissues were observed. PC2
(Figure 4b) had very little contribution and also exhib-
ited no significant differences between the three sam-
ples. On the other hand, both PC3 (Figure 4c) and the
fourth PC (PC4; Figure 4d) clearly distinguished
between blood, normal and tumor tissues. Because the
PC3 and PC4 results were similar, at this stage we did
not decide which of them was the more suitable PC to
use to select SNPs that exhibited significant differences
between blood, normal and tumor tissues.

The PCs obtained when PCA was applied to the Sty
microarray measurements of DNA methylation are
shown in Figure 5. PC3 (Figure 5¢) and PC4 (Figure 5d)
were again the PCs that clearly distinguished between
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Figure 1 PCs for genotypes measured by Nsp microarray. (a) PC1 (81%). (b) PC2 (3%). Black circle, blood; red triangle, normal tissue; green
cross, tumor tissue. The horizontal axes indicate the subjects and their samples. The order of the 30 subjects in the 1—30, 31 —60, and 61—90
sections are the same; i.e, 1, 31, and 61 are samples from the same patient.
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blood, normal and tumor tissues. PC1 (Figure 5a) and
PC2 (Figure 5b) did not exhibit strong significant
differences.

Because, unlike in the case using the Nsp microarray
data, we could not uniquely select a pair of PCs to use to
select the SNPs that exhibited the most significant differ-
ences between the blood, normal and tumor tissues, we
tried various PC combinations for the genotype and
DNA methylation measurements. We found that the best
combinations were

1. PC4 for genotype (Figure 4d) and PC3 for DNA
methylation (Figure 5c).

2. PC3 for genotype (Figure 4c) and PC4 for DNA
methylation (Figure 5d).

The two dimensional embedding of SNPs (probes) for
DNA methylation and genotypes for these two combina-
tions of genotype and DNA methylation PCs are shown
in Figure 6. SNPs (probes) that exhibited differences
between the three samples, in common for both DNA
methylation and genotype, were selected using the cri-
teria described in the previous section. For the combina-
tion of PC4 for genotype (Figure 6b) and the PC3 for
DNA methylation (Figure 6¢), a total of 81 SNPs were
selected in common within the 300 topmost outliers
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Figure 2 PCs for DNA methylation measured by Nsp microarray. (a) PC1 (80%). (b) PC2 (3%). Other notations are the same as those in
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Figure 3 Two dimensional embedding of SNPs with PC1 and PC2 for the Nsp microarray measurements. (a) Genotype (Figure 1). (b)
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between DNA methylation and genotype after applying
the first criterion. Similarly, for the combination of PC3
for genotype (Figure 6a) and PC4 for DNA methylation
(Figure 6d), a total of 50 SNPs were selected in common
within the 300 topmost outliers between DNA methyla-
tion and genotype after applying the first criterion.
Because there were more than 230,000 SNPs on the Sty
microarray, the P-values for 81 or 50 SNPs being
selected in common from 300 are less than 1 x 107*°,
The topmost 6 (4), 10 (15), 13 (21), 14 (28), 19 (34), and

22 (37) SNPs from the top N (=50, 100, 150, 200, 250,
and 300) outliers, respectively, were selected after apply-
ing the P-value filtering for the first (second) combina-
tion of PCs are listed in Table 2 (3). More detailed
annotations for selected SNPs and their associated genes
are available in Additional file 1.

Estimation of optimal N
We did not know what is the optimal N, the number of
selected SNPs with aberrant DNA methylation, to use in

Table 1 SNPs selected for DNA methylation and genotype measured by the Nsp microarray.

SNP_A-2145008

SNP_A-2309865

SNP_A-1984943

SNP_A-2121000

SNP_A-4199352
SNP_A-1834529

SNP_A-2089983
SNP_A-1950742

SNP_A-4196078
SNP_A-1961374

SNP_A-2199615

SNP_A-1880907
SNP_A-4193660
SNP_A-2042678
SNP_A-2088571

SNP_A-2142865
SNP_A-1852621
SNP_A-1886593

Rank SNPs

50 SNP_A-1825620 SNP_A-2213037
SNP_A-4233167

100 SNP_A-2172952 SNP_A-2234716
SNP_A-2085071

150 SNP_A-2040111 SNP_A-4195285
SNP_A-1944699 SNP_A-1988914
SNP_A-2105346 SNP_A-4235277

200 SNP_A-4229534 SNP_A-4226834
SNP_A-1919825 SNP_A-2276203

250 SNP_A-1989613 SNP_A-1845324
SNP_A-2124767 SNP_A-1810962
SNP_A-1961109 SNP_A-4212314
SNP_A-1980533 SNP_A-2143521

300 SNP_A-2043441 SNP_A-2287632

SNP_A-1910539
SNP_A-4236336
SNP_A-2053247
SNP_A-2065785

SNP_A-4213049
SNP_A-2063926
SNP_A-4197286

SNP_A-2056366
SNP_A-2007288
SNP_A-1911642
SNP_A-4204073

SNP_A-2185001
SNP_A-4228665
SNP_A-1950919
SNP_A-2221049

The 59 selected SNPs (probes) that exhibited significant differences between blood, and normal and tumor tissues, within the top N (= 50, 100, 150, 200, 250,
and 300) outliers for both DNA methylation and genotype. Top 300 outliers are shown in red in Fig. 3. For detailed annotations, including associated genes, of
the selected SNPs, see Additional file 1 (sheet name Nsp).
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this study. The results in Tables 1, 2, and 3 indicate that
increasing N helps in selecting a large enough number
of SNPs that pass the selection criteria. Larger Ns possi-
bly give more plausible SNPs with genotype-specific
DNA methylation. We used N = 300 mainly because,
when a large number of SNPs are selected at this stage,
in the following stages, it is difficult to screen the SNPs
and to predict the tertiary structure of the proteins asso-
ciated with the SNPs. A rigorous estimation of the opti-
mal N is a problem for future studies.

Comparison with other methods

To our knowledge, no feature selection methods that are
applicable to three classes of data set without the need
for preknowledge about the internal ranking between the
classes are currently available. Although our method
requires the manual selection of the PCs used for feature

selection, no pre-knowledge about the ranking between
classes is needed and how the classes should be ranked is
quite clear from the PCs (Figures 1, 2, 4, and 5). Thus,
there are no other methods that can be compared with
our methods.

However, because we now know that the rank between
the classes is blood <normal tissue <tumor tissue, we have
applied other methods that require this pre-knowledge.

Table 4 shows the selection results obtained using our
method and several other methods (see Methods). LARS
with the type="“lasso” setting option could not be exe-
cuted because the memory requirements were too large
and stepclass did not converge within the executable
time period. These problems were because the more
than 200,000 probes (SNPs) in each of the the two
microarrays were too many for the available memory or
timeframe.
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Figure 5 PCs for DNA methylation measured by Sty microarray. (a) PC1 (83%). (b) PC2 (2%). (c) PC3 (1%). (d) PC4 (1%). Other notations are
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The Pearson correlation-based, Spearman correlation-
based, and PLS-based feature selection methods success-
fully selected the 300 topmost SNPs for genotype and
DNA methylation. However, the number of SNPs selected
in common between genotype and DNA methylation was
smaller than the numbers selected the present study
(Table 4). Thus, our method clearly outperforms the other
methods in selecting the genes in common between geno-
type and DNA methylation.

Discussion

Properties of the selected SNPs

Almost all selected SNPs were located outside protein
cording regions of the genes (see Additional file 1). The
only exceptions were SNP_A-4242077 (associated with
PIWIL1), SNP_A-4288260 (associated with PIGO), and
SNP_A-1988914(associated with TARBP1). Thus, the

majority of the SNPs are presumably related to the regula-
tion of gene expression. The SNPs that were not located
in protein coding regions were located in the promoters
(identified as “upstream” in additional file 1), and also in
introns and in the downstream regions of genes. Thus, the
effect of genotype-specific DNA methylation on gene
expression is not straightforward.

In addition, some of the selected SNPs have not been
reported in Chinese populations, although all patients in
the microarray data sets that we used in this study were
Chinese. This finding indicates that we have correctly
selected mutation that may cause cancer formation.

Screening of cancer-related genes

To determine if the selected SNPs are biologically related
to cancers, the genes containing the SNPs were anno-
tated using Gendoo [13,14]. The RefSeq mRNA IDs of
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PC1 (Figure 5a) and PC4 (Figure 5d). Top 300 outliers are shown in red.

Figure 6 Two dimensional embedding of SNPs for the Sty microarray measurements. For genotype (a) with PC1 (Figure 4a) and PC3
(Figure 4¢) and (b) with PC1 (Figure 4a) and PC4 (Figure 4d). For DNA methylation (c) with PC1 (Figure 5a) and PC3 (Figure 5¢) and (d) with

-10
PC1

the genes were extracted from GEO and mapped to gene
symbols (Additional file 2). The gene symbols were
uploaded to the Gendoo server and the diseases that
were reported to be associated with each of the gene

symbols were listed (see Additional file 3). We found that
86 of the 155 genes listed in Additional file 2 were asso-
ciated with at least one cancer-related disease. In addi-
tion, we performed a literature search to find papers that

Table 2 SNPs measured by the Sty microarray using PC4 for genotype and PC3 for DNA methylation.

Rank SNPs
50 SNP_A-2176803 SNP_A-4286712 SNP_A-4276813 SNP_A-2134351
SNP_A-2114077 SNP_A-4277414
100 SNP_A-4252327 SNP_A-4271493 SNP_A-4261117 SNP_A-1955805
150 SNP_A-2278684 SNP_A-2159288 SNP_A-1798268
200 SNP_A-1975466
250 SNP_A-2221439 SNP_A-2175811 SNP_A-4259136 SNP_A-2186260
SNP_A-2198500
300 SNP_A-4247667 SNP_A-4296608 SNP_A-4302067

The 22 selected SNPs (probes) that exhibited significant difference between blood, and normal and tumor tissues, within the top N (= 50, 100, 150, 200, 250, and
300) outliers for both DNA methylation and genotype. Top 300 outliers are shown in red in Figures 6b and 6c. For detailed annotations, including associated
genes, of the selected SNPs, see Additional file 1 (sheet name Sty1).
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Table 3 SNPs measured by the Sty microarray using PC3 for genotype and PC4 for DNA methylation.
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SNP_A-4288122

SNP_A-1906431

SNP_A-1990707
SNP_A-2272342
SNP_A-1859078

SNP_A-2092003
SNP_A-2264321

SNP_A-2295075

SNP_A-2176803

SNP_A-2073412
SNP_A-4300538

SNP_A-1793920

SNP_A-4277760

SNP_A-1834280

Rank SNPs
50 SNP_A-1879798 SNP_A-4261939
100 SNP_A-1781703 SNP_A-4257840
SNP_A-4254588 SNP_A-1827527
SNP_A-2291931 SNP_A-1893004
150 SNP_A-4292799 SNP_A-4285002
SNP_A-2188211 SNP_A-4263960
200 SNP_A-4275514 SNP_A-4242077
SNP_A-4279597 SNP_A-4288260
250 SNP_A-4258351 SNP_A-2207678
SNP_A-4269967 SNP_A-1811356
300 SNP_A-4258451 SNP_A-4302014

SNP_A-4293935

The 37 selected SNPs (probes) that exhibited significant difference between blood, and normal and tumor tissues, within the top N (= 50, 100, 150, 200, 250, and
300) outliers for both DNA methylation and genotype. Top 300 outliers are shown in red in Figures 6a and 6d. For detailed annotations, including associated

genes, of the selected SNPs, see Additional file 1 (sheet name Sty2).

reported the relationship between any of the 86 selected
genes and cancers, because the Gendoo server annotation
is based on automated text-mining and may include
some misinterpretations. We found that most of 86
genes were mentioned in at least one published paper
that described their relationship with cancer (see Addi-
tional file 4). Thus, we confirmed that more than half
(86) the 155 genes screened by our method were cancer-
related genes. In particular, twelve genes (CCNDI,
CCNL1, CKAP4, CRABP1, FGF3, GRHL2, MYEOV,
PKP4, RAP2B, RPL14, SMAD3, ZNF639) were associated
with “Carcinoma, Squamous Cell” and eleven genes
(CCND1, CKAP4, CRABPI1, EVI1, FGF3, MYEOV, PKP4,
RPL14, SMAD3,TMEM16A,ZNf639) were associated
with “Esophageal Neoplasms”. Among them, nine genes
are associated with both. Because this study used data
sets for ESCC (esophageal squamous cell carcinoma), this
association is reasonable and demonstrates the reliability
of our method.

Table 4 Comparison of our method with other feature
selection methods.

Method Nsp Sty
(Sty1 Sty2)
Present 68 81 50
Pearson 49 14
Spearman 39 18
PLS 7 13
Stepclass - -

lasso - -

The number of SNPs selected in common between the top-ranked 300 SNPs
in genotype and DNA methylationusing various methods. Present, this study;
Pearson, Pearson correlation coefficients based method; Spearman, Spearman
correlation coefficients based method; PLS, partial least squares based
method; Stepclass, stepclass (R function that executes iterative feature
selection) based method; and lasso: Lasso based method. Nsp and Sty are the
microarray data sets used in the study. Sty1 and Sty2 correspond to the PC4
for genotype (Figures 4d and 6b)/PC3 for DNA methylation (Figures 5c and
6c) and the PC3 for genotype (Figures 4c and 6a)/PC4 for DNA methylation
(Figures 5d and 6d) combinations of PCs.

Genes with genotype-specific DNA methylation are less
methylated than expected

We compared the microarray measurements between
genotype and DNA methylation of the probes selected
in common (Figure 7) and found that the microarray
DNA methylation measurements were always less than
the genotype measurements. Table 5 shows the results
of the t-test applied to microarray measurements
between genotype and DNA methylation. This observa-
tion is interesting, because a less methylated promoter
usually indicates a more expressive genes, although not
all the selected SNPs with DNA methylation were in the
promoter region of the genes (identified as “upstream”
in Additional file 1). To check that the demethylation
was not because of inaccurate microarray measurement
normalization, we randomly sampled the same number
of SNPs as those in Tables 1, 2, and 3 1,000 times, and
computed P-values adjusted by the BH criterion [26].
We found that typically less than 1 % of the trials had
adjusted P-vales <0.05 (Table 6). Thus, we determined
that there were no normalization biases in the data sets
and the low observed P-values shown in Table 5 were
not obtained because of fluctuations.

Structure prediction of the proteins associated with
selected genes

Although we selected genes with genotype-specific DNA
methylation, for therapeutic purposes, we need to design
drugs for the proteins that are encoded by these genes.
To identify candidate drugs computationally, the tertiary
structures of the target proteins are required as tem-
plates. However, the structures of many of the encoded
proteins have not been reported.

To obtain the tertiary structure of these proteins, we
used two protein structure prediction servers FAMS
[18,19] and phyre2 [20,21] to predict the structure using
only the amino acid sequence of the protein (see Addi-
tional file 5 for the amino acid sequences (in fasta
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methylation

o

geno type

methylation

geno type

methylation

geno type

Figure 7 Comparison of microarray measurements between
genotype and DNA methylation. Comparison of (a) 68 SNPs
selected with the Nsp microarray data set and (b) 81 SNPs selected
with the Sty microarray data set using PC4 for genotype (Figures 4d
and 6b) and PC3 for DNA methylation (Figures 5¢ and 6c).
Comparison of (c) 50 SNPs selected with the Sty microarray using
PC3 for genotype (Figures 4c and 6a) and PC4 for DNA methylation
(Figures 5d and 6d). Black circle, blood; red triangle, normal tissue;
green cross, tumor tissue. Solid lines indicate the boundary where
the microarray measurements are equal between genotype and
DNA methylation.
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Table 5 t-tests of microarray measurements between
genotype and DNA methylation for blood, normal and
tumor tissues.

Nsp
Genotype DNA methylation P-value
blood 132 119 31 %1072
normal tissue 245 1.75 *
tumor 2.84 2.23 *
Sty1
Genotype DNA methylation P-value
blood 221 1.77 *
normal tissue 258 2.14 *
tumor 2.87 248 *
Sty2
Genotype DNA methylation P-value
blood 1.69 1.29 *
normal tissue 242 202 *
tumor 2.51 2.04 *

Nsp and Sty are the microarray data sets used in the study. Sty1 and Sty2
correspond to the PC4 for genotype (Figures 4d and 6b)/PC3 for DNA
methylation (Figures 5¢ and 6c) and PC3 for genotype (Figures 4c and 6a)/
PC4 for DNA methylation (Figures 5d and 6d) combinations of PCs. * indicates
P-values <2.2 x 107'°.,

Table 6 t-tests of randomly sampled SNPs between
genotype and DNA methylation.

Nsp
Lower Upper Number of significant P-
bound bound values
blood 69 x 107" 1.00 19
normal 0.32 1.00 0
tissue
tumor 0.96 1.00 0
Sty1
Lower Upper Number of significant P-
bound bound values
blood 0.05 1.00 5
normal 0.01 1.00 4
tissue
tumor 0.04 1.00 6
Sty2
Lower Upper Number of significant P-
bound bound values
blood 6.12x 107 1.00 2
normal 0.06 1.00 0
tissue
tumor 956 x 1072 1.00 1

P-values were computed using t-tests for the microarray measurements between
genotype and DNA methylation for 1000 independent sets of randomly sampled
SNPs. Each of the sets contained at least as many SNPs as are included in Table
4. Nsp and Sty are the microarray data sets used in the study. Sty1 and Sty2
correspond to the PC4 for genotype (Figures 4d and 6b)/ PC3 for DNA
methylation (Figures 5c and 6c) and PC3 for genotype (Figures 4c and 6a)/
PC4 for DNA methylation (Figures 5d and 6d) combinations of PCs. P-values,
adjusted by the BH criterion, of < 0.05 were regarded as significant.
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Figure 8 Schematic illustration of the gene screening process. The grey rectangle indicates the processes performed in this study. The red
(blue) boxes indicate the data processing flow for the genotype (DNA methylation) data. The solid (dotted) lines indicate data processing flow
for the Nsp (Sty) measurements. Sty1 and Sty2 indicate the two combinations of PCs that were used; PC4 for genotype (Figures 4d and 6b)/PC3
for DNA methylation (Figures 5c and 6¢), and PC3 for genotype (Figures 4c and 6a)/PC4 for DNA methylation (Figures 5d and 6d).
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ALK1 EGLN3

Tanimoto Index
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NUAK1

. I Ligands | Fiibeel
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Figure 9 Schematic illustration of the drug discovery process. For the proteins encoded by the selected genes (ALK, EGLN3 and NUAKT1),
about 1,000 compounds, selected based on the Tanimoto index from DrugBank, were tested by ChooselD using template protein structures
from PDB. The templates are specified by their PDB IDs. The ligands are specified by the PDB ID, ligand name and a sequential number. For
example, 317C_BK2_n1 indicates ligand BK2 (1-tert-butyl-3-naphthalen-2-yl-1H-pyrazolo[3,4-d]pyrimidin-4-amine) included in PDB entry 317C [PDB:

317C], and n1 means no.1. The drug discovery process for EGLN3 was performed twice, with and without Fe as a ligand. When Fe was excluded
as a ligand, it was regarded as a mediator. That is, Fe bounds to the protein during docking simulation, but was excluded from the Tanimoto

-4

Candidate
compounds

Templates
(PDB ID)

Ranked
drug candidates

format) that were used to predict the tertiary structures
of the proteins).

The results of the protein structure predictions are
summarized in Additional file 4. Some protein struc-
tures were already in the protein data bank (PDB) [27],
if not, they were modeled using the structure of a

suitable reference protein. These structures were then
used as templates to predict drug candidates in silico.
For the proteins that were not in the PDB, for the
reference proteins that were used for the structure pre-
diction, we sought cancer-related papers that cited the
reference proteins. The references to these papers are
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Table 7 The 10 top-ranked compounds as drug targets for ALK, EGLN3, and NUAK1.

DrugBank ID Compound name Representative target cancer genes
ALK

DB01933 7-Hydroxystaurosporine PDK1

DB08700 3-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy] ALK, c-MET, LCK,
-5-(1-piperidin-4-yl-1H-pyrazol-4-yl)pyridin-2-amine TRKA, TRKB, TIE2, ABL

DB04651 BIOTINOL-5-AMP -

DB02491 4-[4-(1-Amino-1-Methylethyl)Phenyl]-5-Chloro-N FGFR2
-[4-(2-Morpholin-4-Ylethyl)Phenyl]Pyrimidin-2-Amine

DB07006 9-HYDROXY-6-(3-HYDROXYPROPYL)-4 WEE1

-(2-METHOXYPHENYL)PYRROLO[3 4-C]
CARBAZOLE-1,3(2H,6H)-DIONE

DB02010 Staurosporine [TK, SYK, MAPKAPK2, GSK3,
CSK, CDK, PIK3CG, ZAP-70

DB02654 6-Hydroxy-Flavin-Adenine Dinucleotide -

DB07460 2-({5-CHLORO-2-[(2-METHOXY-4-MORPHOLIN ALK, PTK2

-4-YLPHENYL)AMINO]PYRIMIDIN-4
-YLJAMINO)-N-METHYLBENZAMIDE
DB07186 4-(4-METHYLPIPERAZIN-1-YL)-N-[5 AURKA, PLK1
-(2-THIENYLACETYL)-1,5-DIHYDROPYRROLO
[3,4-CIPYRAZOL-3-YLIBENZAMIDE
DB03247 Riboflavin Monophosphate RPS6KA4, POR(P450), SGKT,

NOS1, DPYD, DHODH

EGLN3 (with Fe)
DB03702 2-[4-[[(S)-1-[[(S)-2-[[(Rs)-3,3,3-Trifluoro-1-Isopropyl-2 CELAT
-Oxopropyl]Aminocarbonyl]Pyrrolidin-1-YI-]Carbonyl]-2

-Methylpropyl]AminocarbonyllBenzoylamino]Acetic Acid

DB04761 PYRIMIDINE-4,6-DICARBOXYLIC ACID MMP13
BIS-[(PYRIDIN-3-YLMETHYL)-AMIDE]

DB08687 N-[(1-CHLORO-4-HYDROXYISOQUINOLIN-3-YL) EGLN1, PHD2
CARBONYL]GLYCINE

DB08131 2-{4-[2-(2-AMINO-4-OX0O-4,7-DIHYDRO-3H thyA

-PYRROLOI2,3-DIPYRIMIDIN-5-YL)-ETHYL]
-BENZOYLAMINO}-3-METHYL-BUTYRIC ACID

DB02718 5-Formyl-6-Hydrofolic Acid -

DB02015 Dihydrofolic Acid -

DB02031 (6s)-5,6,7,8-Tetrahydrofolate NOS1, thyA

DB04760 PYRIMIDINE-4,6-DICARBOXYLIC ACID MMP13
BIS-(4-FLUORO-3-METHYL-BENZYLAMIDE)

DB04759 PYRIMIDINE-4,6-DICARBOXYLIC ACID MMP13
BIS-(3-METHYL-BENZYLAMIDE)

DB07112 N-[(4-HYDROXY-8-IODOISOQUINOLIN-3-YL) EGLNT1, PHD2
CARBONYLIGLYCINE

EGLN3 (without Fe)

DB08687 N-[(1-CHLORO-4-HYDROXYISOQUINOLIN EGLN1, PHD2, HIF1A
-3-YL)CARBONYLIGLYCINE

DB03702 already listed in EGLN3 (with Fe)

DB04759 already listed in EGLN3 (with Fe)

DB03625 5,10-Dideazatetrahydrofolic Acid GARFTase

DB04760 already listed in EGLN3 (with Fe)

DB07112 already listed in EGLN3 (with Fe)

DB02015 already listed in EGLN3 (with Fe)

DB03541 10-Propargyl-5,8-Dideazafolic Acid TYMS, DHFR
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Table 7 The 10 top-ranked compounds as drug targets for ALK, EGLN3, and NUAK1. (Continued)

DB00158 Folic Acid -
DB04761 already listed in EGLN3 (with Fe)
NUAKI1

DB08053 1-cyclobutyl-3-(3,4-dimethoxyphenyl)-1H CSF1R and others
-pyrazolo[3,4-d]pyrimidin-4-amine

DB08052 1-cyclopentyl-3-(1H-pyrrolo[2,3-b]pyridin-5-yl) CSF1R and others
-1H-pyrazolo[3,4-d]pyrimidin-4-amine

DB08054 1-(1-methylethyl)-3-quinolin-6-yl-1H CSF1R and others
-pyrazolo[3,4-d]pyrimidin-4-amine

DB07563 1-{7-cyclohexyl-6-[4-(4-methylpiperazin-1-yl) CTSK
benzyl]-7H-pyrrolo[2,3-d]pyrimidin-2-ylimethanamine

DB08035 1-TERT-BUTYL-3-(2,5-DIMETHYLBENZYL) AR
-1H-PYRAZOLO[3,4-DIPYRIMIDIN-4-AMINE

DB04463 3-(4-Amino-1-Tert-Butyl-1h-Pyrazolo[3,4-D] CBR1
Pyrimidin-3-Yl)Phenol

DB08300 1-methyl-3-naphthalen-2-yl-1H-pyrazolo CSF1R and others
[3,4-d]lpyrimidin-4-amine

DB01809 1-Ter-Butyl-3-P-Tolyl-1h-Pyrazolo PKD1 and others
[3,4-D]Pyrimidin-4-Ylamine

DB08461 3-[(4-AMINO-1-TERT-BUTYL-1H-PYRAZOLO[3,4-D] AR
PYRIMIDIN-3-YL)METHYL]PHENOL

DB08699 1-tert-butyl-3-(3-methylbenzyl)-1H-pyrazolo CAMK2G

[3,4-d]pyrimidin-4-amine

The compounds were ranked based on FPAScores averaged over three independent trials and their representative target cancer genes. For the full lists of ranked
compounds and a detailed discussion of the target cancer genes listed here, see Additional files 7 and 8, respectively. ALK and EGLNT1, a paralog of EGLN3, are in
bold letters. “—" indicates that no known cancer-associated genes are targeted by these compounds.

listed in Additional file 4. Most of reference proteins
used for structure prediction were cancer-related. This
finding also suggests that our gene selection process and
protein structure prediction are plausible.

A summary of the entire of gene selection processes is
illustrated in Figure 8.

In silico drug discovery

We tried to design drugs that could bind to some of the
protein templates using an in silico drug discovery
method in which chemical compounds that potentially
bind to proteins and suppress protein functions were
sought computationally. For this purpose, we selected
the three proteins encoded by ALK, EGLN3, and
NUAK]1 as drug targets, based upon a literature search
and the gene annotations that indicated that these genes
were expressed in cancer and had potentially functional
binding pockets (e.g., protein kinase) for ligands. Details
of the annotations are listed in Additional file 4. The
drug discovery process that we used is illustrated in Fig-
ure 9 (see Methods for details).

After the FPAScores were estimated (see Methods and
Figure 9), to check if three independent trials were feasi-
ble, we tested coincidence between three trials in two
ways. First, we computed the correlation coefficients

between three independent trials. For all pairwise com-
putations for ALK, EGLN3, and NUAKI, the correlation
coefficients were greater than 0.9. This suggests that the
FRAScores computed by ChooseLD were highly repro-
ducible. (For actual values of the correlation coefficients
and scatter plots, see Additional file 6). However, the
correlation coefficients represent the overall reproduc-
ibilities of FPAScores for the candidate drug com-
pounds. It is more important that the compounds with
higher FPAScores, i.e., those regarded as being highly
reliable, were reproducible. Therefore, we checked how
often the highly ranked compounds were selected
between the three trials and found that the selection of
the highly ranked compounds was also highly reproduci-
ble (see Additional file 7).

The ranking of the tested compounds based on their
FPAScores are available as Additional file 8. The results
are summarized in Table 7. Among the 10 top-ranked
compounds for ALK, eight compounds targeted cancer
genes, and two out of the eight targeted ALK. Among
the 10 top-ranked compounds for ELGN3, including Fe
as a ligand, eight compounds targeted cancer genes and
two out of the eight targeted EGLN1, which is paralog
of EGLN3. Among the 10 top-ranked compounds for
ELGN3, without including Fe as a ligand but as a
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mediator, six were in common with the top-ranked
compounds for EGLN3 when Fe was included as a
ligand. Among the other four compounds, one targeted
EGLN1. Of the 10 of the top-ranked compounds for
NUAKI1, most target more than 100 other genes and
thus lack specificity. For a more detailed discussion
about top 10 ranked compounds for ALK, EGLN3, and
NUAK]I, see Additional file 9. All of these findings sug-
gested that the top-ranked compounds for each of the
proteins were feasible candidate drugs.

Conclusion

In this paper, we investigated genotype-specific DNA
methylation in esophageal squamous cell carcinoma,
using principal component analysis. We identified more
than 100 genotype-specific DNA methylation SNPs asso-
ciated with the disease. Among 155 genotype-specific
DNA methylation associated genes, 86 were associated
with cancers using the Gendoo server. The structures of
proteins encoded by selected genotype-specific DNA
methylation associated genes were predicted successfully
using two profile based methods, FAMS and Phyre2.
Candidate drug compounds were screened using the
Tanimoto index from DrugBank and were evaluated by
ChooseLD for three selected proteins, ALK, EGLN3 and
NUAKTI. The selected drug candidates were promising
starting points for future studies.

Additional material

Additional file 1: Annotation of selected SNPs. Annotation
information of selected SNPs (from Tables 1, 2 and 3) including a list of
genes associated with each SNP.

Additional file 2: Genes with significant genotype-specific DNA
methylation. Nsp and Sty are the microarray data sets used in the study.
Sty1 and Sty2 correspond to the PC4 for genotype (Figures 4a and 6b)/
PC3 for DNA methylation (Figures 5¢ and 6¢) and the PC3 for genotype
(Figures 4c and 6a)/PC4 for DNA methylation (Figures 5d and 6d)
combinations of PCs, respectively. The genes indicated in bold letters
were associated with at least one cancer-related disease due to Gendoo
[13,14].

Additional file 3: Association of cancer related diseases with genes
based on the Gendoo server. List of cancer-related diseases associated
with the genes indicated in bold letters in Additional file 2 based on the
Gendoo server [13,14]. Associations with “Esophageal Neoplasms” and
“Carcinoma, Squamous Cell" are highlighted.

Additional file 4: List of references that report the association of
the selected genes with cancer-related diseases. The selected genes
are those listed in Additional file 2. The list also includes the performance
of the protein structure prediction and the references that associate the
proteins that were used as reference proteins to predict protein structure
with cancer-related diseases.

Additional file 5: Amino acid sequences for the proteins encoded
by the selected genes. The amino acid sequences were used for
protein structure predictions and are listed in fasta format.

Additional file 6: Pearson correlation coefficients and scatter plots
between independent trials for FPAScore computation. (a) ALK; (b)
EGLN3 with Fe. (c) EGLN3 without Fe. (d) NUAK1. Scatter plots are shown
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for reference. Red diagonal lines indicate that FPAScores were identical
between two trials.

Additional file 7: Number of compounds selected in common in
three trials as highly feasible drug candidate compounds. The
number of common selections from among the top k ranked
compounds in three trials (red circles). Black solid line indicates the
expected number of compounds to be selected in common between
three trials when the three trials are not correlated at all (n0(k), see
Methods for details). Blue straight line indicates a complete match
between the three trials. (@) ALK. (b) EGLN3 with Fe. (c) EGLN3 without
Fe. (d) NUAKT. It is clear that the number of selections in common is
much less than would be expected for random selections, n0(k), and is
very close to a complete match (blue line).

Additional file 8: Full list of ranked compounds. List of compounds
ranked based on the FPAScores averaged over three independent trials,
for ALK, EGLN3 (with and without Fe), and NUAK1.

Additional file 9: Detailed discussion of the top 10 compounds
listed in Table 7. Target protein information and protein inhibition
information were taken from DrugBank [22,23] and ChEMBL [28,29].
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