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Abstract

Background: tumourigenesis can be regarded as an evolutionary process, in which the transformation of a normal
cell into a tumour cell involves a number of limiting genetic and epigenetic events. To study the progression process,
time schemes have been proposed for studying the process of colorectal cancer based on extensive clinical
investigations. Moreover, a number of mathematical models have been designed to describe this evolutionary
process. These models assumed that the mutation rate of genes is constant during different stages. However, it has
been pointed that the subsequent driver mutations appear faster than the previous ones and the cumulative time to
have more driver mutations grows with the growing number of gene mutations. Thus it is still a challenge to
calculate the time when the first mutation occurs and to determine the influence of tumour size on the mutation
rate.

Results: In this work we present a general framework to remedy the shortcoming of existing models. Rather than
considering the information of gene mutations based on a population of patients, we for the first time determine
the values of the selective advantage of cancer cells and initial mutation rate for individual patients. The averaged
values of doubling time and selective advantage coefficient determined by our model are consistent with the
predictions made by the published models. Our calculation showed that the values of biological parameters, such
as the selective advantage coefficient, initial mutation rate and cell doubling time diversely depend on individuals.
Our model has successfully predicted the values of several important parameters in cancer progression, such as the
selective advantage coefficient, initial mutation rate and cell doubling time. In addition, experimental data validated
our predicted initial mutation rate and cell doubling time.

Conclusions: The introduced new parameter makes our proposed model more flexible to fix various types of
information based on different patients in cancer progression.

Background

Carcinogenesis is the transformation of normal cells into
cancer cells. This process has been shown to be of a
multistage nature. It involves somatic mutations in any
cellular genome, either induced by external source or
spontaneously occurring during the mitotic replication,
and thus it may comprise different types of DNA altera-
tions. Moreover, the cell genome may acquire entire
sequences from exogenous sources. The epigenetic
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changes, which alter chromatin structure, can also be
subject to the same selection forces as genetic events [1-4].
Colorectal tumourigenesis proceeds through a number of
well defined clinical stages. The process is initiated when a
single colorectal epithelial cell acquires a mutation in a
gene that inactivates the APC/f-catenin pathway. Muta-
tions that constitutively activate the K-Ras/B-Raf pathway
are associated with the growth of a small adenoma to a
clinically significant size (namely > 1 ¢cm in diameter).
Subsequent waves of clonal expansion driven by muta-
tions in genes controlling the TGF-f [5], PIK3CA [6],
TP53 [7], and other pathways are responsible for the tran-
sition from a benign tumour to a malignant tumour. Some
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tumours eventually acquire the ability to migrate and seed
other organs [1]. In general, it is still quite difficult to give
a precise definition of the steps in the evolutionary process.

The mathematical investigation of cancer started in early
1950s [8,9], aiming at deriving the basic laws regarding the
tumour dynamics and elaborating a comprehensive frame-
work for testing hypothesis [10-14]. Later on, other types
of experimental evidence, based on epidemiological data
of cancer mortality, allowed the development of the multi-
stage theory (MST) of cancer development [15-18].
Among them, population genetics models are used exten-
sively to describe tumourigenesis [16,19-21], since cancer
progression is an evolutionary process. Various determi-
nistic and stochastic models have been proposed. Some
models addressed specific questions, such as the dynamics
of tumour suppressor genes [22-25], genetic instability
[26,27], or tissue architecture [20]. computer Computer
simulations [28] and theoretical analysis [29,30] have been
employed to investigate the properties of these models In
particular, the stochastic multistage cancer model is a
well-known model of cancer development [3,18,31,32].
Models of tumourigenesis have been proposed early on to
explain cancer incidence data [33-36]. In a series of stu-
dies, Berenblum and Shubik proposed the “two-stage”
model of carcinogenesis [37]. These models assumed that
cancer is a stochastic multistep process with small transi-
tion rates and they have been further developed into the
multistage theory of cancer [17,38-40]. Multistage models
provide a natural framework to evaluate the potential ben-
efits of prevention and intervention strategies designed to
reduce cancer risk. A comprehensive review on this topic
can be found in [41].

Beerenwinkel et al. proposed one of the first mathe-
matical models that explicitly used genome data to
simulate the somatic evolution of colorectal tumour
[15]. The proposed model investigated the importance
of selection, as the driving force in tumour progression,
from a benign tumour (~ 1 mg or 10° cells) to a full-
grown cancer (~ 1 gram or 10° cells), over a period of
5-20 years. The tumourigenic progression is described
as the Wright-Fischer process, where cells evolve in
non-verlapping generations and each new cell can
acquire a new mutation with probability “u“ at each
non-mutated genelocation. It has been derived that the
time period of the k-th mutation is given by

k(ln usd)z (1)

where s is the advantageous selection coefficient, u the
rate of driver mutations, d the number of sensitively
mutated genes, k the number of susceptible genes
(potential drivers), and N is the size of cell population.
Based on the Galton-Watson branching process and
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investigation in [15], a mathematical model was devel-
oped to conciliate cancer genomic data with epidemiolo-
gic and clinic observations [42]. The model dynamics
depends on only three parameters: namely the driver
mutation rate (u), the selective advantage associated
with driver mutation (s), and the cell division time (7).
Using an estimated averaged mutation rate per cell divi-
sion of 3.4 - 107>, the averaged time for the acquisition
of subsequent driver mutationsis is given by

t, = In (2)

where T is the average time of the cell division.

Based on this formula, it was calculated that the actual
selective advantage provided by typical somatic muta-
tions in human tumours in situ was 0.004 + 0.0004.
However, formula (2) does not involve the tumour size
and the waiting time was independent of the population
size. Thus it is not appropriate to use it to calculate the
time required for the first mutation appearance.

Extending these observations, by sing the approach of
“comparative lesion sequencing”, Jones et al. [1] examined
quantitatively the mutations described in colon cancers
genomic studies and in other neoplastic lesions of the same
patients. They estimated the time intervals required for the
appearance of the cells that originate the clonal expansions.
In this model it was assumed that, in each carcinogenic stage
(namely micro-adenoma, small and large adenoma, early
and advanced carcinoma, and metastasis), there is a founder
cell that gives rise to the various tumour populations. During
tumour evolution, cells acquire other mutations and may
become founder cells of succeeding carcinogenic states. For
example, the time interval between the birthdate of a founder
cell for a large adenoma and the founder cell of an advanced
carcinoma can be approximated as.

ATrad,aca = Frad,aca - Tacas 3)

where Fr,4 4.4 is the fraction of mutations in the
advanced carcinoma that were not found in the large
adenoma and T4, is the birthdate of the founder cell
of advanced carcinoma.

In the same line, Yachida et al. used genomic data of
seven pancreatic cancer patients presenting metastases in
[43] to evaluate the clonal relationships among primary
and metastatic cancers. The results showed that the pat-
tern that originated metastasis were clearly represented in
the cells within the primary carcinoma (i.e., itself) in the
form of a combination of many distinct subclones. In addi-
tion, each subclones has its own heterogenic pattern.
Using the following mathematical model:

T
T= gen (N] + «/Nl)
r
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where T, = 2.3 days and r = 0.016 per generation, they
calculated the elapsed time between the different stages of
the tumourigenic process. The results showed an averaged
time of 11.7 years from the initiation of tumourigenesis to
the birth of the cell giving rise to the parental clone, an
averaged time of 6.8 years from then to the birth of the
cell giving rise to the index lesion, and an averaged time of
2.7 years from then until the patients’ death. This result is
consistent with that reported in [1]. Taking these correla-
tions together, the dynamics of the tumour progression
offers an opportunity to interfere in the tumour evolution
and develop a more customized treatment.

However, the information about the initial mutation
rate and selective advantage of tumour cell for each
individual patient have not been revealed yet in all stu-
dies reviewed above. This information is very important
for cancer treatment. Although we conducted studies to
describe cancer progression for a number of individuals
[44], the results were not satisfactory. Thus in this work
we will develop a more general framework that not only
maintains the advantage of existing mathematical mod-
els but also is able to calculate individual patient’s initial
mutation rate and selective advantage of tumour cell
which has potential applications for medical treatment.

Results and discussion

A general modelling framework

According to the multistage theory, cancer is the last stage
of a series of k sudden and irreversible changes which
must take place in a cell in a specific order. Denote state i
is that a cell has i mutations, p;(t) is the fraction of all cells
in state i in the whole population, and yu(t) is the mutation
rate at time ¢. It is clear that u(¢f) should depend on the
mutation number within a cell. Denote the time point of
the i-th mutation by ¢; (let £y = 0). Thus during the small
interval [£;—1, ;] the value of function u(¢) is

n(t) = p(t) = wmi.

Based on the assumption of the Poisson process, we
neglect the probability of two or more events taking
place in (t, t+dt) as dt — 0. If a cell is in state p; at time
t;, the probability of transformation to state p;+1 in a
small time interval At is given by

Prob = u(ti,1) At + o( At),

where o(At)/At — 0 as At — 0. In addition, the prob-
ability of transformation from state i to state i + j (with
j > 1) in time At is assumed to be o(Af). This implies
that 1/p;+1 is the averaged time required for a cell to go
from state i to state i + 1.

The probability to find a cell in the i stage by the
end of time interval (¢ ¢ + dt) is then given by

pi(t +dt) = (1 — wind)pi(t) + pi—1 () pidt
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Taking the limit d¢ — 0, the above equation becomes

dpi(t)

i=0,1,2,.. 4
it (4)

= wipi-1(t) — i pi(t),

The initial condition p;(0) = 0 (i =1, 2, - - - ) means
that all the cells are normal at time ¢ = 0.

In this section, we first present an explicit formula that
includes the two formulae discussed in the previous sec-
tion as examples. Following the notations introduced in
the previous section, we also assume that the mutation
rate y; = u(t;) is an increasing function of time ¢, where ¢;
is the time when the i’-event occurs fori = 1, 2, - - o N.

For Eq. (4), we assume that the mutation rate u(¢) have
the form of

w(t) = uge™,

where s is the selective advantage coefficient and ug the
initial mutation rate. Here we propose to use a new coeffi-
cient a that is the transform factor linking the selective
advantage coefficient and the mutation rate. Note that
both s and a vary with individuals and the value of product
b = as is determined by the curvature of y(t). Thus we have

Hj = Hjs1.
Since y; — ui+1 = u(t;) — u(t+1) usually is small, we
have that
mipj—1 — wjs1pj = (145 — wjr1)pj + 1i(Pj-1 — P})
~ n(0)(pj-1 = py)
for t;-1 < t < t; . Thus we have the following approxi-

mation

dpj _

dt I’L(t)(p]*l - p])’ ] = lr 21 o rN (5)

t
for t; < t < tj+i. Let A(t) = / p(x)dx. Then we have
the solution 0

A(t) e 2
pi(t) = ( )j!

for the system (5), where
Ko ast
AL) = —-1).
=" @ 1)

And we further have

In (“;ﬁk + 1) ©)

as

t, =

for a new k-mutated cell A, = A(t). That is, p, = ﬁ],
where N is the number of sensitive cells. Finally, we
have that

11/k

e @)

Ar = —k. LambertW(—
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where LambertW is the principal branch of the
Lambert W function.

The case of Beerenwinkel’s formula
Beerenwinkel’s formula mentioned above was based on
their differential equations [26], [20] and [27]:

dpj

dt

forj=1,2,--. N, where (j) = Zi ipi(t) is the average

number of mutated loci at a given time ¢. This equation
has a solution

= udpj 1 — w(ti1)p; +spiG — G)),

Me™*

ut(e”

with ) = -1 [45], [46], [15], [47]. Since () = A,
N

we could write this equation as follows

Ljipt] = ude” (pj—1 — n(G1)pj), j=1,2,--- N

Hence this equation becomes a special case of our
equation (5) with a = 1 and g = ud.

Note that the innovation od this work is the introduc-
tion of parameter 4, which is important to make our
model to be consistent with clinical data. If restricting a =
1, the predicted result was not supported by simulation
[15]. In addition, Beerenwinkel’s model assumed that each
subsequent mutation has the same incremental effect on
the fitness of the cell. It has been widely accepted that the
impact of a specific mutation on phenotype will depend
on the genetic background. For example, it was pointed
out that the subsequent driver mutations appear faster
and faster and the cumulative time to have k driver muta-
tions grows with the logarithm of k [42]. Thus our equa-
tion depends on four parameters, namely the initial
mutation rate po, selective advantage coefficient s, trans-
forming factor 4, and the number of driver genes. It is still
in debate that which gene can be clarified as cancer candi-
date gene (CAN-gene). Sjoblom et al defined 69 Can-
genes [4], while Wood et al defined 142 CAN-genes [48].
If we look at 179854 colorectal cancer mutations in Cos-
mic v.64 statistics in [49], there were 340 patients who
have more than 20 mutations. If we consider the top 100
highest mutation frequency genes as CAN-genes, the aver-
age number of the mutated CAN-gene is 29.23 per
tumour. Since the average passenger mutation number in
this study is around 200 per tumour, we choose the num-
ber of CAN-genes as N = 30 which covers the cases of
more than 95% patients.

Determination of waiting time A, for cancer progression
Using Eq. (7), we calculated the values of model para-
meters for determining the values of waiting time A, for
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three patients. The first patient Mx34 was 83 years old
when she developed an advanced carcinoma of the
ascending colon that was 9cm in diameter and of stage
T4N2M1. A residual adenoma that surrounded the carci-
noma was identified at the time of surgery. A laboratory
detection showed that there were 17 mutations in colorec-
tal adenoma and total mutations were 25 [1]. We assume
that the average cell division time is 4 day (96 hours) and
define a cell with 3 driver mutations to be adenoma and
12 mutations to be carcinoma. Similar to the data for
patient Ma34 derived from [1], we produced the data in
Table 1 which matched the estimation in [1] very well. We
determined the model parameters in this case as s = 0.01,
a=032and pg=2"* 107° (see Table 3). Thus the function
of mutation rate is defined by

w(t) = poe™ = 2% 107> . 00032

which was not revealed in [1]. The determined time
required to reach different tumour stages is listed in Table
2 for patient Mx34. For comparison, we also provide the
prediction published in [1]. Table 2 suggests that our cal-
culated results are consistent with the published ones.

Table 1 Values of A, for three patients.

k M1 M2 M3 k M1 M2 M3

1 10710 10710 107 9 03211 03211 0415
2 141-10° 141-10° 5-107° 10 045287 045287 057
30000843 0000843 000181 11 060523 060523 0.746
4 0006999 0006999 00124 12 0776297 0776297 094
5 00260517 002605 004128 13 09642 09642 115

6 0064499 00644 00946 14 116727  1.16727

7 012599 012599 0175 15 138388 138388

8 0211684 02116 0282 16 161264 161264

As: patient Mx34 with N = 10'%; 4,,: patient Mx32 with N = 10'%; A,5: patient
Co82 with N = 10°.

Table 2 Tumour stage, waiting time (WT) (years) and
number of mutations (NM) for patient Mx34 based on
our calculation, and data published in [1].

Stages WT WT in [1] NM NM in [1]
Microadenema 1-2 3 3 3
Small-adenoma 3-4 5 4 4
Large adenoma 7 7 5 5
early carcinoma 8-19 8-23 6-25 6-25

Advanced carcinoma 20-30 25 > 25 > 25
Metastasis 33 25 > 33 28

Table 3 Selective advantage, initial mutation rate,
waiting time for patients Mx34 and Co82.

Patient s Ho a tx
Mx34 0.01 2%107° 0316 3165
Co82 0.0075 2%1077 0.309 3150
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This proposed time scheme describes how the advanced
cancer evolved from the normal cells. However, we note
that the first one or two driver mutations may not trans-
form a normal cell into a cancer cell. As Jones et al
described in [1], the APC/f-catenin passway mutations
may only produce microadenoma. Even when all APC,
Coca/Cin, KRAS, BRAF genes were mutated, only a large
adenoma was produced. But it was still not yet necessary
to be carcinoma.

Next we consider the case of patient 10 (patient Co82)
in the dataset in [23]. The patient was 80 years old
when she developed an advanced carcinoma of the
cecum of stage T3N1MO. Evaluation of the same muta-
tions in the large adenoma from which the carcinoma
developed revealed the value of F;4,4c, in (3) as 0.45.
Application of Jones’s Equation indicated that the large
adenoma founder cell was born 36 years before the
advanced carcinoma founder cell. Our proposed model
suggests that the parameters in the mutation rate are
o = 1077, s = 0.0075, and a = 0.309 (see Table 3). Thus
the mutation rate is defined by

1(t) = 107700016t

The time schedule is listed in Table 1. Note that the
initial mutation rate of patient Mx34 (27°) is close to
the value of 3.4 - 107° estimated by Bozic et al [42].
However, the initial mutation rate for patient Co82 is as
little as 1077 which is the value estimated by Jackson et
al in [50]. The determined time required to reach differ-
ent tumour stages is listed in Table 4 for patient Co82.
Comparing the results of these two patients, we see that
patient Co82 was much healthier than patient Mx34,
namely patient Co82 had a higher value of mutational
robustness. To receive a good medical treatment out-
come, different treatment schemes should be applied to
these two patients.

Estimation of relationship between tumour size and
doubling time

Another application of our proposed formula is to estab-
lish the relationship between the number of driver muta-
tions, the time spent to reach these driver mutations and
the tumour size. We first consider patient Mx34 who was
83 years old when she developed an advanced carcinoma

Table 4 Tumour stage, time required (years) and number
of driver mutations k for patient Co82 from our
calculation.

Tumour stages Time required k
Microadenema 11 3
Small-adenoma 18 4
Large adenoma 22 5
carcinoma 27-33 6-11
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of the ascending colon that was 9 cm in diameter and of
stage TAN2M1. A small mesenteric lymph node metastasis
(1 cm in diameter) was found to contain 25 mutations that
were subsequently evaluated in other lesions of this
patient. Of these, 24 were found in the colorectal carci-
noma (F4c,are: = 0.04). The evaluation of the same muta-
tions in the large adenoma from which the carcinoma
developed revealed an Fr444c, of 0.23. Application of
Eq. (3) indicated that the large adenoma founder cell was
generated 17 years before the advanced carcinoma founder
cell. In the 17 years between the birth of F_.;,, and F,.;.
1aca the tumour underwent waves of clonal expansion dri-
ven by mutations in TP53 and the other genes presumably
required for invasion and further growth of this tumour.
Once it acquired these capabilities, a cell (F ;) that is
capable of lymph node metastasis appeared within a rela-
tively short period. By using our model (5), we calculated
that the averaged doubling time of tumour cells for patient
Mx34 is 150 generations or about one year. This result is
consistent with the prediction in Jones et al [1] that sug-
gested that the mean doubling times are generally 2-4
months in metastases and much shorter in adenomas and
carcinomas. For patient Co82, we also calculated the dou-
bling time of tumour cells is 221 generations or about 1.5
years, which is also consistent with the predictions in [1].
All the calculation results are presented in Table 5.

Application to pancreas cancer

Yachida et al investigated seven pancreas cancer patients
regarding the occurance of distant metastasis [43]. To
distinguish between the possibilities that clonal evolu-
tion occurred inside the primary cancer and those
within secondary sites, we sectioned the primary
tumours from two patients into numerous, three-dimen-
sionally organized pieces and examined the DNA from
each piece for each of the founder and progressor muta-
tions. For example, in patient Pa08, there were three
progressor mutations present in two independent perito-
neal metastases (defined as one subclone) and 23, 25, or
27 additional progressor mutations present in liver and
lung metastases (defined as three additional subclones).

Table 5 The number of driver mutations (k), time
required (years) and number of cancer cells (NCCs).

k time required NCCs k time required NCCs
8 13 6800 2 1 6.8
11 16.6 2-10° 3 18 300
15 194 108 4 22 10000
19 213 10° 5 25 10°
26 235 55-10° 7 28 8- 10°
30 244 8- 10° 8 30 107
33 25 9-10° 11 36 510

1). The left three columns are for patient Mx34. 2), while the right three
columns for patient Co82.
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Through the analysis of distinct regions of the primary
tumour, it is clear that subclones giving rise to each of
these metastases were present in the primary tumour.
Moreover, these subclones were not small. From the
size of the pieces and the amount of DNA recovered,
each subclone should contain in excess of 100 million
cells. In addition, more than four different subclones,
each containing a similar large number of cells, could be
identified through the analysis of other pieces of the
same tumour. These subclones could be put into an
ordered hierarchy establishing an evolutionary path of
tumour progression. In addition, analysis of multiple
primary tumour pieces and metastatic lesions from
patient Pa04 revealed a similar clonal evolution, with
distinct, large subclones within the primary tumours giv-
ing rise to the various metastases. By using the same
raw data, our proposed model predicted that different
patient should have different selective advantage coeffi-
cients and different initial mutation rates. The results
are given in Table 6. Compared with the predicted
selective advantage coefficient in [42], which is s =
0.004, our predicted value is slight larger than but still
consistent with that prediction.

Conclusions

Cancer progression essentially is a stochastic process.
Statistical analysis is an important mathematical tool to
analyze the progress of cancer cells based on a large
number of cells in a particular position of the human
body. In this work we proposed a new approach for ana-
lyzing the cancer progression in individuals. The devel-
oped model can be used to calculate the waiting time
for carcinogenesis. Our model assumes that the
expected waiting times depend on the values of three
parameters, namely the selective advantage coefficient s,
the transform factor a and the initial mutation rate y,.
Comparing with the Novak-Beerenwinkel model
[15,20,26,27], we introduced the transform factor as a
new parameter which makes our model more flexible.
Thus our model is capable of matching with different

Table 6 Estimates of number of mutations (NMs), initial
mutation rate (4o) and selective advantage coefficient s
for seven pancreas cancer patients

Patients NMs Ho s
Pa01c 49 5.107 0.007
Pa02c 35 9.107 0.008
Pa03c 28 6-107* 0014
Pa04c 34 9.107° 0.008
Pa05¢ 28 4.107" 001
Pa07c 50 25-107° 0.008
Pa08c 35 5.107 0.007

Average 37 22-107" 0.0088
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mutational curves. In addition, our new model can
be used to reveal the values of initial mutation rate, the
selective advantage coefficient of tumour cells and the
subsequent clonal expansion for individual patients. Our
approach showed that, if the averaged mutational rate is
known, a number of other biological parameters, such
as the initial mutational rate and the mutational func-
tion, can be determined by using ourproposed model.
These parameters are important for constructing appro-
priate clinical treatment schemes for individual patients.
The predicted values of parameters from our proposed
model are consistent with the published ones in litera-
ture, which partially validated our model. The first
example is the mean doubling time. We showed that
the mean doubling time is one year for patient Mx34
and 1.5 years for patient Co82, which are consistent
with the predictions in [1]. These results suggested
that the mean doubling time in metastases, which is
generally 2-4 months, should be much shorter than
that in adenomas and carcinomas [1]. The second
example is the selective advantage coefficient. Our
model suggested that the selective advantage coefficient
in colon cancer is about 0.01 ~ 0.0075 in Tables 3 and
about 0.007 ~ 0.014 for pancreas caner in Table 6
which is close to but a little higher than the value of
0.004 that was estimated in [42].

Finding the values of initial mutation rate and the selec-
tive advantage coefficient also have potential applications
in other related issues. For example, a mathematical
approach has been designed to investigate the targeted
cancer therapy recently [37,47,51,52]. The targeted cancer
therapies use drugs that interfere with specific molecular
structures implicated in tumour development [53].
The majority of the targeted therapies are either small-
molecule drugs that act on targets inside the cell (usually
protein tyrosine kinases) or monoclonal antibodies direc-
ted against tumour-specific proteins on the cell surface
[54]. It has been showed that the overall probability P of
tumour eradication as P = P,P,P;. Here P;, P, and P; are
the probabilities that no resistance mutation leading to
treatment failure arises during expansion, during steady
state and during treatment, respectively [55].

The key parameters in this probability model are the
number of tumour cells at steady state, time that the
tumour remains at steady state before treatment, initial
rate of cell division, initial death rate of tumour cells,
the rate of resistance mutations, and the division and
death rates (r' and d’, respectively) of sensitive cells
under treatment, in the absence of density constraints
[55]. Note that (d' — ') is the selective advantage coeffi-
cient. This coefficient and the initial mutation rate can
be calculated by using our formula. Hence our proposed
model may have potential applications to design the tar-
geted cancer therapy.
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