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Abstract

distribution.

Background: Hematopoiesis is a highly orchestrated developmental process that comprises various developmental
stages of the hematopoietic stem cells (HSCs). During development, the decision to leave the self-renewing state
and selection of a differentiation pathway is regulated by a number of transcription factors. Among them, genes
GATA-T and PU.1 form a core negative feedback module to regulate the genetic switching between the cell fate
choices of HSCs. Although extensive experimental studies have revealed the mechanisms to regulate the
expression of these two genes, it is still unclear how this simple module regulates the genetic switching.

Methods: In this work we proposed a mathematical model to study the mechanisms of the GATA-PU.1 gene network
in the determination of HSC differentiation pathways. We incorporated the mechanisms of GATA switch into the
module, and developed a mathematical model that comprises three genes GATA-1, GATA-2 and PU.1. In addition, a
novel multiple-objective optimization method was designed to infer unknown parameters in the proposed model by
realizing different experimental observations. A stochastic model was also designed to describe the critical function of
noise, due to the small copy numbers of molecular species, in determining the differentiation pathways.

Results: The proposed deterministic model has successfully realized three stable steady states representing the
priming and different progenitor cells as well as genetic switching between the genetic states under various
experimental conditions. Using different values of GATA-1 synthesis rate for the GATA-1 protein availability in the
chromatin sites during the time period of GATA switch, stochastic simulations for the first time have realized
different proportions of cells leading to different developmental pathways under various experimental conditions.

Conclusions: Mathematical models provide testable predictions regarding the mechanisms and conditions for
realizing different differentiation pathways of hematopoietic stem cells. This work represents the first attempt at
using a discrete stochastic model to realize the decision of HSC differentiation pathways showing a multimodal

Background

Hematopoiesis is a highly orchestrated developmental pro-
cess that comprises the proliferation, differentiation and
maturation of a very small population of self-renewing,
pluripotent hematopoietic stem cells (HSC) for producing
different types of blood cells, including erythrocyte, mega-
karyocyte, granulocyte, and macrophage [1,2]. During
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development, the decision to leave the self-renewing state
and selection of a differentiation pathway are regulated by
transcription factors (TFs) [3-6]. Intense experimental stu-
dies during the past two decades have suggested that tight
regulation of HSC differentiation is controlled by the
interaction of a number of genetic and epigenetic regula-
tors of gene transcription, including the two TFs PU.1 and
GATA-1. Although the precise mechanisms to initiate the
transcriptional cascade leading to different differentiated
cells are not clear currently, experimental studies have
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established that both PU.1 and GATA-1 ’autoregulate’
themselves, i.e. they stimulate their own production, as
well as they are mutually antagonistic, i.e. they repress the
production of each other [7-9]. In the erythrocyte/mega-
karyocite lineage high expression levels of gene GATA-1
and low levels of PU.1 were detected [6,10]; conversely, in
the granulocyte/macrophage lineage higher expression
levels of PU.1 and low levels of GATA-1 were measured
[5,11]. However, the initial progenitor cells stay in the
third state that has low-level activation of both genes PU. 1
and GATA-1. When a progenitor cell differentiates, it
transitions from the initial indeterminate state into one of
two differentiated states with high expression levels of
either gene GATA-1 or PU.1. Thus the full understanding
of the PU.1 and GATA-1 interaction is important for
studying of the differentiation process of HSCs, which may
be very useful in the clinical application of “differentiation
therapy” for re-establishing the correct expression of PU.1
and/or GATA-1 within immature leukemic cells [12].

To accurately describe the regulatory mechanisms
controlling HSC differentiation, the important aspects
that any mathematical model of the GATA-1-PU.1 net-
work must include are an indeterminate state for the
progenitor cells and two stable attractors of the dynami-
cal system for the differentiated lineages. Since the first
modeling attempt to study the regulation in the GATA-
1-PU.1 network [13], a number of mathematical formal-
isms have been developed to realize the three stable
steady states in HSCs. For example, Huang et al. used
the Hill function with high co-operativity coefficients to
qualitatively compare computer predictions with experi-
mental evidence [14], giving support to the idea that
lineage choice occurs as a two stage process, first prim-
ing and then differentiating. To remove the requirement
of high co-operativity, Chickarmane et al. assumed that
the autoregulation at both PU.1 and GATA-1 occurs
through the binding of monomers [15]. It was predicted
that an additional mechanism should be involved in the
repressive interaction to create a bistable switch, and
therefore a third unspecified gene was introduced to
create bistability. Alternatively, a mathematical model
was proposed to include the dynamics of the inactive
heterodimer GATA-1-PU.1 and the Michaelis-Menten
function was used to represent the low co-operativity
[16]. We have designed a model by separating the
strength of co-operativity for autoregulation and repres-
sion, and successfully realized a rich variety of systems
behavior that have been found cross the existing models
[17]. Recently Huang and collaborators proposed a gen-
eral model that assumed no explicit interaction between
the two genes; and realized a degenerated steady state
via a new type of bifurcation [18]. Since the assumptions
in these models are based on either unrealistic high co-
operativity or unspecified gene, additional mechanisms
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are needed to accurately describe the differentiation
decision of HSCs.

GATA-2 is one of the six members of the hematopoietic
GATA factor family and is most abundantly expressed in
HSCs as well as in immature progenitors in hematopoietic
lineages [10]. Previous studies demonstrated a critical role
of GATA-2 in the emergence and maintenance of HSCs
[19]. In addition, strict regulation of genes GATA-I and
GATA-2 is critical for proper lineage commitment and
development of erythroid cells. It was reported that
GATA-2 directly activated GATA-1 expression in early
erythroid progenitors, and then GATA-1 accelerated its
expression after its own expression has been initiated [20].
The gene expression process involving GATA-1-mediated
displacement of GATA-2 from chromatin is termed a
GATA switch [21-23]. This “GATA factor switch” sug-
gests a model whereby GATA-2 and GATA-1 sequentially
bind the same cis-elements with activating and repressive
effects, respectively. During GATA factor switch, the
GATA-1 expression will increase due to the reciprocal
decrease of GATA-2, which leads progenitor cells to
adopt an erythroid lineage. However, when GATA-1 is
absent or its expression is delayed, the reduction of
GATA-2 will increase the expression levels of PU.1 and
leads progenitor cells to adopt a myeloid lineage [24,25].
Therefore the dynamic expression patterns of GATA-1
and GATA-2 may influence the erythroid-myeloid cell-fate
selection by regulating the expression of gene PU.1 [22].
Although accumulating experimental evidence has sug-
gested the important role of gene GATA-2 in regulating
the cell-fate selection, only a simple Boolean network
model has been proposed recently to include the regula-
tory function of gene GATA-2 [26]. The kinetic dynamics
of GATA-2 and in particular the function of GATA switch
has not been systematically studied so far.

Recent experimental studies have demonstrated that
gene expression is a stochastic process. Key species of
molecules such as DNA and mRNA may have small copy
numbers, and the change of their copy numbers may
cause significant variations of the system dynamics
[27-30]. In particular, it has been shown that a variety of
lineage-restricted genes in HSCs were expressed at low
levels [31]. A recent study directly demonstrated that sto-
chastic oscillation expression of lineage-associated genes
could drive cell-fate commitment [32]. Accumulating
experimental evidence also suggested that stem cells are
heterogeneous, with cells moving between two or more
metastable states [33]. Recently a minimal model has been
designed by combining cell-extrinsic and cell-intrinsic ele-
ments of regulation to understand how both instructive
and stochastic events could inform cell commitment deci-
sion in hematopoiesis [34]. However, compared with the
advances in developing various stochastic models to inves-
tigate the key functions of noise in genetic and cellular
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processes [35-37], the critical role of noise in determining
the stem cell differentiation has not been well established.
This work is aimed at developing the first stochastic
model to explore the critical function of GATA switch
and noise in determining the differentiation pathways of
HSCs.

Methods

Mathematical model of GATA-PU.1 gene network

In this work we propose a mathematical model for the
GATA-PU.1 regulatory network including genes GATA-1,
GATA-2 and PU.1 (Figure 1A). It was assumed that each
of these three genes activates their own expression
through positive autoregulation. In addition, TF GATA-2
activates the expression of gene GATA-I but inhibits the
expression of gene PU.1, but the function of GATA-2 to
regulate the expressions of genes GATA-1 and PU.1 is
moderate [24]. Thus the expression levels of three genes
GATA-1, GATA-2 and PU.1 may maintain at an inter-
mediate state, which is compatible to the steady state of
lineage priming. In addition, GATA-1 inhibits the expres-
sion of GATA-2 and PU.1, whereas PU.1 inhibits the
expression of GATA-1 and GATA-2. Detailed assumptions
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Figure 1 Diagram of the GATA-PU.1 regulatory network. (A) The
genetic regulation of the GATA-PU.1 network. (B) (Normalized)
expression levels of genes GATA-T and GATA-2 during GATA switch.
Time was in arbitrary unit.
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of regulatory mechanisms and the list of chemical reac-
tions are given in Additional file 1.

Based on the GATA switch model (Figure 1B),
GATA-2 localizes at the chromatin sites in early stage
erythroblasts. When the expression levels of GATA-1
increase as erythropoiesis progresses, GATA-1 displaces
GATA-2 from chromatin sites and often (but not
always) instigates a distant transcriptional output [21].
Although remaining in the cell, TF GATA-2 in fact is
unable to access the chromatin sites. To model this spatial
regulatory mechanism, it was assumed that GATA-2 pro-
teins degrade during the process of GATA switch, which
was realized by a large degradation rate constant k5 of
GATA-2 in Eq. (1). Simultaneously, the concentration of
GATA-1 increases by using an additional synthesis rate of
GATA-1, which is proportional to the removal of GATA-2.

Experiments also showed that, when GATA-1 was not
present, the shRNA knockdown of GATA-2 increases
the expression of gene PU.1 and reprograms the cells to
become macrophages [24]. To realize genetic switching,
the mechanism of the GATA switch and that of PU.1
knockdown were included in a single framework. Thus
the knockdown of GATA-2 was realized by a large
degradation rate constant k5 of GATA-2 during a parti-
cular time period. In addition, a very small synthesis
rate of GATA-1 during that time period means the
absence of GATA-1 protein in the DNA promoter
region. Furthermore, for simplicity, the basal expression
rates of these three genes are assumed to be zero. We
use the Shea-Ackers formalism, which is a widely used
thermodynamic approach, to represent the gene expres-
sion based on the structure of transcription machinery
[38]. All these assumptions led to the following model
to realize the genetic switching of the GATA-PU.1 regu-
latory network, given by

dx_ arx + azy P
dt N as + dq4X + ds) + gk + azxXz 1 HRyY
d}/ bly

= by — .
dt by +bsx + bgy + bsz + bgyz 2y — Ry (1)
dc _ €z e

dt Cy +C3X + Cq) + C52 + CoXT + C7)Y2

where x, y and z are the concentrations of TFs GATA-1,
GATA-2 and PU.1, respectively, a;, b; and ¢, represent
the expression rates of genes GATA-1, GATA-2 and PU.1
auto-regulated by itself, respectively, a, is the expression
rate of gene GATA-1 regulated by TF GATA-2, k, k, and
ks are the degradation rates of TFs GATA-1, GATA-2 and
PU.L, respectively, k5 is the degradation rate constant to
represent the displacement of GATA-2 proteins,

kot e [tl, tz]

k= 0 else

(2)
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during the time period [¢y, £,] , and g is a parameter
to adjust the availability of GATA-1 proteins in the
chromatin sites. The GATA switch model is realized by
using k5 > 0, 4 > 0 with a moderate value of parameter
¢ (e.g. 4 = 1). In contrast, the knockdown of GATA-2 is
realized by using k5 > 0, 4 = 0. Another realization of
the GATA-2 knockdown is to use rate constants k5 = 0,
by = 0 for the expression of gene GATA-2, namely to
block the synthesis process of GATA-2 but maintain the
degradation process of GATA-2 unchanged. Numerical
results did not show any substantial difference between
the computer simulations of these two types of realiza-
tion (results not shown). Finally we note that the pro-
posed model (Eq. 1) includes a recently designed model
for the GATA-1-PU.1 module [18] as a special case if
gene GATA-2 is removed from the system.

Model parameters estimated from experimental data
There are 23 rate constants in the proposed mathemati-
cal model (Eq. 1). Part of the parameters was deter-
mined by the following experimental data.

(1) The half-life of GATA-1 protein is one hour [39].
In addition, the half-life of GATA-2 is 30 min [40]
that was confirmed by another observation in [33]
therein. The half-life of PU.1 in Mel cell is ~2.4 h
[41]. Thus the protein degradation rates constants
are A; = 0.6931/h, A, = 1.3863/h, A5 = 0.2888/h.

(2) The disassociate rate of GATA-1 binding to its
DNA promoter is K; = 2.8 nM, which is more stable
than the binding of GATA-2 to its promoter site K; =
4.4 nM [42]. In addition, the disassociate rate of PU.1
binding to its DNA promoter is K; = 170 nM [43].
These rates were used to determine coefficients a,, by,
and cs.

(3) In addition, the heterodimer GATA-1-PU.1 has a
3-fold increase of the binding rate constant over
GATA-1 to DNA [7]. It was assumed that a, = 3ay.
(4) The disassociation rates of GATA-1 and GATA-2
binding to the DNA promoter sites are very close to
each other [44]. It is assumed that the binding rates
of GATA-1 and GATA-2 to the same DNA binding
sites are the same, namely bg = a, and ¢; = c.

Multiple-objective optimization approach
To infer the unknown parameters in model (Eq. 1), we
designed a novel multiple-objective optimization approach
to estimate unknown model parameters (Figure 2). The
criteria in this approach include the conditions of tristabil-
ity, genetic switching and robustness property of the
model. This approach includes the following major steps:
Step 1. Generate a set of model parameters in the
GA. We first used the uniform distributed random
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Figure 2 Schematic representation of the multiple-objective
optimization algorithm for estimating model parameters. This
algorithm includes five major steps, namely to generate initial sets
of model parameters from a genetic algorithm (GA) in Step 1; to
find the three steady states of the model with a particular set of
parameters in Step 2; to validate the existence of the three steady
states in Step 3; to examine the existence of genetic switching in
Step 4; and to conduct robustness analysis of the model based on
the property of genetic switching in Step 5. Finally the penalty
function value (PFV) is sent back to the GA for the selection of the
optimal set of parameters.

variable U/(0,1) generated in the genetic algorithm (GA)
to determine the initial model rate constants. Note that
the mutation manipulation in the GA was carried out
on the random samples rather than model parameters.
Since there are 7 restricted conditions for the existence
of stable steady states (Eq. 6~8), other parameters were
directly determined by the random samples a; = r;,
where r; ~ U(0,1). Seven parameters were determined by
the random samples together with the restricted condi-
tions. For example, according to condition (Eq. 7), para-
meter b3 is determined by

1 b,
bs = T10%X] [kz B bz]

where rjp ~ U (0,1) and x7 is the steady state (Eq. 4).
In addition, based on condition (Eq. 6), the four synth-
esis rates were also determined by a factor &,

k kob k
= 1a3xk, ay=nk b= >°xk ¢ = 362

n Ty T16

a; X k,

where r; ~ U(0,1). We tested different values of k in
order to realize genetic switching. When k is not large
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(1 < k < 100), we failed to find a set of parameters that
could realize genetic switching. Thus in this work we
used k = 1000 to search the unknown synthesis rate.

Step 2. Find the third steady state. The generated
parameter set in Step 1 ensures the existence of the two
stable steady states in which either GATA-1 or PU.1 has
high expression levels. To find the third stable steady
state representing the primed progenitor state, we used
MATLAB function fsolve.m to solving the nonlinear sys-
tem for the steady state of the model (Eq. 1). If we can
find the third stable steady state, we go to Step 3.
Otherwise, we set the penalty function value to 4 and
go to Step 6.

Step 3. Validate the existence of three steady states.
Since the third steady state found in Step 2 was
obtained by a numerical method, it may not exist due to
the computational error. To examine the existence of
the three steady states, we perturbed each steady state
using samples of the uniformly distributed random vari-
able and used the perturbed steady state as the initial
condition to simulate system (Eq. 1). If the simulation
converges to the steady state, it means the steady state
exists, and then we go to Step 4. Otherwise, we set the
penalty function value to 3 and go to Step 6.

Step 4. Validate the existence of genetic switching.
We next examined whether the system can realize
genetic switching using the mechanisms of GATA
switch and GATA-2 knockdown. The large degradation
rate constant of GATA-2 in model (Eq. 1) for these two
mechanisms is

" {20, 500 < ¢ < 1500
5 o

0, else.

Simultaneously, the additional synthesis rate constant
of GATA-1 in model (Eq. 1) is

GATA switch
GATA - 2 knockdown.

If the system realizes genetic switching through these
two mechanisms, go to Step 5. Otherwise, set the pen-
alty function value to 2 and go to Step 6.

Step 5. Robustness analysis. The inferred parameter set
now satisfies the requirement for realizing three stable
steady states and genetic switching. Next we used robust-
ness property of the system as an additional criterion to
choose the optimal model parameters. We tested the
robustness property of mathematical model using the per-
turbed model parameters [45,46]. Each parameter in the
model was perturbed by a uniformly distributed random
number

aj = a(1 + o*(Up —0.5)), j=1,..., 23,k=1,...,1000,
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where Uy ~ U(0,1) and o = 0.5 is the perturbation
strength. For each set of model parameters, we obtained
1000 sets of perturbed parameters and then examined
whether the mathematical model with the perturbed
model parameters still maintained the three steady
states. The model with a particular set of model para-
meters is more stable if the model maintains the three
steady states with more sets of perturbed model para-
meters. To make an unbiased comparison, we used the
same random samples Uy for different sets of para-
meters. The penalty function value at this step is the
percentage of the parameter sets (from the 1000 sets of
perturbed parameters) with which the model does not
maintain the three steady states. Thus a smaller value of
penalty function means better robustness property of
the model.

Step 6. Return the value of penalty function to the
genetic algorithm.

Note that there are four penalty functions in this pro-
posed inference method, namely the existence of three
steady states in Step 2 (denoted as event O,), validation
of these three steady states in Step 3 (denoted as O,),
validation of the existence of genetic switching in Step 4
(denoted as Os), and robustness property of the model
over 1000 perturbed sets of model parameters in Step 5
(denoted as O,). Thus, if a numerical test in Steps 2~4 is
not satisfied, the penalty score of that step should be lar-
ger than the maximal score of the next step. Since the
maximal penalty score of Step 5 is set to unit one if none
of the perturbed parameter set maintains genetic switch-
ing, the scores of the first three penalty functions are set
to 4, 3 and 2, respectively. Using the notations of objec-
tive functions [47], the multi-objective function is repre-
sented by

min {4P (O1) + 3P (O1|P (Oy) = 0) + 2P (O3|P (O,) = 0) + P (O4|P (O3) = 0)} .

Here the probability of objective O, is defined by, for
example,

P(OY) 0 existing three steady states
YT otherwise '

Similar definitions are applied to the probabilities of
objectives O, and Os.

Results

Steady states of the mathematical model

When k5 = 0, the proposed mathematical model (Eq. 1)
has up to four steady states. When kja, = 0 and kzcs =
0, three steady states can be obtained analytically, given
by

(x0, Y0, 20) = (0,0, 0) 3)
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The existence conditions of these three steady states
are given in Theorem 1.
Theorem 1 (1) The trivial steady state (Eq. 3) is
unstable if any one of the following conditions is satis-
fied

a) > agkl, bl > bzkz, and c1 > Czkg. (6)

(2) The steady state with high expression levels of
gene GATA-1 (Eq. 4) is stable if the following conditions
are satisfied

b] < kz(bz + b3x1), and < kg(Cz + Cle)- (7)

(3) The steady state with high expression levels of
gene PU.1 (Eq. 5) is stable if the following conditions
are satisfied

a < kl (Ll3 + ngzz), and bl < kz(bz + b5Zz). (8)

The proof of this theorem is provided in the Addi-
tional file 1.

However, it is difficult to derive an analytical expres-
sion of the fourth potential steady state. For a given set
of model parameters, we have to examine the existence
of the fourth steady state numerically on a case-by-case
basis. The existence conditions of the stable steady
states will be used as criteria to search the unknown
model parameters.

Inference of model parameters

The proposed model (Eq. 1) has 20 unknown parameters
by setting as = by = ¢, = 1. We first estimated the values
of 9 model parameters, namely (a4, a7, by, bs, ¢s, ki, ko, k3)
and (cg = ¢7) from the published experimental data dis-
cussed in the model section. Since there is not any pub-
lished data for the temporal dynamics of gene expression,
we used the designed multiple-objective optimization
approach to estimate the remaining 11 unknown para-
meters (Figure 2). We used the genetic algorithm as an
effective tool to search the optimal model parameters to
realize genetic switching. A MATLAB toolbox developed
by Chipperfield et al. [48] was used to infer the unknown
model parameters. This toolbox used MATLAB functions
to build a set of versatile routines for implementing a wide
range of genetic algorithms. The initial estimate of rate
constants can be changed by using different random seeds
in the MATLAB toolbox, leading to different final esti-
mates of the rate constants [49]. The genetic algorithm
was run over 100 generations for each estimate, and we
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used a population of 1000 individuals in each generation.
Our tests showed that a smaller population of individuals
(i.e. 100 or 200) failed to produce an estimate of model
parameters with which the model has tristability property.
We implemented the genetic algorithm with different
initial kinetic rates and obtained a number of estimated
parameter sets. The parameter set having the best robust-
ness property was selected as the final estimate.

Figure 3 gives simulations of the deterministic model
(Eq. 1) using the degradation rate constant of GATA-2
(Eq. 2) and different values of the GATA-1 synthesis
rate 4. The concentrations of GATA-2 decreased sub-
stantially during ¢ € [500, 1500] when a large degrada-
tion rate k5 = 6 was applied during that time period.
Figures 3A, 3B and 3C give a simulation using the
GATA switch module that was realized by 4 = 1. When
the concentration of GATA-2 decreases during ¢t € [500,
1500] in Figure 3B, GATA-1 reaches the high expression
level quickly in Figure 3A. However, when GATA-1 is
absent (4 = 0) and GATA-2 is knockdown, Figures 3D,
3E and 3F show a simulation leading to the high expres-
sion level of PU.1. The third scenario is that the expres-
sion of GATA-1 maintains at a low level during the
period of GATA-2 decreases when g = 0.32. In this case
the expression levels of these three genes in Figures 3G,
3H and 3I maintain at an intermediate state that is
dependent on the value of y. Neither GATA-1 nor PU.2
reached the steady state of high expression levels. When
the expression level of GATA-2 returned to the normal
state at £ = 1500, the system also returned to the primed
steady state, which is an unsuccessful genetic switching.

When inferring the model parameters, we only tested
the robustness property of the model with perturbation
strength o = 0.5 (see Step 5 in the Optimization Approach
section). The next question is whether different values of
the perturbation strength may lead to different selections
of the estimated model parameters. To answer this ques-
tion, we selected 10 sets of the estimated model para-
meters that have better robustness properties than the
others, and examined the robustness property of the
model using different perturbation strengths ranging from
0.1 to 1. Figure 4 shows that, the robustness property of
the model with a smaller strength (o = 0.3) is slightly dif-
ferent from that using the perturbation strength (o = 0.5)
because only a small numbers of perturbed parameters
sets did not maintain the tristability property. However,
when o = 0.4, the robustness property based on different
values of perturbation strength o is consistent with that
using (o = 0.5). Figure 4 also presents the averaged robust-
ness properties based on 10 values of the perturbation
strength (o = 0.1, 0.2, ..., 1), which is well consistent with
that using ¢ = 0.5. Thus it is suggested that the inferred
model parameter is independent of the perturbation
strength.
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Figure 3 Genetic switching of the deterministic GATA-PU.1 regulatory network. (A, B, C) A successful switching leading to high expression
level of GATA-1. The mechanism of GATA-switching was realized by a large synthesis rate (u = 1) in (10). (D, E, F) A successful switching leading
to high expression level of gene PU.1 if GATA-1 was knocked down by blocking the expression of GATA-1 (u = 0). (G, H, I) An unsuccessful
switching using an intermediate synthesis rate (u = 0.32). Parameters of the model are: (ay, a», a3, da, ds, ds, A7) = (731.7409, 856.1247, 1, 1.6,
398.9719, 44.8982, 53.0), (by, by b3, by, bs, be) = (184706419, 1, 37.3615, 942.1939, 55.0375, 53.0), (Cy, Co, C3, C4, Cs, Co, C7) = (12391.1968, 1, 710.4490,
5224385, 170.0, 1700.0, 1700.0), and (ky, k> , k3) = (0.6931, 1.3863, 0.2888).

Bifurcation analysis

An important question in the estimation of model para-
meters is to what extent the model with the varied para-
meter still maintains the three stable steady states. To
answer this question, we examined the tristability of the
proposed model (Eq. 23) under the variations of one
model parameter. For each rate constant, the perturbed
values range from 0 to the 2-fold of the estimated value.
We first tested the influence of the four synthesis rates a,,
a,, by and c¢; since these parameters are important in regu-
lating the expression of these three genes. Figure 5 shows
that the tristability property is not sensitive to the change
of synthesis rate a,, which suggested that the expression of
GATA-1 is not sensitive to the regulation of GATA-2.
The result is consistent with the experimental observation

showing that this regulation is relatively weaker than other
genetic regulations in the system. Interestingly, the system
maintains tristability if the synthesis rate of GATA-1 (a,)
or PU.1 (c;) increased, or the synthesis rate of GATA-2
(b1) decreased. However, the tristability property of the
system disappears when these three rate constants vary
along the opposite direction, in particular for the synthesis
rates of GATA-2 and PU.1. The discontinuity of the
curves in Figure 5C suggested that the tristability property
of the system disappears when the value of b; is below a
threshold value.

Stochastic dynamics
We have successfully realized the three steady states of
the HSCs and genetic switching using the genetic



Tian and Smith-Miles BMC Systems Biology 2014, 8(Suppl 1):58
http://www.biomedcentral.com/1752-0509/8/51/S8

500 . . : ,
400
@
o
2 300
7]
2
n9: 200 / : ]
L,‘ ‘3’ ! :
008/ e e %
3 o b, ¥, L%
0 1
2 4 6 8 10
Estimate index
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regulations between GATA genes and gene PU.1. How-
ever, the proposed deterministic model failed to describe
the heterogeneity in the differentiation decision of the
HSCs. To tackle the challenge, we designed a stochastic
model to realize the function of intrinsic noise arising
from key species with small copy numbers, such as
DNA and mRNA. Using our proposed stochastic model-
ling approach [50], we designed the following stochastic
model based on the developed deterministic model (Eq. 1),
given by
a X +aY B
as + agX +asY + agZ + a7z XZ
by .
by +b3X +byY +bsZ + bsYZ

aZ
| = PlksZt]
2+ 63X +0Y + 52+ cXZ +c7YZ

X(t+71) =X(z)+P[ :|—P[k1Xr]+P[p.ijr]

Y(t+r):Y(t)+P|:

]—P[szr] - P[k5Ye] )

Z(l+r)=Z(l)+P|:

where X, Y, and Z are the copy numbers of protein
GATA-1, GATA-2 and PU.1 respectively, T is the step-
size, P(A) is a Poisson random variable with mean A.
Protein concentrations in model Eq. (1) were transferred
into the molecular copy numbers in this stochastic
model. To reduce the computing time of stochastic
simulations, the mechanisms of genetic switching were
realized in the time period

. 25 50 <t=<200

27 o (10)

else

Figure 6 gives three stochastic simulations using the
same rate constants in Figure 4 and y = 0.28. At time
point ¢ = 50, the expression level of GATA-2 decreased
quickly to the basal level due to the large degradation
rate k5. Although the expression levels of genes GATA-1
and PU.1 increased quickly from time ¢ = 50, the high
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expression level of one gene inhibited the expression of
the other gene. Figures 6A, 6B and 6C show that the
high expression levels of GATA-I inhibited the expres-
sion of gene PU.1 and GATA-2, leading the cell into the
erythrocyte lineage; whereas the expression levels of
GATA-1I failed to increase further in Figures 6D and its
expression was inhibited by the growing expression
levels of PU.1 in Figure 6F, leading the cell into the
granulocyte lineage. In addition, it was possible that the
expression levels of neither gene GATA-I nor PU.1
were high enough to inhibit the expression of the other
gene. Figures 6G, 6H and 61 gave a simulation of unsuc-
cessful switching in which the expression levels of these
three genes maintained at an intermediate state that was
determined by the value of y. When the degradation
rate of GATA-2 returned to the normal value at ¢ =
300, the expression levels of these three genes returned
to the original priming state.

To obtain the statistical property of genetic switching,
we generated 1000 stochastic simulations for each value
of u over the range of [0, 1.5]. When the value is small
(# < 0.11), which mimicked the experimental condition
of gene GATA-2 knock-down, Figure 7 shows that all
simulations have high expression levels of gene PU.1.
On the contrary, when the value of 4 is large (¢ = 1.4),
all simulations were switched to the state with high
expression levels of gene GATA-1, which represents the
mechanisms of GATA switch that lead HSCs to the ery-
throcyte lineage. In addition, there is a range of values
(0.12 <y < 0.22) with which the system failed to realize
genetic switching and all stochastic simulations stay at
the priming state. When the value of y locates between
these windows, stochastic simulations can realize two or
three different steady states. For example, when the
value of y is 0.11 < u < 0.12, the system state is in either
the priming state or granulocyte lineage. An important
prediction in Figure 7 is that, when the value of y is
(0.22 <u < 0.37), stochastic simulation of the system
may lead to anyone of the three steady states, namely
the erythrocyte, priming and granulocyte lineages, such
as the case demonstrated in Figure 6.

Discussion

In this work we proposed a mathematical model to study
the mechanisms of the GATA-PU.1 gene network in the
determination of HSC differentiation pathways. The
novelty of this model is the inclusion of gene GATA-2 and
the GATA switch model based on the experimentally
determined regulatory mechanisms. Our simulation
results suggested that, based on the experimental deter-
mined regulatory mechanisms, the addition of the third
gene, namely gene GATA-2, is necessary and adequate to
realize the three stable steady states of the HSCs. This
result is consistent with the prediction that a connector
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gene X is required to realize the primed state [15].
Although the third gene negatively regulates the expres-
sion of PU.1 in these two models, the regulatory mechan-
isms of the third gene in these two models are not
completely the same. For example, it was assumed that
gene GATA-I positively regulate the expression of the
unknown gene X [15], rather than the negative regulation
of gene GATA-2 by gene GATA-1 in this work. Compared
with the model in [15] in which additional and unknown
external signals are required to maintain the tristability
property, regulations between these three genes in our
proposed model are adequate to maintain the tristability
property of the system, which represents a successful
approach in utilizing experimentally confirmed regulatory

mechanisms to realize tristability property of the HSCs in
regulating the erythroid-myeloid lineage decision.

The proposed model in this work for a network of
three genes is a general framework that includes a
recently published model for a network of two genes as a
special case [18]. Unlike the model of two genes, which
realized tristability using the bifurcation of the system by
increasing the ratio of two model parameters, our model
maintains the tristability property over a wide range of
model parameter values. A related interesting question is
the minimal motif to realize the stability property of a
regulatory network with different numbers of steady
states. It has been demonstrated that the two-gene mod-
ule with self-activation and mutual repression can realize
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stability property with two steady states [50-53].
Although attempts have been made to realize tristability
property of this two-gene module using various assump-
tions of regulatory mechanisms [13,14,17], our research
demonstrated that a regulatory module with three genes
could maintain stability property with three steady states
without the assumption of the autoregulation via high
order multimers. A similar result is that a three-compo-
nent motif with four links can realize tristability [54].
However, the GATA-PU.1 module has six links together
with more complex regulatory mechanisms. It would be
interesting to analyze theoretically the stability property
of a regulatory module with the maximal number of
steady states under various regulatory mechanisms.
Stochastic simulations in this work predicted that the
synthesis rate of GATA-1 during the decreasing process of
GATA-2 determines the probability of erythroid-myeloid

lineage decision. Since this synthesis rate represents the
availability of GATA-1 in the genomic regulatory regions
during the GATA switch, there are two potential
resources of noise to explain the variations of GATA-1
proteins in the genomic regions. First, recent experimental
research investigating cellular processes at single cells has
revealed convincing evidence showing large heterogeneity
in protein abundance and dynamics among genetically
identical cells [55]. The variations of protein concentration
in different cells may lead to different rates for GATA-1 to
enter the regulatory regions during the process of GATA
switch. The heterogeneity in protein abundance may be
one of the reasons to explain the differentiation preference
of HSCs for the erythroid lineage or the myeloid lineage.
In addition, the intrinsic noise due to the small copy num-
bers of molecular species in the GATA-PU.1 module may
further contribute the heterogeneity to the HSC lineage
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differentiation decision even for cells having the same line-
age decision preference. These various resources of noise
in gene expression may be part of the transcriptome-wide
noise proposed by Huang and colleagues [32]. Therefore
more comprehensive stochastic models are needed to
explain the functions of other types of noise in the deci-
sion of lineage selection.

Conclusions

In summary, we proposed a mathematical model to study
the mechanisms of the GATA-PU.1 gene network in the
determination of HSC differentiation pathways. In addi-
tion, a multiple-objective optimization approach was
developed to infer model parameters in order to realize
the three stable steady states representing the three differ-
ent types of blood cells and genetic switching. A stochastic
model was also designed to describe the function of noise
in determining the differentiation pathways. Stochastic
simulations successfully realized different proportions of
cells leading to different developmental pathways under
the same experimental conditions, and provided testable
predictions regarding the conditions and mechanisms to
realize different differentiation pathways. This work repre-
sents the first attempt at using a discrete stochastic model
to realize the decision of HSC differentiation pathways
with a multimodal distribution.

Additional material

Additional file 1: Supplementary Information. It provides the detailed
assumptions of the mathematical model, the list of chemical reactions,
and proof of Theorem 1 in the paper.
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