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Abstract

Background: Motif mining has always been a hot research topic in bioinformatics. Most of current research on
biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy
data, biological network data represented as the probability model could better reflect the authenticity and
biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain
biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually
based on the possible world model having a relatively high computational complexity.

Methods: In this paper, we present a novel method for detecting frequent probability patterns based on circuit
simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree
like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of
probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis
of circuit topology structure with related physical properties of voltage in order to evaluate the probability
isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using
traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step
hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the
clusters.

Results: The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the
transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently
discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs
reported in the experiments published in other related papers.

Conclusions: The algorithm of probability graph isomorphism evaluation based on circuit simulation method
excludes most of subgraphs which are not probability isomorphism and reduces the search space of the
probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to
find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in
the further studies.
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Background

In the field of bioinformatics, many types of data are
present as the topological graph, such as protein interac-
tion network whose nodes represent proteins, and edges
represent the interactions between proteins. Milo in 2002
proposed the concept of biological motif [1] on Science,
which discussed a substructure that appears in different
parts of a network, and appears significantly more
frequently than in a random network. Research shows that
the motif recognition is important for many biological stu-
dies. For example, motif recognition helps to study the
biological network structure, function modules and evolu-
tionary process of organisms and so on. So a lot of
research on the exact network model was proposed and
these researches have made some progress [1-8]. As the
life process itself is a dynamic process, the motif of same
function may be made up of the subgraphs which may
slightly differ in topology, so Berg etc [9] proposed prob-
ability motif mining algorithms in the biological network.
And Rui etc [10,11] also discussed science graph data
obtained with the inevitable experimental error or noisy
data, and some biological network data with probability
information. Meanwhile, since biological evolution itself is
a mutant selection process, the input of biological
networks should also be probabilistic networks. Therefore,
it is more intuitively and practically significant to mine
probability motif in the probability biological network.

Most research on motif mining mainly focuses on exact
graph while fewer papers work on probability motif. In the
paper [11], Rui proposed to use the EM algorithm to esti-
mate the relevant parameters for the probability motif. In
this algorithm, the uncertain graph is converted to the cer-
tain graph. Since this conversion process requires a large
amount of computation, this algorithm has low computa-
tional efficiency. In 2009, Rui[10] used the Bayesian model
and GIBBS sampling strategy to solve the probability
mult-motif. But the probability network still needs to be
converted into a certain subgraph and randomly certain
graph as background. As a result, the computational cost
of this algorithm is still very high.

Probability Motif detection in networks consists of
two main steps: 1) calculating the number of occur-
rences of a probability subgraph in the network and 2)
evaluating the probability subgraph, which occurs sig-
nificantly more frequently than in a random network.
So, frequent probability pattern recognition in biologi-
cal networks is an important step in identifying the
probability motif. Currently, the research related to
mining frequent subgraph in graph data has made a lot
of process, such as gSpan [12], FFSM [13], etc...How-
ever, these researches mainly pay attention to certain
graph, edges or nodes which are represented by the
presence or absence. Therefore, existing frequent pat-
tern identification algorithms for certain graph cannot
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be applied to frequent pattern identification of biologi-
cal probability network.

On the other hand, in the uncertain data mining field,
the research also has made a lot of achievements in recent
years, such as uncertain data modelling and management
work [14,15], and paper [16] introduced the latest technol-
ogy related to uncertain data, but these studies still pri-
marily focus on traditional uncertain data items. Research
on uncertain graph has just begun, which include most
reliable subgraph discovering [17-19], efficient TOP-K
query [20] and other topics in the uncertain graph. Zou
[21-23] also proposed some effective algorithms in mining
uncertain graph frequent patterns. However, the above
mentioned algorithms mainly use the possible world
model. Possible world models are widely used to model
uncertain data sets, in which probability graph will be con-
verted into the corresponding possible worlds model
graph that it infers, and then each probability subgraph is
mapped into 2" (n is the number of edges of probability
subgraph) possible graph instances using the topology
graph mining algorithm [12,13,24,25]. The enumerated
space of probability graph instances may grow exponen-
tially, resulting in very high algorithm complexity. So,
Paper [26] firstly ignores the weight of edges in probabilis-
tic networks and carries out the subgraph isomorphism,
and then combines the random walk model to find
maximal frequent subgraph, however, some of frequent
probability graph in this work may be ignored.

Frequent probability pattern mining, a key step in the
probability motif identification, is based on the method of
probability isomorphic evaluation. Therefore, a novel
method for frequent probability pattern mining in biolo-
gical uncertain networks based on circuit simulation is
proposed in this paper. Firstly, the partition based effi-
cient search is applied to non-treelike subgraph mining
where the probability of occurrence in random networks
is small. In the second step, exact graph isomorphism
identification based on circuit simulation [27] is modified
to make efficient probability graph isomorphic decision.
The probability graph isomorphic decision combines the
analysis of circuit topology structure with related physical
properties of voltage in order to directly evaluate the
probability isomorphism between probability subgraphs.
This innovative approach can effectively avoid the tradi-
tional method utilizing the possible world model and
excludes most of subgraphs which are not probability iso-
morphism and reduces the search space of the probability
isomorphism subgraphs by the mismatch value of node
voltage set. Finally, based on the algorithm of probability
subgraph isomorphism, two-step hierarchical clustering
method is used to cluster subgraphs, and discover fre-
quent probability patterns from the clusters. The experi-
mental results on data sets of the Protein-Protein
Interaction (PPI) networks and the transcriptional
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regulatory networks of E. coli S.cerevisiae show that the
method can efficiently discover the frequent probability
subgraphs which contain the probability motifs found in
other related experiments. And, it is an innovative way to
find the frequent probability patterns, which may be effi-
ciently used for discovering probability motifs in the
further studies.
The main contribution of this paper is as follows:

(1). A new algorithm of probability isomorphic deci-
sion based on circuit simulation is proposed. This
approach simplifies the process of finding the prob-
ability subgraph by converting these graphs into
their inferring certain graph based on the possible
world model. It is an innovative way to determine
the two graph probability isomorphism by compar-
ing their nodes voltages sequence instead of the
topological alignment of subgraph isomorphism, and
the algorithm reduces the search space of the prob-
ability isomorphism subgraphs using the mismatch
values of the node voltage set. In the narrowed set
of subgraphs, the mismatch values of the subgraphs
are calculated by the enumeration method.

(2). Traditional certain graph alignment is usually based
on Star-alignment which needs to traverse all nodes of
graph as the centre graph, resulting in high computa-
tional costs. Two-step hierarchical clustering for calcu-
lating multi-graph probability alignment is proposed to
effectively reduce the computational complexity.

Briefly then, the outline of this paper is as follows. In the
method section, probability isomorphic algorithm is
described in details and the two-step hierarchical cluster-
ing method for discovering frequent probability pattern is
introduced. In the result section, the experimental results
are presented. Finally, suggestions for future work are
made in the conclusion section.

Methods
Problem Definitions
Definition 1 (biological probabilistic networks):
Denoted as

gz = (V, E 2, L, p),Where V is the node set of biologi-
cal probabilistic networks gz, E €V x V is the set of
edges of the graph gz, X is a set of node label, L :V — E
is a node labelling function, p : E — (0,1] indicates the
probability of edges in biological probabilistic networks.

Generally, the data obtained by biological experiments
carry some inevitable noisy data, while biological evolution
itself is a variable selection process. As a result, the con-
cept of probability can be introduced in the definition to
indicate the uncertainty of biological data.

Definition 2 (Probability graph isomorphism): Set the
number of nodes as k of the two probability graph

Page 3 of 14

g=W,E X L p),g = (V, E, 2, L, p'), there exists a
node mapping sequence <Inje, Inje’ >, so that the two
graphs have similar topology (does not require identical
topology), while the absolute value of the difference
between the weights of corresponding edges between
nodes |A;| < o, the sum of all the absolute value of the
difference between the weights of the corresponding
edges Z?:l,j:l |Aj| <6, then g and g’ is called probabil-
ity isomorphic.

In other words, suppose d and d' are the adjoin matrix
of the probabilistic graph g and g’, there exist a node
mapping sequence <Inje, Inje’ >, making the following
conditions satisfied:

) Yirj € (1,0 15 = Ip(Unje(), Ine(7)) —p'(Inje (i), nje ()] < o
2) Zi:l,j=l |Aij| =< 0

Then the graph g and g’ are called probability iso-
morphic, also denoted as g ~ g’. [Example 1] Shown in
Figure 1, giving the probability graphs g;, g» and g3 , & =
0.1, 8 = 1.0, the optimal node mapping sequence
(Injey, Injey, Injes) = ({v1,v2,v3, va}, {vs, ve, v7,vs}, {vo, V1o, vn1, v12}).  Because
(w10, ) = palr 7)) > @ s o) ~ pa(in,)l > o, @3 and g7 , go are not prob-
ability isomorphic. But g; and g, fulfil the two conditions
in Definition 2, so they are probability isomorphic.

Compared to the certain graph, the probability graph
requires two graphs’ topology approximated. The prob-
ability graph also takes into account the degree of weights
matching of the corresponding edges between nodes, so
the computational complexity of the probability graph is
higher than certain graph isomorphism. On the other
hand, the probability adjoint matrix can be used to
uniquely identify a probability graph, but a different
arrangement of the nodes in the probability graph may
correspond to multiple probabilistic adjoint matrixes,
resulting in high computational complexity to find the
probability graph isomorphism.

Definition 3 (Frequent subgraph of probabilistic net-
works): Probability subgraphs of the node’s scale are k
denoted as g¥ = {g1,8),...,8,)} (the following texts call

-~ 1 0.85 0.76
P ] i
o i g i
{ Ve 1z 11.5)
A / \
e L ~~r B3 —
- I - | -~ -
_ 0.93 1”7 _o0.95 =
; =) — 1 -~
~g — = o 1 -~ /,n\ o -
(viy—1——v2) (vs¥o0.05 vz )
-+ i N
- 2 =
- g -

Figure 1 Example of probability graph isomorphic.




He et al. BMC Systems Biology 2014, 8(Suppl 3):S6
http://www.biomedcentral.com/1752-0509/8/53/S6

it probabilistic graph set), which are obtained from the
probability networks, and sup(g,, gk) means the degree
of support for graph g, in gk.

8(80.81) = {

up(8er 85) = D s 9(8er81)

1 g, and g; is probability isomorphic
0 g, and g; isn't probability isomorphic

User-specified minimum support threshold denoted
as min_sup, suppose frequent pattern set is F, if
sup(ga, g) = min sup, then g, € F is a frequent pattern.
Shang etc. [27] proposed an exact graph isomorphism
algorithm based on circuit simulation method, which is
mainly used in a directed graph, undirected graph and
mixed graph (refers as a mixture of directed graph or
undirected graph). Therefore, inspired by the method in
[27], the probability graph isomorphism algorithm is pro-
posed. The probability graph isomorphism algorithm uses
the innovative construction method based on associated
circuit and node voltage sequence alignment algorithm. In
order to avoid the high computation caused by the differ-
ential calculation of every edge (|A;| < @) in the adjoint
matrix, we introduce threshold ¢ which is the sum of the
corresponding edge difference in associated circuit based
on the circuit simulation. Then based on the probability
graph isomorphism algorithm, the hierarchical clustering
method is adopted to cluster subgraphs to discover
frequent probability patterns from the clusters.

So, the method of frequent probability pattern mining
in biological uncertain networks based on circuit simula-
tion is defined as the followings (Assume that the node
number for mining the frequent probability patterns is k):

(1) Probability subgraph set gp, Since the large num-
bers of motifs discovered by biological functions are
non-tree structure [9], only non-tree subgraphs are
necessary to be searched in the biological networks.
Therefore, the subgraph search algorithm of non-tree
based on the division [28] is used for getting all of can-
didate probability subgraph set g, with the size k from
the biological probability network.

(2) Probability graph isomorphism evaluation
based on the circuit simulation method. Given the
mismatch threshold ¢ of node voltage sequence matrix
and the probability mismatch threshold 8 of the
adjoint matrix, two probability graph distance matrix
Dist (N, N') are obtained using the circuit simulation
method. Then the Hungarian Algorithm is used to get
the node optimal matching sequence and the mis-
match value of node voltage sequence matrix. Based
on the mismatch value of node voltages sequence
matrix, the node optimal matching sequence and the
mismatch value of adjoint matrix, then two probability
graphs are evaluated to be probability isomorphic
or not.
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(3) Frequent probability subgraph discovered by
two-step hierarchical clustering. According to the
method of probability isomorphic introduced in (2),
two-step hierarchical clustering is used to find the prob-
ability subgraph isomorphism group, and then get the
frequent probability subgraphs.

The next sections will introduce the method of probabil-
ity graph isomorphism evaluation and the algorithm of
two-step hierarchical clustering for discovering frequent
probability subgraph.

Probability graph isomorphism judgment based on the
circuit simulation method

In this algorithm, the node voltage method [27] of the
basic linear circuit analysis method is used.

The basic linear circuit analysis method- node voltage
method

The node voltage method is a circuit simulation method
based on the principle of conservation current. The princi-
ple of conservation current specifies that the current is
unlikely to disappear and it is impossible to suddenly
increase, so the amount of current inflow is equal to the
amount of current outflow in a closed circuit. Based on
this principle, the circuit voltage can be calculated.

In the circuit network, a node is arbitrarily selected as
the reference node. The electric potential difference
between each of the remaining nodes and the reference
node is known as the voltage of the node. Obviously,
the number of node voltages is less than a number of
nodes. For a k-node network, there are (k-1) node vol-
tages. For a k-node network, node k is taken as the
reference node, and then the node voltage equation can
be expressed as:

Gl + Gu2Upa + -« + Gige—1) Ur(r—1) = Inn
Gl + GoaUpz + ... + Goe—1y) Un(r—1) = L2 1)

Gr-1)1Uk1 + Ge—12U2 + . . . + Ge—1) (k1) Uk(k—1) = Is(e—1)
Using matrix is represented as:

Gn Gn
Gn G

Gi(e-1) U Is1
Gz(k—l) U2 - I;

2)

Gr—1)1 Ge-1)2 - Ge—1)(k=1) Up(r—1) Ise—1)

Where G;; (i = 1, 2,..., k — 1) is called the self-admittance
of node i, whose value is the sum of the admittance of all
branches connected to the node i.

Gj(i=12.,k-1j=1,2,.,k-1)is called mutual
admittance of node i and node j, which is the negative
of the sum of all branches’ admittance between the
node i and node j .

Uj; is the voltage of the node j when node i is selected
as reference node.
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L; (i = 1, 2,..., k - 1) is the algebraic sum of the current
flow into node i (inflow is positive, outflow is negative).

[Example 2] The circuit N is shown in Figure 2. When
the node @ is denoted as a reference point, Uy, Uy, Uys
are the voltage difference between the three nodes @, @,
® and node @ respectively, also are the voltage values of
node @, @, ®. Using the above method of node voltage,
we can get the following equations:

G1+Gy+Gy -G -Gy Uy I
—Gz G2 + G3 + G5 —G3 U42 = 0
-Gy —Gs G1+G3 +Gs Uss =l

By solving these equations, we can get the node voltage
sequences|[Uy,;, Uyy, Uys], when node @ is the reference
point.

In Example 2, we can see that, set a node (e.g. @) as a
reference point, the each node voltage values of the
sequence (e.g. Uy,) is calculated based on the information
of topology and edge weight (e.g. when solving Uy, take
into account the conductance values of G;, G, and G3 ,
which are adjacent to node @ etc.). From this perspective,
to some extent, the node voltage sequences characterize
the topology information and edge weight information of
the probability adjacency matrix.

Node voltage method for probability graph
Definition 4 (associated circuit of probability graph): For
graph g, if the reciprocal of probability (1/ p, p € (0,1]) of
each edge is used to represent the resistance value (i.e.
when the edge probability value is close to 0, the circuit is
disconnected, indicating that the circuit has little effect on
the whole graph for node voltages), then we get the circuit
N called the associated circuit of graph g.

[Example 3] Figure 3 shows the probability graph g, its
corresponding adjoint matrix d and its associated circuit N.

By the definition, G;; of equation (1) and (2) is expressed
as conductance, the relationship equation between
conductance and resistance is G = 1/R for purely resistive
circuit. Here set R = 1/p, then G = p, where R represents
resistance and p represents the probability value of edges
in the probability graph. When p — 1, which means that
the circuit is connected with a very small resistance, the

- —G
| IS |

Figure 2 Example of node voltage method.
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Figure 3 Probability graph g, adjoint matrix d and associated
circuit N.

circuit is close to zero resistance; when p — 0, which
means that the circuit is connected with an infinite resis-
tance, the circuit is close to disconnected.

Definition 5 (similar circuit): Let us define the corre-
sponding topology graph of the circuit N as g and the
corresponding topology graph of the circuit N' as g'. If g
and g’ are the approximate isomorphic graph, then the
corresponding branches of N and N' contain similar
resistance value elements, and N and N’ is called similar
circuit, denoted as N = N'.

Theorem 1: Two of associated circuits based on their
probability isomorphism subgraphs are similar circuits,
ie ifg~ g, then N~ N'.

Proof: Since the probability isomorphism subgraphs
have similar topology ¢ and g, and each edges of g and
g’ are replaced with similar resistance, associated circuit
has similar elements corresponding to their branches.
Therefore, N and N’ is similar circuit.

Two of associated circuits N and N’ based on their
isomorphism probability subgraphs g and g’ are similar
circuits. On the contrary, if two of the associated circuit
N and N’ are similar circuits, it could not be directly
concluded that two probability subgraphs g and g’ of
these associated circuit are probability isomorphism.
Thus, the necessary condition of probability isomorph-
ism for two probability subgraphs is that the associated
circuits of probability subgraphs are similar circuits.

Definition 6 (complete excitation [27]): Associated
circuit N with k nodes, let node I be a reference node,
apply the same current source I (the value of the cur-
rent source I is taken as 1A without loss of generality)
between node i and the remaining (k-1) nodes, respec-
tively, with the directions of the currents being from
node i to the other nodes. This kind of excitation is
called a complete excitation of node i.
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According to the method of complete excitation [27],
the associated circuits of probability subgraph with com-
plete excitation of the nodes are obtained. For example,
Figure 4 shows the complete excitation of the node V,
as a reference point from Figure 3.

Definition 7 (Node voltage sequence [27] and node
voltage sequence set [27]):

In an associated circuit N, when the node i serves as a
reference point, the set of node voltages in an ascending
order is obtained based on the complete excitation
of node i. This set is called the node voltage sequence of
node i, denoted as S;, i = 1, 2, ..., k (k is the number of
nodes in the associated circuit). Furthermore, the node
voltage sequences of all the nodes constitute the node vol-
tage sequence set of the circuit N, denoted as S = {Sj,..., S;}
Ti=1,2 ..k

[Example 4] For probability graph g in Figure 3,
according to the node voltage method set the node V,
as a reference point, where the resistance R = 1/p, the
conductance G = p, we get the G, as following:

1+0.92 —-0.92 0
Gy=| —092 092+0.97+094 -0.97
0 —-0.97 0.1+0.97

According to the formula 2, the node voltage equa-
tions: GU=I, the node voltage sequence S, is obtained as
follows:

S84 =1[1.277978 1.580127 2.367031]

The rest can be done in the same manner, so the node
voltage sequence set of circuit N are obtained as follows:

S={S1, S, S3, S4}"

1.413642 1.724302 2.629848
1.034504 1.069194 1.077705
2.726954 3.548548 3.675701
1.277978 1.580127 2.367031

S =

Theorem 2: For two of associated circuits N and N’
based on their probability isomorphism subgraphs graph
g and g, if the corresponding nodes have the same

Isl

Figure 4 Complete excitation of node V4.
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complete excitation, the corresponding nodes’ voltage
are similar.

Proof: Assume that d and d’ are the adjoint matrix of
the probability isomorphic graph g and g’, so d = d'.
Construct the associated circuits N and N’ respectively,
according to the definition of associated circuits, N and
N’ is similar circuit, denoted as N ~ N'. Let Y, and Y}/
are branch admittance matrixes respectively, then
Y, 2 Y,

Select the corresponding node i and i' of probability
isomorphic as the reference point respectively, and the
complete excitation I; and I, then the node voltage
equations [27] of N and N’ are:

ay,dTu, = di,
ayvy,dtu/ =dr,

Where Uj and Uj, are the node voltage sequence for
node i and i’ which are the reference point respectively.
Because the complete excitation is same i.e. I = I/,
U, ~ U,,. The theorem is proved.

Theorem 3: If g and ¢’ are probability isomorphic, the
node voltage sequence set of each of associated circuits
N and N’ in the same complete excitation are similar,
denoted as S = §'. So that the mismatch value of the
two group of node voltage sequence set is less than the
threshold value ¢ ,denoted as |S - §'| <e.

Proof: If g and g’ are probability isomorphic, the node
voltage sequences of the node i and node i’ in each of
associated circuits N and N’ in the same complete excita-
tion are correspondingly similar. And if g and g’ are prob-
ability isomorphic, according to Definition 2, the absolute
value of weight difference of the corresponding edges
between nodes is less than or equal to the threshold value,
i.e. |A;| < a. Based on Theorem 2, Uj =~ Ui’ can be
obtained, i.e. |Uj &~ Ujf'| is less than a threshold value
denoted as ¢;; , therefore Zi‘/j:l Uy — U'yl < Zﬁj:l g let
Z?J:l &jj = & then the mismatch value of two node voltage
sequence set is less than the threshold i.e. |S - §'| <¢. The
theorem is proved.

Based on the analysis of the circuit simulation method
for determining the graph probability isomorphic, we
make the conclusion that the mismatch value of two
graphs’ nodal voltage matrix being less than the probabil-
ity threshold is the necessary condition of probability iso-
morphic of two graphs. So, next we will discuss how to get
the mismatch value of two graphs’ nodal voltage matrix.

Hungarian algorithm for optimal node matching in
isomorphic graph decision

Suppose S and S’ are the node voltage matrix of prob-
ability graph g and g, k is graph node size of g and g/, so
there is k kind of possible node mapping relations of S;
(i =1,.,k and S; (j = 1,..., k), S; and S; is the node
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voltage sequence in corresponding g and g'. The k nodes
of the node voltages sequence in S may have k! possible
mapping relations corresponding to S'. Therefore, in
order to determine probability isomorphic of two prob-
ability graphs, we need to evaluate whether the mis-
match value of two graphs’ nodal voltage matrix is less
than the threshold. In other words, we need to find the
best node mapping relation of two probability graphs so
that the mismatch value of two graphs’ nodal voltage
matrix is minimum and less than the threshold. The
mismatch value of two graphs’ nodal voltage matrix can
be calculated by the distance of node voltages sequence
between any two nodes in the distance matrix. Dist is
defined as formula 3.

Dist = 1A — Bl = diag [Ara  Asa’] # g + diag [Bro * Broc | o — 2 A< B (3)

Thus, the problem of seeking the optimal node mapping
between graphs is converted to the problem of finding the
minimum of sum of elements of rows and columns in dis-
tance matrix Dist. This problem is a classic bi-graph
matching problem, and can be solved by Hungarian algo-
rithm [29] as an assignment problem.

Hungarian algorithm is mainly based on the following
facts: if each element of a row (or a column) in the coeffi-
cient matrix C = (c;) is added or subtracted by the same
number to get a new matrix B = (b;j), the assignment
problem with the coefficient matrix C and B has the same
optimal assignment.

Definition 8 (node voltage sequence matrix mismatch
value VMval): Given probability graph g and ¢/, and the
node voltage sequence matrix S and S’ which are asso-
ciated circuits N and N’ respectively, according to S and
S', get distance matrix Dist of node voltage sequence
and use the Hungarian algorithm to obtain assignment
matrix M. In the Dist matrix, the sum of the elements
at the corresponding location with the value of “1” in
the assignment matrix M is equal to the minimum mis-
match of two node voltage sequence matrix, and this
value is noted as VMval.

Definition 9 (adjoin matrix mismatch value PMval of
probability graph): Given g and g, according to S and §'
obtain distance matrix Dist of node voltage sequence and
use the Hungarian algorithm to obtain assignment matrix
M, then get the node mapping sequence <Inje, Inje’ > of
two probability graph, and the adjoin matrix d and d' are
obtained by <Inje, Inje’ >, PMval is equal to the absolute
value of the sum of corresponding edge weights
difference in the adjoin matrix 4 and 4’ adjusted, i.e.

k . g N / i Ny
PMual = Zi, o |p (Inje(i), Inje(j)) — ' (Injé (i), Inje’ (j)) |
Based on the node mapping relationship <Inje, Inje’ >
obtained from Hungarian algorithm, then perform ele-
mentary transformation for matrix d and d' respectively,
called matrix adjust, where matrix d performed the
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elementary transformation by Inje , the matrix d’' per-
formed the elementary transformation by Inje'.

Algorithm of probability subgraph isomorphism

The necessary conditions of two probability subgraphs
isomorphism is that the mismatch value of their asso-
ciated circuit node voltage sequence set is less than the
threshold ¢ . So, if the mismatch value VMval of node
voltage set exceeds the threshold value ¢, g and g’ is not
isomorphic. If the mismatch value VMval less than ¢,
then according to the Definition 2 of probability graph
isomorphism, the mismatch value of the corresponding
edge of two probability subgraphs should be less than the
threshold value o and the sum of mismatch value of corre-
sponding edges of probability subgraphs should be less
than the threshold value 6 . Because of high computational
cost to evaluate each mismatch value of edges adjoint
matrix, we add the mean and variance of node voltage
sequences as the additional column in the distance matrix
of node voltages sequence set when we calculate the mis-
match value VMval. Thus, the mismatch value VMval is
somewhat similar to the mismatch value of the corre-
sponding edges.

Assume k is the number of nodes of probability graph.
The probability adjoint matrix can be used to uniquely
identify a probability graph, but a different arrangement
of the nodes in probability graph may correspond to k!
probabilistic adjoint matrix. Since the Hungarian algo-
rithm can get one of optimal assignment matrix M, if
PMval> 6 based on the M, it illustrates that this map-
ping relationship may be not correct and two graphs are
still probability isomorphic. So, k ! -1kind of elementary
matrix transformation for adjusting adjoint matrix d and
d' may be necessary to discover whether two probability
graphs are isomorphic or not.

Thus, the main steps of the algorithm to discover the
probability subgraph isomorphism are as follows:

« Firstly, according to the probability graph g and ¢/,
get the associated circuit N and N’, then calculate
the node voltages sequence matrix S and S’; Next,
using the Hungarian algorithm to get the assignment
matrix M and the mismatch values VMval. If the
mismatch value VMval of node voltage set exceeds
the threshold value ¢, that is to say, g and g’ are
inevitably not isomorphic, otherwise, go to step 2

+ According to “1” in the column coordinate of
assignment matrix M, generate node mapping rela-
tionship, then according to the node mapping rela-
tionship <Inje, Inje’ > of node voltage sequences set
in N and N, adjust adjoint matrix 4 and d'. If the
mismatch value of adjoint matrix PMval <0 , then g
and g’ are probability isomorphic, otherwise, they are
possibly isomorphic, go to step 3
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« In this case, kI-1 kind of elementary matrix trans-
formation of adjoint matrix d and 4’ may be needed
to discover whether two probability graph are iso-
morphic or not. When there is a new mapping satis-
fying PMval <6 , the two graphs g and g’ are
probability isomorphic; on the contrary, they are not
isomorphic.

The pseudocode of algorithm of probability graph iso-
morphism evaluation based on circuit simulation is
shown in Table 1.

The algorithm of probability graph evaluation based
on possible world model has O(2'Fly of the best time
complexity and O(2F! # ki) of the worst time complexity
(|E|] is the number of edges in probability graphs). The
algorithm of probability graph isomorphism evaluation
based on circuit simulation method excludes most of
subgraphs which are not probability isomorphism and
reduces the search space of the probability isomorphism
subgraphs using the mismatch value VMval of node vol-
tage set. In the narrowed set of subgraphs, the mismatch
values of its subgraphs are calculated by the enumera-
tion method. The best time complexity of the algorithm
is O(1), i.e. the minimum mismatch sequence of node
voltage sequence matrix is the mapping sequence of
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probability isomorphism, the worst time complexity of
which is O(k!), when we need to enumerate all possible
nodes mapping relationship.

Frequent probability pattern identifying algorithm

Based on the method of probability subgraph isomorphic,
the frequent probability pattern can be identified from
the probability subgraph set using graph alignment.
Usually, the Star-alignment is adopted for frequent pat-
tern identified in certain graph. It needs to traverse the
entire graph set as the centre graph for comparison lead-
ing to high complexity. In this paper, the algorithm of
two-step hierarchical clustering is proposed for frequent
probability pattern identification in order to effectively
reduce the computational complexity.

In the process of the traditional hierarchical clustering,
every cluster is selected based on the two subgraphs with
minimum distance in all classes, to some extent, which
ensure two probability graphs are the most similar in each
cluster. However, it’s time complexity is O(; ns), which is
not suitable for large-scale data processing. Meantime,
n x n similarity matrix should be stored, so that it occu-
pies a large amount of the memory space. As isomorphic
evaluation between two probabilities subgraphs are based
on their mismatch value of VMval and PMval . Therefore,

Table 1 Algorithm of probability graph isomorphism judgment based on circuit simulation.

Algorithm: Isomorphism judgment Algorithm of probability graph IsomorphismCal (g, g;, ¢, 0)
Input: two probability graph g, and g;, the mismatch threshold value ¢ of the node voltage sequences set, the mismatch threshold value

0 of probability adjoint matrix

Output: the bool value Iso of two graph isomorphism, the node mapping sequence Inje;, the mismatch value VMval; of node voltage

sequences matrix

1. //Generate the node voltage sequence matrix S, , S; according to g, , g;

For each graph in {g, , g}

generate associated circuit N, and N;
End
For each graph in {g,, g}

For j = 1 to k Calculate the node voltage sequence S’ while set node; as reference node;

S=5US,S e (S, S}
End
End
2. //calculate distance matrix according to S, , S;
Calculate Dist(N,, N;) according to formula(3);

3. //Get the node mapping relationship /nje; and the mismatch value of node voltage VMval; by Hungarian algorithm

VMuval; , Inje; > R Hungarian(Dist);
4. /| Compare VMval; and ¢
If VMval; <= ¢
go and g; is not probability isomorphic;
Continue;
Else

g and g; maybe probability isomorphic; // g, and g; maybe probability isomorphic, and need further deal
5. //Calculate the mismatch value of adjoint matrix PMval; by adjust the adjoint matrix of g, and g; according to nodes mapping

sequence
If PMval; <= 0
go and g; is probability isomorphic;
Iso =True;
Return <Iso, Inje; ,VMval; > ;
Else

Return PermutelnjectedSequenceAndTestlso (g,, g Inje;, VMval, 6);
// Enumeration the node mapping relationship for isomorphic judgment

End
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the algorithm of two- step hierarchical clustering consists
of two major steps. Firstly, similar to the method of mer-
ging clustering, two probability graphs are clustered as
long as they fulfill the threshold of probability isomorphic
and they need not be the two subgraphs with minimum
distance. This process continues until the distance
between any of two clusters is less than the mismatch
threhold. Then, the idea of classical hierarchical clustering
is adopted by the algorithm to group the two clusters with
smallest distance in all clusters. The algorithm terminates
until clustering distance of any two subgraphs surpass
their mismatch threshold. The pseudocode of the
algorithm of frequent probability subgraph discovered by
two-step hierarchical clustering is shown in Table 2.

The algorithm of frequent probability subgraph discov-
ered by two-step hierarchical clustering takes L./2 as each
step for the comparison (L, is the number of cluster), so
that the new categories are the most likely to become the
two candidate classes for pairwise comparison at next step
of clustering. This approach avoids the poor clustering
results led by little change of two candidate classes when
searching for clustering. The algorithm of frequent prob-
ability subgraph discovered by two-step hierarchical clus-
tering takes L./2 as each step and each step compares the
mismatch value of node voltage sequences matrix VMval
with the mismatch value of probability isomorphic of
adjoint matrix PMval obtained from g; and &i+L./2. When
they satisfies the conditions of VMval <e¢ N PMval <6, g;
and &i+L,/2 are combined directly. This process is reduced
into classical hierarchical clustering until the mismatch
value between any of two probability subgraph at interval
step L./2 are greater than <g, 0 >.

As can be seen from the above analysis, the time com-
plexity of frequent probability subgraph recognition
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algorithm based on two-step hierarchical clustering is O
(n log n) in the best case, and the time complexity in the
worst case is O(n°) since the algorithm is reduced to a
classical hierarchical clustering. In the space complexity,
as a result of using a simple hierarchical clustering and
the subgraph index set “ResidentGraph” to reserve and
update the clusters of subgraphs, the distance matrix
n x n spatial complexity consumption is avoided.
However, in this approach, the mismatches of distance
between any two subgraphs are required to calculate at
each clustering round at the expense of time consumption.

In addition, because the distance between any of two
subgraphs in each hierarchical clustering may not the
smallest, it reduces the convergence time of clustering and
may cause clustering bias. This bias is limited by probabil-
ity isomorphic threshold, i.e. the greater the probability
isomorphic threshold is, faster two-step hierarchical clus-
tering cluster runs with the larger deviation of clusters;
Conversely, the smaller the probability isomorphic thresh-
old is, slower hierarchical clustering method runs with less
small deviation clustering. Fortunately, the isomorphism
probability threshold is defined by the user, so the error
caused by the hierarchical clustering is limited within the
acceptable range to users. Therefore, compared with the
classical hierarchical clustering, the algorithm of frequent
probability subgraph discovered by two-step hierarchical
clustering has good clustering results with the significantly
lower time complexity.

Experimental setup and result analysis

To verify and evaluate the performance of the proposed
algorithm in this work, three real-world biological net-
works are used, including the transcriptional regulatory
network of E.coli [30], transcriptional regulatory networks

Table 2 Algorithm of frequent probability pattern by two-step hierarchical clustering.

Algorithm: Two-step Hierarchical Clustering For FPP (G, ¢, 6 ,freq)
Input: All probability subgraphs with k scale
Output: frequent probability subgraph g,

1. Initilize the n graphs {g;,...gn}as the n leaves of cluster tree ;
2. While Change_/abell=0

3. Change_label = 0; // Change_label indicates whether the process of merging clustering operation

4. L. = size(ResidentGraph); //Calculation subgraph number, L. represents the total number of clusters
5. For i=1to L. /2
6. <Iso,inje,VMval>=IsomorphismCal(g;, gis ic 12, & O);

// Determine gi, gi+ 1c ,oprobability isomorphic
7 If lso= =TRUE
8. gi = union(gy, Gis 1c s2);
9. Change_label ++;
10. ResidentGraph = {ResidentGraph i; //if isomorphic, retaining only the subgraph label i to ResidentGraph
11 Else

ResidentGraph = {ResidentGraph i i+ L. /2};//if not isomorphic, retaining only the subgraph label j, i+ L. /2 to ResidentGraph

12. End if
13.  End for

14.  End while

15. SimpleHierarchicalClusteringForFrequentSubgraphWithPro(ResidentGraph, ¢, 0 ,freq);
//using a simple hierarchical clustering for the remaining probability subgraphs
16. Calculate the probability isomorphic frequency p of the residual clusters g, ;
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of S.cerevisiae : based on the ChIP-chip data[31,32] called
S.cere’ dataset and S.cere’ dataset respectively. E.coli data-
set having an exact graph with direction contains 423
nodes and 519 edges, S.cere’ data set with a probability of
network contains 2428 nodes and 4348 edges, and cerée’
data set, a probability network, contains 3799 nodes and
13155 edges. The algorithm is applied to E.coli data set to
validate the correctness and performance of probability
isomorphic algorithms, using exact graphs. And the
algorithm is applied to S.cere’ and S.cere® datasets to verify
frequent subgraph mining in probabilistic networks. The
verification process is based on whether the generated
results in this study contain motifs which were reported in
other research works [10,11].

Demonstration and comparison of probability
isomorphism algorithm

The algorithm of exact graph isomorphism is a special
case of probabilistic isomorphic algorithm when the prob-
ability of edge is 1 or 0, so the algorithm for probability
isomorphism is also applicable for exact graph isomorph-
ism algorithms with the mismatch values of VMval and
PMval equal to zero. Firstly,the partitioning based
non-treelike subgraph mining algorithm were used to effi-
ciently search non-treelike subgraphs from E.coli data set.
Then, the classic graph isomorphism algorithm Nauty[33],
the exact graph isomorphism algorithm based on circuit
simulation proposed by SHANG[27] and probability
isomorphic algorithms proposed in this paper were per-
formed on the data set of non-treelike subgraphs. Nauty is
implemented by C++, while the other two are implemen-
ted by matlab, because of more matrix calculation. The
scale of Non-tree subgraph, the Number of subgraphs and
the Number of subgraph isomorphism classes are shown
in Table 3 and the results of three graph isomorphism
algorithms with E.coli data is shown in Figure 5.

From Figure 5, it can be seen that the probabilistic iso-
morphic algorithm is correct when it is applied for exact
graph isomorphism. As shown in Figure 6, the perfor-
mance of the existing classical algorithm of exact graph
isomorphism is superior to probabilistic isomorphic algo-
rithms proposed in this paper. Meanwhile, we found that
the performance of algorithm proposed by SHANG
circuit-based simulation of certain graph isomorphism is
significantly better than the probability isomorphic algo-
rithm proposed in our paper when performing the task of

Table 3 The relationship of Non-tree subgraph scale,
Number of subgraphs and Number of subgraph
isomorphism Classes from E. coli data.

subgraph scale 3 4 5
number of subgraphs 42 1822 57632
number of subgraph isomorphism classes 1 3 12
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Figure 5 Results of three graph isomorphism algorithms with
E.coli data.
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Figure 6 The Performance of three graph isomorphism
algorithm on E.coli data.

identifying five scale subgraphs. The main reason is that
the algorithm of exact graph isomorphism does not need
to calculate the distance matrix and compute the node
mapping sequence using the Hungarian algorithm. It just
needs to compare whether the node voltage sequences are
equal correspondently (rather than approximate), so the
time complexity of certain graph isomorphism is smaller
than probability isomorphic algorithms. However, the pro-
posed method is designed to calculate a group of graphs
for probability isomorphic directly instead of finding the
solution to certain graph isomorphism. By experimenting
isomorphism on certain graph set, we can prove that the
probability isomorphism theory based on circuit simula-
tion method is feasible.

Verification of frequent probability subgraph by two-step
hierarchical clustering
In this experiment, the algorithm of frequent probability
subgraph by two-step hierarchical clustering was tested
on S.cere’ and S.cere’. In order to be compared with the
result in the paper [10,11], frequent probability subgraph
with 3-4 scale nodes and 5 scale nodes were identified
in S.cere’ and S.cere” separately.

In the algorithm of frequent probability subgraph using
two-step hierarchical clustering, the mismatch value ¢ and
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0 need to be set. Based on experiment results, we discover
that when ¢ remain constant, 0 reduces and the number of
clusters increases. When 6 remain constant, ¢ reduces and
the number of clusters increases too. That is to say, the
number of clusters with ¢ and 6 keeps negative relevance.
We also found that for the subgraph with k scale, when
upper limit value of ¢ and @ is In(k(k - 1)) , the number of
recognized clusters and results of cluster are more satisfac-
tory (the frequent probability subgraph recognized con-
tains probability motif with smaller number of clusters).
Therefore, in the following experiments, we will give the
experiment results under the condition of the upper limit
of threshold value being In(k(k - 1)) and ¢ = 6 . When the
threshold value changed, the number of clusters and the
degree of frequency also changed. To verify that discov-
ered frequent probability patterns include reported motifs,
we did not set frequence degree in the process of cluster-
ing. The parameters of algorithm are set as follows:

(1) N = 3: ¢ -table = 6 — table = {1.2,1.0, 0.8, 0.6, 0.4, 0.2} ;

(2) N = 4 : ¢ -table = 0 — table = {2.5, 2.0,1.5,1.2} ;

The comparison of frequent probability pattern and
motif with 3-scale subgraph and 4-scale subgraph are
shown in Figure 7 and 8 respectively. In data sets of S.cere?,
as the experiments of the subgraph with 5-scale nodes has
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a huge amount of data. For example, the number of 5-scale
subgraph is 16,372,915, so we have six single machines
running at the same time, results shown in Figure 9.

As can be seen from the Figure 7, Figure 8 and 9, dis-
covered frequent probability subgraph contain motifs
which were published in others research works [10,11],
and the mismatch value with motif are small. Experi-
mental results also indicate that as the clustering thresh-
old mismatch decreases, the number of clustered
subgraphs increases, and the frequency of frequent
probability pattern similar to motif was gradually
reduced, the time of recognizing frequent probability
subgraph was increasing. In addition, we found that the
discovered frequent probability pattern similar to motif
didn’t make positive or negative changes with the mis-
match value of clustering. The probability subgraph
with the highest frequent degree does not necessarily
correspond to the smallest mismatch value of motif.
Which also proved that motif is not necessarily the
most frequent subgraph in the original probabilistic net-
works, but the subgraph in a original probability with
much greater frequency than that in a random network.
Therefore, in the probability motif recognizing problem,
we also need to have further calculations to get
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Figure 8 Comparison of frequent probability pattern and motif with 4-scale subgraph.

frequency of subgraph in random networks, and then to
evaluate whether it is a probability motif.

Figure 10 compares the time consumption between
simple hierarchical clustering method and two-step hier-
archical clustering method based on different mismatch
threshold values. It indicates that although the mismatch
value of frequent patterns and motifs discovered by two-
step hierarchical clustering is little larger than the sim-
ple hierarchical clustering method, two-step hierarchical
clustering has good clustering results with the signifi-
cantly lower time complexity.

Conclusions

With the rapid development of biotechnology, especially
in high-throughput technologies, a large number of bio-
logical network graph data has been produced. It has
become a hot topic of current research to identify net-
work substructures associated with a specific function
module from this kind of biological networks with inter-
twined topology and complex functions. Since biological
network data carries inevitably experimental error and
noisy data, the mining of probability motif in biological
probabilistic network will become more practically

significant. A key step of identifying probability motif is
the mining of frequent probability pattern. This paper pre-
sents a probability frequent subgraph mining algorithm in
biological probabilistic networks based on the circuit
simulation method. A probability frequent subgraph
mining algorithm includes the circuit simulation method
to evaluate probability isomorphism and two-step hier-
archical clustering to recognize frequent probability pat-
tern. Instead of using the possible world model with the
exponential time complex, probability isomorphism judg-
ment method combines circuit topology structure and
related physical properties of voltage to directly evaluate
the probability isomorphism between probability sub-
graphs. The algorithm of probability graph evaluation
based on circuit simulation method excludes most of
subgraphs which are not probability isomorphism and
reduces the search space of the probability isomorphism
subgraphs by the mismatch value of node voltage set. In
the narrowed set of subgraphs, the mismatch values of its
subgraphs are calculated by the enumeration method.
Furthermore, a frequent probability pattern recogni-
tion algorithm based on two-step hierarchical clustering
was also proposed for better recognition performance.
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.

Experimental results show that the proposed method can
produce the satisfactory results, which are consistent with
the relevant algorithms. In the future research, the effec-
tive approach to solve the problem of symmetrical graph

will be further studied because there are several possible
mapping sequences for the symmetrical graph, and it will
take long time if only enumeration method is used to
obtain mapping sequence matches for node adjoint matrix
during the calculation.
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