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Abstract

Background: As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to
both biological research study and practical applications. The reverse engineering of gene regulatory networks
from microarray gene expression data is a challenging research problem in systems biology. With the development
of biological technologies, multiple time-course gene expression datasets might be collected for a specific gene
network under different circumstances. The inference of a gene regulatory network can be improved by
integrating these multiple datasets. It is also known that gene expression data may be contaminated with large
errors or outliers, which may affect the inference results.

Results: A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from
multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into
account. To solve the optimization problem involved in the proposed method, an efficient algorithm which
combines the ideas of auxiliary function minimization and block descent is developed. A stability selection method
is adapted to our method to find a network topology consisting of edges with scores. The proposed method is
applied to both simulation datasets and real experimental datasets. It shows that Huber group LASSO outperforms
the group LASSO in terms of both areas under receiver operating characteristic curves and areas under the
precision-recall curves.

Conclusions: The convergence analysis of the algorithm theoretically shows that the sequence generated from the
algorithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate
the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and
improving the resistance to large errors or outliers.

Background
A Gene regulatory network (GRN) consists of a set of
genes and regulatory relationships among them. Tremen-
dous amount of microarray data that measure expression
levels of genes under specific conditions are obtained from
experiments. It is a challenging problem in systems
biology to reconstruct or “reverse engineer” GRNs
by aiming at retrieving the underlying interaction

relationships between genes from microarray data. Various
approaches have been developed to infer GRNs from
microarray data. Most of them can be classified into two
categories: parametric or model-based methods and
nonparametric or dependency-measure-based methods.
Commonly used models include ordinary differential
equations [1], Gaussian graphical models [2] and Bayesian
networks [3]. Dependency measures include partial
correlation coefficient [4], mutual information [5], and
z-score [6].* Correspondence: faw341@mail.usask.ca

1Department of Mechanical Engineering, University of Saskatchewan, 57
Campus Drive, S7N 5A9 Saskatoon, Canada
Full list of author information is available at the end of the article

Liu et al. BMC Systems Biology 2014, 8(Suppl 3):S1
http://www.biomedcentral.com/1752-0509/8/S3/S1

© 2014 Liu et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:faw341@mail.usask.ca
http://creativecommons.org/licenses/by/2.0
http://�creativecommons.org/publicdomain/zero/1.0/


The reconstruction of GRN is a non-trivial problem.
On the one hand, the number of possible network
topologies grows exponentially as the number of genes
increases. On the other hand, the information in the
microarray data is quite limited. The data contain a lot
of inherent noises generated from the devices or the
experiment processes. For large-scale networks, the
number of observations is usually much less than that
of genes, also known as “dimensionality problem” [2,7].
The lack of observations and the high dimensionality of
the data prohibit the direct application of traditional
methods and make the inference task extremely
challenging.
As more and more microarray datasets on the same

species are produced from different laboratories, their
integration leads to more robust and more reliable
results. The methods that integrate multiple datasets
could synergize the strength of each dataset and either
infer a more accurate network if all the integrated data-
sets are in high qualities or infer a robust network
which is better than the worse one that is from a single
dataset. However, multiple time-course datasets can not
be simply combined as one dataset as there is no tem-
poral dependencies between the datasets. Wang et al.
[8] proposes a linear programming framework to
integrate multiple time-course gene expression data to
infer a network topology that is most consistent to all
datasets. In their method, the regulatory strengths
between genes is assumed to be the same across all
datasets. However, different datasets may be produced
under different circumstances, which may result in
different regulatory strength between genes. Another
problem is that the value of the tuning parameter in
their method, which controls the degree of sparsity of
the inferred network, is only determined intuitively.
Chen et al. [9] infer one GRN from each time-course
data separately, and combine edges of inferred GRNs
using a strategy similar to majority vote. For this
method, using each dataset separately in the inference
process may miss the opportunity of taking advantage of
information in other datasets and the tuning parameter
is also determined intuitively.
This study focuses on inferring the topologies of

GRNs from multiple time-course gene expression data-
sets based on an autoregressive model. We assume that
one GRN corresponds to one dataset and these GRNs
share the same topology across all datasets. By assigning
the parameters representing the regulatory strengths of
the same edge into the one group, the group LASSO
[10] can be applied to find the sparse network topology.
Microarray data typically contain noises and outliers,
which could severely affect the quality of inferred
results. Rosset and Zhu [11] proposes a robust version
of LASSO by replacing the squared error loss of LASSO

with Huber loss. We propose to use the Huber loss to
extend the group LASSO such that the new method,
Huber group LASSO, is more resistant to the large
noises and outliers.
To solve the Huber group LASSO, a new algorithm is

developed in our previous work [12], which combines
the idea of auxiliary function minimization [13] and the
block coordinates descent method [14]. The proposed
algorithm is efficient and can also be adapted for solving
the group LASSO problem without the orthogonality
restriction. In this study, we analyze the convergence of
our proposed algorithm and show that the sequence the
algorithm generated indeed converges to the optimal
solution of the Huber group LASSO problem. Instead of
picking a specific value for the tuning parameter which
corresponds to a determinant network topology as
in our previous work [12], in this study, we adapt the
“stability selection” [15] strategy to our method to find a
network consisting of edges with probabilities or scores.
The Huber group LASSO is applied to both simulation
data and real experimental data and its performances
are compared with those of the group LASSO in terms
of areas under the receiver operating characteristic
(AUROC) and areas under the precision-recall (AUPR).
Results show that the Huber group LASSO outperforms
the group LASSO and therefore demonstrate the effec-
tiveness of our proposed method.
Briefly, the remainder of the paper is organized as

follows. In Model Section, we introduced the model for
the GRN, based on which the network topology is
inferred. In Result Section, our proposed method is
applied to the both simulation data and real experimen-
tal data. The results demonstrate the effectiveness of
our method. Then, we conclude this study and point
out the future work along this research in Conclusion
Section. Details of the method and its theoretical analy-
sis can be found in Method Section.

Model
A model for GRN consisting of p genes is used in this
study [16]:

ẋ = Cx + Sr,

r = f(x),
(1)

where x = [x1, . . . , xp]T ∈ Rp is the vector of mRNA
concentrations; C = diag[−c1, . . . ,−cp] ∈ Rp×p is a diago-
nal matrix with ci > 0 the degradation rate of gene i; the
vector r = [r1, . . . , rm]T ∈ Rm represents the reaction rates,
which is a function of mRNA concentrations and
S ∈ Rp×m is the stoichiometric matrix of the network. We
assume that reaction rate r is a linear combination of
mRNA concentrations,

r = Fx, (2)
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where F ∈ Rm×p. Then, (1) becomes

ẋ = Cx +Mx, (3)

where M = SF ∈ Rp×p. The elements of M = (mij)1≤i, j≤p
indicate the network topology or regulatory relationships
between genes. mij ≠ 0 if gene j regulates the expression of
gene i. Otherwise, mij = 0, gene j does not regulate gene i.
Since the gene expression levels are sampled at several

time points, by using zero order hold discretization
method, system (3) is discretized as

xk = Axk−1 (4)

where A = eCΔt + C−1(eCΔt − I)M. Note that eCΔtand C−1

(eCΔt − I) are both diagonal matrices and their diagonal
elements are all positive. Thus, the off-diagonal elements
of A = (aij)1≤i,j≤p have the same zero and nonzero pattern
as those of M. In this study, we focus on inferring relation-
ships between genes and do not consider self-regulations.
As mentioned above, this can be achieved by identifying
the nonzero off-diagonal elements in matrix A, which can
be interpreted as regulatory strengths. Multiple time-
course gene expression datasets for a GRN may be
collected under different circumstances. One dataset is
assumed to correspond to one inferred GRN topology,
and all inferred GRNs should share the same network
topology as their corresponding datasets are generated
from the same underlying gene network. Our purpose is
to reverse engineer the underlying network topology from
these multiple datasets. More specifically, suppose we have
m time-course gene expression datasets for a gene net-
work: X̃(1), . . . , X̃(m), each of which is measured at nk +1
time points, i.e., X̃(k) ∈ Rp×(nk+1). According to the model
(4), these datasets should satisfy

Y(k) = A(k)X(k) + E(k), k = 1, . . . ,m, (5)

where Y(k) =
[
x̃2(k), . . . , x̃nk+1(k)

]
, the last nk observa-

tions; X(k) =
[
x̃1(k), . . . , x̃nk(k)

]
, the first nk observations,

A(k) ∈ Rp×p, the regulatory matrix for the kth dataset and
E(k), the errors or noises. All A(k)’s are required to have
the same structure. i.e., zero and nonzero pattern, but do
not need to have the same value for every nonzero posi-
tion because gene network is dynamic and regulatory
strength may be different under different circumstances.
In this study, we propose to use group LASSO penalty to
implement this requirement and to use Huber loss func-
tion to take into account the robustness. Details of the
proposed method are shown in the Method Section.

Results
To study the effectiveness of the proposed method, the
Huber group LASSO is applied to inferring GRNs from
both simulation datasets and real experimental datasets

and the results of Huber group LASSO are compared
with those from group LASSO in both area under recei-
ver operating characteristic (AUROC) curve and area
under the precision and recall (AUPR) curve.

Simulation example
A small-GRN consisting of 5 genes is considered in this
example. The corresponding true network topology
matrix is

A0 =

⎡
⎢⎢⎢⎢⎣
+ − + 0 0
− + 0 0 +
0 + + 0 0
+ − 0 + 0
0 0 0 + +

⎤
⎥⎥⎥⎥⎦ ,

where + and − indicate the existence and regulation
types of the edge. We randomly generate m stable regula-
tory matrices A(k), k = 1, . . . , m, according to the tem-
plate A0, such that sign(A(k)) = sign(A0). Then, m
simulated time-course gene expression datasets, each with
the number of time points, nk , are generated from (5)
with randomly chosen expression values at the first time
point. The simulated error follows a mixed Gaussian
distribution: with probability of 0.8, it has the distribution
N (0, 1) and with probability of 0.2, it has the distribution
N (0, 102). In this way, the simulated data contain large
errors and outliers. To investigate the performances of our
methods in different situations, we vary the values of m
and nk and apply the group LASSO and Huber group
LASSO respectively to these generated datasets and
compare the results from these two methods.
Data are generated under three situations (m = 8,

nk = 15), (m = 4, nk = 15) and (m = 4, nk = 8). Using
the stability selection procedure that is introduced in
the Method Section, network typologies consisting of
edges with scores or probabilities are inferred by Huber
group LASSO and group LASSO. For the first two situa-
tions, we set the number of bootstrap samples as 30 and
the moving block length as 10. For the third situation,
we set the number of bootstrap samples as 30 and the
moving block length as 5. Varying the threshold, the
ROC plots and precision-recall plots of each method for
different situations are obtained and illustrated in
Figure 1. The areas under the ROCs (AUROCs) and
precision-recall curves (AUPRs) are calculated and
reported in Table 1. From Figure 1 and Table 1 we can
see that for each situation, the Huber group LASSO
outperforms the group LASSO, i.e. the AUROC and
AUPR of Huber group LASSO are larger than those of
group LASSO. ROC plots in Figure 1 also show that
both methods have better performances than the ran-
dom guess. For the case of m = 8 and nk = 15, the
Huber group LASSO even achieves the maximum value
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of AUROC and AUPR. It can also be seen that for each
method, the more the observations or the more the data-
sets, the larger AUROC and AUPR can be obtained. This
is in accord with the intuition because, in this example,
more observations or datasets indicate more information
as these simulated data are generated under quite similar
circumstances. All the simulation results have demon-
strated the effectiveness of our proposed method.

In vivo reverse engineering and modeling assessment
(IRMA) data
The data used in this example come from the In vivo
Reverse Engineering and Modeling Assessment (IRMA)
experiment [17], where a network composed of five
genes (GAL80, GAL4, CBF1, ASH1 and SWI5) was
synthesized in yeast Saccharomyces cerevisiae, in which
genes regulate each other through a variety of regulatory
interactions. The network is negligibly affected by endo-
genous genes and it is responsive to small molecules.
Galactose and glucose are respectively used to switch on

and off the network. In this study, we use the IRMA
time-course data consisting of four switch off datasets
(with the number of time points varying from 19 to 21)
and five switch on datasets (with the number of time
points varying from 11 to 16).
The Huber group LASSO and the group LASSO are

applied to these data in three cases: (1) switch on datasets,
(2) switch off datasets and (3) all datasets, i.e., combing
switch on and switch off datasets. In the stability selection
procedure, the number of bootstrap samples is 30 for all
cases and the moving block length is 14 for the second
case and 8 for the other cases. The ROC plots and
precision-recall plots for the Huber group LASSO and the
group LASSO for each case are illustrated in Figure 2 and
the corresponding AUROCs and AUPRs are summarized
in Table 2. It can be seen that except the group LASSO
for the switch on datasets, the performances of the
methods are better than random guesses. The Huber
group LASSO outperforms the group LASSO in both
AUROCs and AUPRs. All methods for the switch off data-
sets perform better than for the switch on datasets. The
group LASSO for all datasets has better performance than
for the switch on datasets but is not as good as for the
switch off datasets. The Huber group LASSO for all
datasets has the best performance among all cases. This
indicates that combing multiple datasets may lead to
either the best result or a robust result which is better
than the worst case. The network topology with false
positive rate (FPR) 0.08 of the Huber group LASSO for all
datasets is shown in Figure 3 and the corresponding true
positive rate (TPR) is 0.75 with precision 0.86, in which
the red edges represent true positives while black edges
are false positives. The results show the effectiveness of
our method for the IRMA data.

Figure 1 ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for the simulation data under different
situations. Left: the ROC plots of the Huber group LASSO and the group LASSO. Right: precision-recall plots of the Huber group LASSO and the
group LASSO. TPR: true positive rate. FPR: false positive rate. Huber group LASSO has better performance than group LASSO. The larger the
number of observations or datasets, the better the performances of the methods.

Table 1 The areas under ROC (AUROC) and precision-
recall (AUPR) of the Huber group LASSO and the group
LASSO for the simulation datasets under different
situations.

Situation Method AUROC AUPR

15 observations 8 datasets SE 0.9896 0.9852

Huber 1.0000 1.0000

15 observations 4 datasets SE 0.9219 0.9169

Huber 0.9896 0.9736

8 observations 4 datasets SE 0.6719 0.5749

Huber 0.8385 0.8049

SE: group LASSO. Huber: Huber group LASSO.
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E. coli SOS network
In this example, we apply the proposed method to iden-
tify the real GRN, E. coli SOS DNA repair system as
shown in Figure 4. This network is responsible for
repairing the DNA after some damage happens. LexA
acts as the master repressor of many genes in the
normal states. When a damage occurs, RecA acts as a
sensor and binds to single-stranded DNA to sense the
damage and mediates the autocleavage of LexA. The
repressions of the SOS genes are halted by the drop in
LexA levels. The SOS genes are activated and start to
repair the damages. When the repair is done, RecA level
drops and stops mediating the autocleavage of LexA.
Then, LexA accumulates and represses the SOS genes
to make the cell go back to the normal state.
Four time-course gene expression datasets of SOS

DNA network are downloaded from the Uri Alon lab
(http://www.weizmann.ac.li/mcb/UriAlon.), which are
produced from four experiments for various UV light
intensities (Experiment 1 and 2: 5 J m−2, Experiment 3
and 4: 20 J m−2). Each dataset contain 8 genes and their
measurements at 50 time points. As other literature did,
e.g. [18-21], only 6 genes, i.e., uvrD, lexA, umuD, recA,

uvrA and polB are considered because they are well
studied and the gold standard network of these genes
are illustrated in Table 3. Details of the gold standard
can be found in [18]. In this study, we do not consider
the signs and the self-regulations.
As the conditions for the first two experiments are

different for the last two experiments, we consider
applying the method to three cases: (1) datasets of
experiment 1 and 2, (2) datasets of experiment 3 and 4
and (3) all experiment datasets. In the stability selection
procedure, the number of bootstrap samples is 30 and
the moving block length is 25 for all cases. The ROC
plots and precision-recall plots for the Huber group
LASSO and the group LASSO for each case are

Figure 2 ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for the IRMA datasets . Left: the ROC plots
of the Huber group LASSO and the group LASSO. Right: precision-recall plots of the Huber group LASSO and the group LASSO. TPR: True
positive rate. FPR: false positive rate. Huber group LASSO has better performance than group LASSO.

Table 2 The areas under ROC (AUROC) and precision-
recall (AUPR) of the Huber group LASSO and the group
LASSO for the IRMA datasets.

Case Method AUROC AUPR

Switch on datasets SE 0.5208 0.3711

Huber 0.7812 0.6971

Switch off datasets SE 0.7344 0.6341

Huber 0.8125 0.7928

All datasets SE 0.6302 0.5122

Huber 0.8438 0.8049

SE: group LASSO. Huber: Huber group LASSO.

Figure 3 One network topology from Huber group LASSO using
all IRMA datasets. TPR: true positive rate. FPR: false positive rate.
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illustrated in Figure 5 and the corresponding AUROCs
and AUPRs are illustrated in Table 4. From the ROC
plots and AUROCs, it can be seen that the Huber group
LASSO performs significantly better than random guess
while the group LASSO method is only a little bit better
than random guess. Obviously, the Huber group LASSO
outperforms the group LASSO both in AUROCs and
AUPR for all cases. The Huber group LASSO using
experiment 3 and 4 datasets has the best performance.
Performance of the Huber group LASSO using all data-
sets is between that in the first case and that in the
second case. It can be considered as a robust result
because of the using of multiple datasets. The network
topology with FPR 0 and TPR 0.59 of the Huber group
LASSO for all datasets is shown in Figure 6, in which
all inferred edges are correct. These results demonstrate
the effectiveness of our method for the E. coli SOS data.

S. cerevisae cell cycle subnetwork
A cell cycle regulatory subnetwork in S. cerevisae is
inferred by the proposed method from 5 experimental
microarray datasets. As in [22], the subnetwork consists

of 27 genes including 10 genes for producing transcrip-
tion factors (ace2, fkh1, swi4, swi5, mbp1, swi6, mcm1,
fkh2, ndd1, yox1) and 17 genes for producing cyclin and
cyclin/CDK regulatory proteins (cln1, cln2, cln3, cdc20,
clb1, clb2, clb4, clb5, clb6, sic1, far1, spo12, apc1, tem1,
gin4, swe1 and whi5). The time-course datasets we use
include cell-cycle alpha factor release, cdc15, alpha
factor fkh1 fkh2, fkh1,2 alpha factor and Elutriation,
which are all downloaded from Stanford Microarray
Database (SMD). We apply the Huber group LASSO
and the group LASSO respectively to infer the network
from the datasets.
In order to demonstrate the effectiveness of the

proposed method, the inferred results are compared with
the interaction network of the chosen 27 genes, drawn
from BioGRID database [23]. The network in the database
has 112 interactions, not including the self-regulations,
and we take it as the gold standard regulatory network. In
the stability selection procedure, the number of bootstrap
samples is 30 and the moving block length is 9. The ROC
plots and precision-recall plots are illustrated in Figure 7
and the AUROCs and AUPRs are shown in Table 5. We
can see that both methods have better performances than
random guess and the Huber group LASSO outperforms
the group LASSO. One network from Huber group
LASSO with FPR 0.43 and TPR 0.59 is shown in Figure 8,
in which red edges are those inferred edges having been
identified in the database and grey edges might be either
false positives or novel discovered regulatory relations.
Although the gold standard network extracted from the
database may contain false edges or not be complete, this
shows the effectiveness of our method to some extent.

Conclusions
A novel method, Huber group LASSO, has been proposed
to integrate multiple time-course gene expression datasets
to infer the underlying GRN topology. As an extension to
the group LASSO, it is robust to large noises and outliers.
An efficient algorithm which combines the ideas of auxili-
ary function minimization and block descent is developed
to slove the involved optimization problem. The conver-
gence analysis of the algorithm shows that the sequence
generated from the algorithm indeed converges to the
optimal solution of the problem. Instead of selecting a
specific tuning parameter corresponding to a determinant
network topology, an adapted stability selection procedure
is used to lead to a network consisting of edges with
scores. The applications of the proposed method to the
simulation datasets and real experimental datasets show
that Huber group LASSO outperforms the group LASSO
in both AUROC and AUPR. It also shows that the integra-
tion of multiple time-course gene expression datasets by
the proposed method lead to reliable inferred network
typologies.

Figure 4 SOS DNA repair pathway in E. coli. The arrow represent
activation while the flat arrow represents inhibition. Genes are in
lower cases, proteins in capital letters.

Table 3 Gold standard of SOS network, collected from
literature [18].

uvrD lexA umuD recA uvrA polB

uvrD 0 -1 -1 1 1 0

lexA 0 -1 -1 1 0 0

umuD 0 -1 -1 1 0 0

recA 0 -1 -1 1 0 0

uvrA 1 -1 -1 1 0 0

polB 0 -1 -1 1 0 0
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The information in the gene expression data is quite
limited. One direction of the future work along this
study is to extend the method to be able to integrate
other types of data with the gene expression data.

Method
Huber group LASSO
Given m datasets, X̃(1), . . . , X̃(m), satisfying model (5),
to ensure that all A(k)’s have the same structure, ele-
ments of A(k)’s on the same position are grouped
together and can be inferred by the group LASSO,

min
A(k)

p∑
i=1

m∑
k=1

wk

nk∑
j=1

(yij(k) − Ai(k)
Txj(k))

2
+ λ

p∑
i=1

p∑
�=1

√
ai�(1)

2 + . . . + ai�(m)2,

where Ai(k)
T is the ith row of the matrix A(k) and xj

(k) is the jth column of the matrix X(k). wk is the weight
for the kth dataset, which can be assigned by experience.
In this study, we choose wk = nk /Σnk i.e., the more
observations the dataset has, the higher weight it is
assigned with. The penalty term in (6) takes advantage
of the sparse nature of GRNs and has the effect making
the grouped parameters to be estimated either all zeros
or all non-zeros [10], i.e., aiℓ(k)’s, k = 1, . . . , m, become

either all zeros or all non-zeros. Therefore, a consistent
network topology can be obtained from the group
LASSO method. l is a tuning parameter which controls
the degree of sparseness of the inferred network. The
larger the value of l, the more grouped parameters
become zeros.
To introduce robustness, we consider using the

Huber loss function instead of the squared error loss
function and propose the following Huber group
LASSO method

min
A(k)

p∑
i=1

m∑
k=1

wk

nk∑
j=1

Hδ(yij(k) − Ai(k)
Txj(k)) + λ

p∑
i=1

p∑
�=1

√
ai�(1)

2 + . . . + ai�(m)2, (7)

Figure 5 ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for E. coli SOS datasets. Left: the ROC plots of
the Huber group LASSO and the group LASSO. Right: precision-recall plots of the Huber group LASSO and the group LASSO. TPR: true positive
rate. FPR: false positive rate. Huber group LASSO has better performance than group LASSO.

Table 4 The areas under ROC (AUROC) and precision-
recall (AUPR) of the Huber group LASSO and the group
LASSO for the E.

Case Method AUROC AUPR

Experiment 1 and 2 SE 0.5588 0.7225

Huber 0.7670 0.8649

Experiment 3 and 4 SE 0.5204 0.6801

Huber 0.7941 0.8981

All experiment data SE 0.5588 0.7225

Huber 0.7760 0.8756

coli SOS datasets. SE: group LASSO. Huber: Huber group LASSO.

Figure 6 One network topology from Huber group LASSO
using all E. coli SOS datasets. TPR: true positive rate. FPR: false
positive rate.
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where the Huber loss function is defined as

Hδ(θ) =
{

θ2 if |θ | ≤ δ

2δ|θ | − δ2 otherwise.
(8)

The squared error and Huber loss function are
illustrated in Figure 9. It can be seen that for small errors,
these two loss functions are exactly the same while for
large errors, Huber loss which increases linearly is less
than the squared error loss which increases quadratically.
Because Huber loss penalizes much less than the squared
error loss for large errors, the Huber group LASSO is
more robust than group LASSO when there exists large
noise or outliers in the data. It is also known that the
Huber loss is nearly as efficient as squared error loss for
Gaussian errors [24].
For convenience, we define some notations and

rewrite the problems (6) and (7) in more compact
forms. Let Yi = [Yi(1)

T , . . . , Yi(m)T]T, the vector stack-
ing observations of the ith target gene across all data-
sets, where Yi(k)

T is the ith row of Y(k). Let biℓ= [aiℓ(1),
. . . , aiℓ(m)]T, the vector containing the grouped

parameters. Denote by bi = [bT
i1, . . . ,b

T
ip]

T the vector

containing all parameters related to the regulation of
the ith target gene. According to the orders of the para-
meters in bi, re-arrange the rows of X(k) and piece
them together to have X = [XT

1, . . . ,X
T
p ]

T where Xi =

diag(Xi(1)
T , . . . , Xi(m)T) with Xi(k)

T being the ith row
of X(k). Then (7) can be rewritten as

p∑
i=1

n∑
j=1

ωjHδ(yij − xTj bi) + λ

p∑
i=1

n∑
�=1

‖bi�‖2, (9)

where xj is the jth column of X, yij is the jth element

of Yi, n =
∑m

k=1
nk and ωi = w1I(i ≤ n1) +

∑m

k=2
wkI
(∑k=1

l=1
nl < i ≤

∑k

l=1
nl

)
.

(6) can be rewritten similarly.

Optimization algorithm
The minimization of problem (9) is not easy as the penalty
term is not differentiable at zero and the Huber loss does
not have the second order derivatives at the transition
points, ±δ. Observed that fixing i, the problem (9) can be
decomposed into p sub-optimization problems. For each,
we get bi by minimizing

J(b) =
n∑
j=1

ωjHδ(yj − xTj bi) + λ

n∑
�=1

‖b�‖2, (10)

where for notational convenience, we omit the
subscript i here and bℓ is a block of parameters of b, i.e.
b = [bT

1, . . . ,b
T
p ]

T.

To optimize (10), an iterative method is developed by
constructing an auxiliary function, the optimization of
which keeps J (b) decreasing. As in [13], given any cur-
rent estimate b(k), a function Q(b|b(k)) is an auxiliary
function for J (b) if conditions

J(b(k)) = Q(b(k)|b(k)) and J(b) ≤ Q(b|b(k)) for allb, (11)

are satisfied. In this study, we construct the auxiliary
function as

Q(b|b(k)) =
n∑
j=1

ωjHδ(yj − xTj b
(k))−

n∑
j=1

ωjH′
δ(yj − xTj b

(k))xTj (b−b(k))+2γ

∥∥∥b − b(k)
∥∥∥2
2
+λ

p∑
�=1

‖b�‖2, (12)

Figure 7 ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for the cell cycle datasets. Left: the ROC
plots of the Huber group LASSO and the group LASSO. Right: precision-recall plots of the Huber group LASSO and the group LASSO. TPR: true
positive rate. FPR: false positive rate. Huber group LASSO has better performance than group LASSO.

Table 5 The areas under ROC (AUROC) and precision-
recall (AUPR) of the Huber group LASSO and the group
LASSO for the cell cycle datasets.

Method AUROC AUPR

SE 0.5466 0.1844

Huber 0.5753 0.1941

SE: group LASSO. Huber: Huber group LASSO.
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where g is the largest eigenvalue of
∑n

j=1
ωjxjxTj . It can

be easily shown that this auxiliary function satisfies (11).
Considering the block structure of b, we apply a

block-wise descent strategy [14], i.e., cyclically optimize
one block of parameters, bj , at a time. Denote by

b(k)(�) = [b(k+1)T

1 , . . . ,b(k+1)T

� ,b(k)T

�+1 , . . . ,b
(k)T

p ]T the vector

after updating the Rth block. Given b(k)(ℓ− 1), update it
to b(k)(ℓ) by computing

b(k+1)
� = arg min

b�

Q
(
[b(k+1)T

1 , . . . ,b(k+1)T

�−1 ,bT
� ,b

(k)T

�+1 , . . . ,b
(k)T

p ]
T
|b(k)(� − 1)

)

=

⎛
⎝ 1
4γ

− λ

4γ

∥∥∥∑n
j=1 ωjH′

δ

(
yj − xTj b

(k)(� − 1)
)
xj,� + 4γb(k)

�

∥∥∥
2

⎞
⎠

×
⎛
⎝ n∑

j=1

ωjH
′
δ

(
yj − xTj b

(k)(� − 1)
)
xj,� + 4γb(k)

�

⎞
⎠ .

(13)

where xj,ℓ is the block of elements in xj corresponding
to bℓ and (·)+ = max(·, 0). We repeat to update every
block using (13) until it converges. For a specific value
of l, the whole procedure is described as follows:

1 Initialize b(0). Set iteration number k = 0.
2 Cycle through (13) one at a time to update the ℓth
block, ℓ = 1, . . . , p
3 If {b(k)} converges to b*, go to the next step. Other-
wise, set k := k + 1 and go to Step 2.
4 Return the solution b*.

Note that the algorithm can be adapted to solve (6) with
quite similar derivations. In the following section, we show
that the sequence {b(k)} generated from the algorithm

Figure 8 One network topology from Huber group LASSO for cell cycle datasets. TPR: true positive rate. FPR: false positive rate.

Figure 9 Squared error and Huber loss functions. For small
error, θ, squared error loss and Huber loss are the same. For large
error, squared error penalizes quadratically while Huber loss
penalizes linearly.
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guarantees the objective function J (b) keep decreasing.
We also show that the limit point of the sequence gener-
ated is indeed the minimum point of J (b).

Convergence analysis
The convergence of the optimization algorithm for the
minimization of (10) is analyzed in the way similar to
[25]. We first show the descent property of the
algorithm.
Lemma 1 The sequence {b(k)} generated from the opti-

mization algorithm keeps the objective function J(b)
decreasing, i.e., J(b(k)) ≥ J (b(k+1)).
Proof By (11) and (13), we have

J(b(k)) = Q(b(k)|b(k)) ≥ Q(b(k)(1)|b(k))
≥ Q(b(k)(2)|b(k)(1)) ≥ · · · ≥ Q(b(k)(p)|b(k)(p − 1)) ≥ J(b(k)(p))
= J(b(k+1)).

Next, we show that if the generated sequence satis-
fies some conditions, it converges to the optimal
solution.
Lemma 2 Assume the data (y, X) lies on a compact

set and the following conditions are satisfied:

1 The sequence {b(k)} is bounded.
2 For every convergent subsequence {b(nk)} ⊂ {b(k)},
the successive differences converge to zeros,

b(nk) − b(nk−1) → 0.

Then, every limit point b∞ of the sequence {b(k)} is a
minimum for the function J(b), i.e., for any
δ = (δT1 , . . . , δ

T
p )

T ∈ R
mp,

Proof For any b = (bT
1, . . . ,b

T
p )

T ∈ R
mp and δ(j) = (0T , . . . , δTj , . . . ,0

T)T ∈ R
mp

lim inf
α↓0+

{
J
(
b + αδ(j)

)− J(b)

α

}
= ∇jf (b)Tδj + lim inf

α↓0+

{
λ
∥∥bj + αδj

∥∥
2 − ∥∥bj

∥∥
2

α

}
,

where f (b) =
∑n

i=1
ωiHδ(yi − xTi b) and ∇j represents

the partial derivatives with respect to the jth block of
parameters. Denote the second term by ∂P (bj ; δj ) and
it has

∂P(bj; δj) =

{
λ

bT
j δj

‖bj‖2
if bj �= 0,

λ
∥∥δj∥∥2 otherwise.

(14)

We assume the subsequence {b(nk)} converges to
b∞ = (b∞T

1 , . . . ,b∞T
p )T ∈ R

mp. From condition 2. and
(14), we have

b(nk−1)(j) = (b(nk)
T

1 , . . . ,b(nk)
T

j ,b(nk−1)T

j+1 , . . . ,b(nk−1)T

p )T → b∞, as k → ∞,

and

ifb∞
j �= 0, ∂P(b(nk)

j ; δj) → ∂P(b∞
j ; δj); ifb∞

j = 0, ∂P(b∞
j ; δj) ≥ lim inf

k→∞
∂P(b(nk)

j ; δj), (15)

since bT
j δj ≤ ∥∥bj

∥∥
2

∥∥δj∥∥2.

As b(nk)j minimizes Q((b(nk)
T

1 , . . . ,b(nk)
T

j−1 ,bT
j ,b

(nk−1)T

j+1 , . . . ,b(nk−1)T

p )T |b(nk)(j − 1)) with
respect to the jth block of parameters, using (14), we
have

∇jq(b
(nk)(j)|b(nk)(j − 1))Tδj + ∂P(b(nk)

j ; δj) ≥ 0, for all k, (16)

with

q(b(nk)(j)|b(nk)(j − 1)) =
n∑
i=1

ωiHδ(yi − xTi b
(nk)(j − 1))

−
n∑
i=1

ωiH′
δ(yi − xTi b

(nk)(j − 1))xTi (b
(nk)(j) − b(nk)(j − 1))

+2γ

∥∥∥b(nk)(j) − b(nk)(j − 1)
∥∥∥2
2

Due to condition 2.,

∇jq(b
(nk)(j)|b(nk)(j − 1)) → ∇jf (b

∞) as k → ∞.(17)

Therefore, (15), (16) and (17) yield

∇jf (b
∞)Tδj +∂P(b∞; δj) ≥ lim inf

k→∞

{
∇jq(b

(nk)(j)|(b(nk)(j − 1))
T
δj + ∂P(b(nk)

j ; δj)
}

≥ 0, (18)

for any 1 ≤ j ≤ p.
For δ = (δT1 , . . . , δ

T
p )

T ∈ R
mp, due to the differentiability

of f (b),
lim inf

α↓0+

{
J
(
b∞ + αδ

)− J(b∞)

α

}
=

p∑
j=1

∇jf (b∞)Tδj +
p∑
j=1

lim inf
α↓0+

⎧⎨
⎩

λ

∥∥∥b∞
j + αδj

∥∥∥
2

−
∥∥∥b∞

j

∥∥∥
2

α

⎫⎬
⎭

=
p∑
j=1

{∇jf (b∞)Tδj + ∂P(b∞; δj)} ≥ 0.

Finally, we show that the sequence generated from the
proposed algorithm satisfies these two conditions.
Theorem 3 Assuming the data (y, X) lies on a com-

pact set and no column of X is identically 0, the
sequence {b(k)} generated from the algorithm converges
to the minimum point of the objective function J (b).
Proof We only need to show that the generated

sequence meets the conditions in Lemma 2.
For the sake of notational convenience, for fixed j and

(bT
1, . . . ,b

T
j−1,b

T
j+1, . . . ,b

T
p )

T define

χ(·) : u 
→ J((bT
1, . . . ,b

T
j−1,u

T ,bT
j+1, . . . ,b

T
p )

T).

Let b(u) be the vector containing u as its jth block of
parameters with other blocks being the fixed values.
Assume u + δ and u represent the values of the jth

block of parameters before and after the block update,
respectively. Hence, as defined in (12), u is obtained by
minimizing the following function with respect to the
jth block in the algorithm:

Q(b(u)|b(u + δ))

= f (b(u + δ)) + ∇j f (b(u + δ))T(u − (u + δ))

+2γ
∥∥u − (u + δ)

∥∥2
2 + λ‖u‖2 + λ

∑
��=j

‖b�‖2.
(19)

where f (b) =
∑n

i=1
ωiHδ(yi − xTj b) and ∇jf (b) =

∑n

i=1
ωiH

′
δ(yi − xTj b)xi,j.

Thus, u should satisfy

∇jf (b(u + δ)) − 4γ δ + λs = 0, (20)
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where s = u/||u||2 if u ≠ 0; ||s||2 ≤ 1 if u = 0. Then,
we have

χ(u + δ) − χ(u)

= f (b(u + δ)) − f (b(u)) + λ(||(u + δ)||2 − ||u||2)
= ∇jf (b(u + δ))Tδ − ∇jf (b(u + δ))Tδ[∇jf (b(u + δ))Tδ − 4γ δTδ + λsTδ]

+4γ δTδ + λ(||(u + δ)||2 − ||u||2 − sTδ)

= −
[

n∑
i=1

ωiH′
δ(yi − xTj b(u + τδ))xTi,jδ −

n∑
i=1

ωiH′
δ(yi − xTj b(u + δ))xTi,jδ

]

+4γ δTδ + λ(||(u + δ)||2 − ||u||2 − sTδ)

≥ −2γ (1 − τ )||δ||22 + 4γ ||δ||22 ≥ 2γ ||δ||22.

(21)

The second and third equalities are obtained using
mean value theorem with τ ∈ (0, 1) and (20). For
the first inequality, the following property of the
Huber loss function and the property of subgradient
are used.

(H′
δ(θ1) − H′

δ(θ2))(θ1 − θ2) ≤ 2(θ1 − θ2)2.

The result from (21) gives that

J(b(k)(j − 1)) − J(b(k)(j)) ≥ 2γ

∥∥∥b(k)
j − b(k+1)

j

∥∥∥2
2
= 2γ

∥∥∥b(k)(j − 1) − b(k)(j)
∥∥∥2
2
, (22)

where b(k)(j) = [b(k+1)T

1 , . . . ,b(k+1)T

j ,b(k)T

j+1 , . . . ,b(k)T

p ]T .
Using (22) repeatedly across every block, for any k, we

have

J(b(k)) − J(b(k+1)) ≥ 2γ

∥∥∥b(k) − b(k+1)
∥∥∥2
2
.

Note that by Lemma 1, {J (b(k))} converges as it keeps
decreasing and is bounded from below. The conver-
gence of {J (b(k))} yield the convergence of {b(k)}. Hence,
conditions of Lemma 2 hold which imply that the limit
of {b(k)} is the minimum point of J (b).

Implementation
The tuning parameter l controls the sparseness of the
resulted network. A network solution path can
be obtained by computing networks on a grid of l

values from λmax = max
i,�

∥∥∥∥∑n

j=1
ωjH′

δ(yij)xj,�

∥∥∥∥, which is

the smallest value that gives the empty network, to a
small value, e.g. lmin = 0.01lmax. In our previous work
[12], BIC criterion is used to pick a specific l value
which corresponds to a determinant network topology.
A method called “stability selection” recently proposed
by Meinshausen and Buhlmann [15] finds a network
with probabilities for edges. Stability selection
performs the network inference method, e.g. group
LASSO, many times, resampling the data in each run
and computing the frequencies with which each edge
is selected across these runs. It has been used with the
linear regression method to infer GRNs from steady-
state gene expression data in Haury et al. [26] and has
shown perspective effectiveness. In this study, we

adapt the stability selection method to finding GRN
topology from multiple time-course gene expression
datasets. Given a family of m time-course gene expres-
sion datasets X̃(k) ∈ Rp×nk, k = 1, . . . , m, for a speci-
fic l ∈ Λ , the stability selection procedure is as
follows

1 Use moving block bootstrap to draw N bootstrap
samples for every dataset to form N bootstrap
families of multiple time-course datasets, i.e.

X̃(k)∗(b)}mk=1, b = 1, . . . , N

2 Use the proposed Huber group LASSO to infer

{A(k)∗(b)λ }mk=1 from the bth bootstrap family of datasets.

Denote by A∗(b)
λ

the network topology shared by

{A(k)∗(b)λ }mk=1.
3 Compute the frequencies for each edge (i, j), i.e.,
from the gene j to gene i, in the network

∏
λ

(i, j) =
#{b : A∗(b)

λ (i, j) �= 0}
N

, (24)

where A∗(b)
λ (i, j) is the (i, j)’s entry of A∗(b)

λ
and #{·} is

the number of elements in that set.
For a set of l ∈ Λ, the probability of each edge in the

inferred network is∏
(i, j) = max

λ∈�

∏
λ

(i, j) (25)

The final network topology can be obtained by setting
a threshold, edges with probabilities or scores less than
which are considered nonexistent. This study only focus
on giving a list of edges with scores. The selection of
threshold is not discussed here. The stability selection
procedure can also be applied with the group LASSO
method (6).
Since the data used are time series data, the moving

block bootstrap method is employed in the first step to
draw bootstrap samples from each dataset. For a dataset
with n observations, in the moving block bootstrap with
block length l, the data is split into n − l + 1 blocks:
block j consists of observations j to j + l − 1, j = 1, . . . ,
n − l + 1. [n/b] blocks are randomly drawn from n − l
+ 1 blocks with replacement and are aligned in the
order they are picked to form a bootstrap sample.
Another tuning parameter δ controls the degree of

robustness. Generally, it picks δ = 1.345σ̂ where σ̂ is the
estimated standard deviation of the error and
σ̂ = MAD/0.6745, where MAD is the median absolute
deviation of the residuals. In this study, we use the least
absolute deviations (LAD) regression to obtain the
residuals. To avoid the overfitting of LAD which leads
to a very small δ, we choose by δ = max(1.345σ̂ , 1).
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