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Abstract

Background: Protein-DNA interactions play important roles in many biological processes. Computational methods
that can accurately predict DNA-binding sites on proteins will greatly expedite research on problems involving
protein-DNA interactions.

Results: This paper presents a method for predicting DNA-binding sites on protein structures. The method
represents protein surface patches using labeled graphs and uses a graph kernel method to calculate the similarities
between graphs. A new surface patch is predicted to be interface or non-interface patch based on its similarities to
known DNA-binding patches and non-DNA-binding patches. The proposed method achieved high accuracy when
tested on a representative set of 146 protein-DNA complexes using leave-one-out cross-validation. Then, the method
was applied to identify DNA-binding sties on 13 unbound structures of DNA-binding proteins. In each of the
unbound structure, the top 1 patch predicted by the proposed method precisely indicated the location of the DNA-
binding site. Comparisons with other methods showed that the proposed method was competitive in predicting
DNA-binding sites on unbound proteins.

Conclusions: The proposed method uses graphs to encode the feature’s distribution in the 3-dimensional (3D)
space. Thus, compared with other vector-based methods, it has the advantage of taking into account the spatial
distribution of features on the proteins. Using an efficient kernel method to compare graphs the proposed method
also avoids the demanding computations required for 3D objects comparison. It provides a competitive method
for predicting DNA-binding sites without requiring structure alignment.

Background
Structural genomics projects are yielding an increasingly
large number of protein structures with unknown func-
tion. As a result, computational methods for predicting
functional sites on these structures are in urgent demand.
There has been significant interest in developing compu-
tational methods for identifying amino acid residues that
participate in protein-DNA interactions based on combi-
nations of sequence, structure, evolutionary information,
and chemical and physical properties. For example, Jones
et al. [1] analyzed residue patches on the surface of

DNA-binding proteins and used electrostatic potentials
of residues to predict DNA-binding sites. Later, they
extended that method by including DNA-binding struc-
tural motifs [2]. In related studies, Tsuchiya et al. [3]
used a structure-based method to identify protein-DNA
binding sites based on electrostatic potentials and surface
shape. Gao and Skolnick [4] predict DNA-binding using
structural template comparison and statistical potential.
Sophisticated machine-learning methods, like SVM,
neural network, and Random Forest, have also been used
to predict DNA-binding sites integrating a wide range of
features [5-9]. On another direction, several methods
have been developed for predicting DNA-binding sites
using only protein sequence-derived information as input
[10-15]. To date, the methods that take the advantage of
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structure-derived information achieve better results than
those using only sequence-derived information.
One common limitation of the above-mentioned meth-

ods is that the sequence and structural properties of a sur-
face patch are input to machine-learning methods in the
form of vectors. When the properties of a surface patch
are encoded as a vector, the information of how these
properties distribute over the surface is lost. For example,
if a surface patch includes five amino acid residues, the
above-mentioned methods will encode the amino acid
identities of this surface patch as five independent values
in a vector. In this representation, the spatial arrangement
of these five residues on the surface patch is not encoded.
Unfortunately, the spatial arrangement of properties on a
surface patch plays a crucial role in determining the func-
tion of the surface patch.
To overcome this limitation, this paper presents a graph

approach for DNA-binding site prediction. In this study,
graphs are used to represent surface patches, such that the
spatial arrangement of various properties on the surface is
explicitly encoded. The similarities between surface
patches are then computed using a graph kernel method.
A voting strategy is then used to classify surface patches
into DNA-binding sites versus non-binding sites based on
their similarity to known DNA-binding surface and non-
DNA-binding surface. When applied to set of unbound
structures of DNA-binding proteins, the proposed method
can precisely identify the locations of DNA-binding sites.

Methods
DNA-binding proteins
DNA-binding proteins were obtained from our previous
study [10]. In that study, we extracted all protein-DNA
complexes from the PDB [16]. Then, the dataset was
culled using PISCES [17]. The resulting dataset consisted
of 171 proteins with mutual sequence identity ≤ 30% and
each protein had at least 40 amino acid residues. All the
structures have resolution better than 3.0 Å and R factor
less than 0.3. In the current study, seven features are
evaluated for their usefulness in the prediction of DNA-
binding sites. Thus, seven features were calculated for
each protein. Among them, structural conservation was
calculated based on the alignment of structural neighbors
(See details in section 2.2). 25 proteins were discarded
because no structures neighbors were found. In the end,
146 DNA-binding proteins were used to evaluate the
proposed method in cross-validation.

Features
DNA was removed from the protein-DNA complexes
and seven features were calculated for each amino acid
of the protein: (1) Relative solvent accessibility was cal-
culated using NACCESS [18]; (2) Electrostatic potential

was calculated using Delphi [19] with the same para-
meters used in the study of Jones et a. [1]. The electro-
static potential of a residue is defined as the average of
the electrostatic potentials at the locations of all its
atoms as described in Jones et a. [1]; (3) Sequence
entropy at each residue position (the sequence entropy
for the corresponding column in the multiple sequence
alignment) was extracted from the HSSP database [20].
Sequence entropy is a measure of sequence conserva-
tion. The lower the value, the more conserved is the
corresponding residue position; (4) Surface curvature at
each residue position was calculated using MSP (http://
connolly.best.vwh.net/); (5) Pockets on protein surface
were detected using Proshape (http://csb.stanford.edu/
~koehl/ProShape/download.php). The pocket size of a
residue is defined as the size of the pocket that the resi-
due is located in. If a residue is not located in any
pocket, then a value of 0 is assigned to the pocket size
of the residue; (6) The DALI server [21] was used to
search for structural neighbors in the PDB for each of
the DNA-binding proteins. The DALI server returned a
multiple alignment of the query structure and its struc-
tural neighbors. Then, structural conservation score was
calculated for each residue position using Scorecons
[22] based on the multiple alignment; and (7) position-
specific scoring matrix (PSSM) of a protein was built by
running 4 iterations of PSI-BLAST [23] against the
NCBI non-redundant (nr) database. In the PSSM, each
residue position corresponds to 20 values. Thus, in total,
each amino acid residue is associated with 26 attributes.
All these attributes were normalized to the range of 0
[1].

Interface residues and surface residues
Interface residues are defined as in Jones et al. [1]. Sol-
vent accessible surface area (ASA) was computed for
each residue in the unbound protein (in absence of
DNA) and in the protein-DNA complex. A residue is
defined to be an interface residue if its ASA in the pro-
tein-DNA complex is less than its ASA in the unbound
protein by at least 1Å2. A residue is defined to be a sur-
face residue if its relative accessibility in the unbound
protein is >5%. In total, 4,337 interfaces residues and
27,248 surface residues were obtained.

Interface patches and non-interface patches
For each DNA-binding protein, an interface patch and a
non-interface patch were obtained. The interface patch
included all the interface residues. The non-interface
patch was randomly taken from the protein surface such
that (1) it consisted of a group of contiguous surface resi-
dues; (2) it had the same number of residues as the inter-
face patch; and (3) it did not include any interface residue.
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Graph representation of patches
Each amino acid residue is represented using a node
labeled with the 26 attributes of the residue. Two resi-
dues are considered contacting if the closest distance
between their heavy atoms is less than the sum of the
radii of the atoms plus 0.5 Å. An edge is added between
two nodes if the corresponding residues are contacting.
In this way, a surface patch of residues is represented as
a labeled graph.

Graph kernel
Kernel methods are a popular method with broad appli-
cations in data mining. In a simple way, a kernel func-
tion can be considered as a positive definite matrix that
measures the similarities between each pair of input
data. It the currently study, a graph kernel method,
namely shortest-path kernel, developed by Borgwart and
Kriegel [24], is used to compute the similarities between
graphs.
The first step of the shortest-path kernel is to trans-

form original graphs into shortest-path graphs. A short-
est-path graph has the same nodes as its original graph,
and between each pair of nodes, there is an edge labeled
with the shortest distance between the two nodes in the
original graph. In the current study, the edge label will
be referred to as the weight of the edge. This transfor-
mation can be done using any algorithm that solves the
all-pairs-shortest-paths problem. In the current study,
the Floyd-Warshall algorithm was used.
Let G1 and G2 be two original graphs. They are trans-

formed into shortest-path graphs S1(V1, E1) and S2(V2,
E2), where V1 and V2 are the sets of nodes in S1 and S2,
and E1 and E2 are the sets of edges in S1 and S2. Then a
kernel function is used to calculate the similarity
between G1 and G2 by comparing all pairs of edges
between S1 and S2.

K(G1,G2) =
∑

e1∈E1

∑

e2∈E2
kedge(e1, e2)

where, kedge( ) is a kernel function for comparing two
edges (including the node labels and the edge weight).
Let e1 be the edge between nodes v1 and w1, and e2 be

the edge between nodes v2 and w2. Then,

kedge(e1, e2) = knode(v1, v2) ∗ kweight(e1, e2) ∗ knode(w1,w2)

where, knode( ) is a kernel function for comparing the
labels of two nodes, and kweight( ) is a kernel function
for comparing the weights of two edges. These two
functions are defined as in Borgward et al. [25]:

knode(v,w) = exp(−||labels(v) − labels(w)||2
2δ2

)

where, labels(v) returns the vector of attributes asso-
ciated with node v. When n features were used to labeled
the nodes, labels(v) and labels(w) could be considered as
the coordinates of two points in the n-dimensional space,
and ||labels(v)-labels(w)|| is the Euclidean distance
between the two points. Note that Knode() is a Gaussian

kernel function. We tried different values for
1
2δ2

between 32 and 128 with increments of 2, the accuracy
varied from 86% to 88.7% when all features were used in

the cross validation. When
1
2δ2

was set to 72 the best

accuracy was achieved.

kweight(e1, e2) = max(0, c − |weight(e1) − weight(e2)|)
where, weight(e) returns the weight of edge e. Kweight( )

is a Brownian bridge kernel that assigns the highest
value to the edges that are identical in length. Constant
c was set to 2 as in Borgward et al.[25]. We tried differ-
ent values of c between 1 and 5 with increments of 1,
the change in accuracy was less than 1%.

Classification
When the shortest-path graph kernel is used to com-
pute similarities between graphs, the results are affected
by the sizes of the graphs. Consider the case that graph
G is compared with graphs Gx and Gy separately using
the graph kernel:

K(G,Gx) =
∑

e∈E

∑

ex∈Ex
kedge(e, ex)

K(G,Gy) =
∑

e∈E

∑

ey∈Ey
kedge(e, ey)

If Gx has more nodes than Gy does, then |Ex|>|Ey|,
where Ex and Ey are the sets of edges in the shortest-
path graphs of Gx and Gy. Therefore, the summation in
K(G, Gx) includes more items than the summation in K
(G, Gy) does. Each item (i.e., kedge( )) inside the summa-
tion has a non-negative value. The consequence is that
if K(G, Gx)>K(G,Gy) it may not necessary indicate that
Gx is more similar to G than Gy is, instead, it could be
an artifact of the fact that Gx has more nodes than Gy.
To overcome this problem, a voting strategy is devel-
oped for predicting whether a graph (or a patch) is an
interface patch:
Algorithm Voting_Stategy (G)
Input: graph G
Output: G is an interface patch or non-interface patch
Let T be the set of proteins in the training set
Let v be the number of votes given to “G is an interface

patch”
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v = 0
While (T is not empty)
{
Take one protein (P) out of T
Let Gint and Gnon-int be the interface and non-interface

patches from P.
If K(G, Gint)>K(G,Gnon-int), then increase v by 1
}
If v > |T|/2, then G is an interface patch
Else G is a non-interface patch
Using this strategy, when K(G, Gint) is compared with

K(G, Gnon-int), Gint and Gnon-int are guaranteed to have
identical number of nodes, since they are the interface
and non-interface patches extracted from the same pro-
tein (see section 2.4 for details). Each time K(G, Gint)>K
(G, Gnon-int) is true, one vote is given to “G is an inter-
face patch”. In the end G is predicted to be an interface
patch if “G is an interface patch” gets more than half of
the total votes, i.e., v > |T|/2.

Results and discussion
Distinguish interface patches from non-interface patches
146 interface patches and 146 non-interface patches were
obtained from the dataset. The graph kernel method was
used to compute similarities between patches and the vot-
ing strategy was used to classify these patches into inter-
face versus non-interface patches. When evaluated using a
leave-one-out cross-validation, this method achieves an
overall accuracy of 88.7%. 87.7% (Sensitivity) of the inter-
face patches and 89.7% (Specificity) of the non-interface
patches were correctly predicted.

Contributions of the features
In the above experiment, all seven features were used to
calculate similarities between graphs. To evaluate the
importance of each feature, the leave-one-out cross-
validation was repeated with only one feature being used
at one time. Table 1 shows show that when only one fea-
ture is used, the method achieves the best performance
(86.9% accuracy) with PSSM as input. When all seven
features are used, the method achieves the highest accu-
racy (88.7%).

Prediction of DNA-binding residues
The interface and no-interface patches used in afore-
mentioned experiments were generated based on actual

binding sites. In a practical prediction situation, that
size and the shape of the binding site are unknown. In
order to evaluate the proposed method’s ability to dis-
cover DNA-binding sites in proteins, for each surface
residue, we generated a surface patch that included the
residue and its nearest 5 neighbors. Then, the 146 inter-
face and 146 non-interface patches were used as the
training set to classify the surface patches into DNA-
binding and non-DNA-binding classes. Leave-one-out
cross validation was performed at the protein level, so
that interface and non-interface patches from a protein
were not used in the classification of surface patches
from the same protein. The proposed method identified
DNA-binding residues with 79.5% accuracy, 84.9% speci-
ficity and 51.5% sensitivity. By changing the classifica-
tion threshold (i.e. v>threshold) using in voting strategy,
we obtained the ROC for the prediction (Figure 1). The
AUC of the ROC is 0.80.

Predicting DNA-binding sites on unbound proteins
13 test proteins with both DNA-bound and unbound
structures in the PDB were taken from a previous study
[7]. 14 such proteins were considered in the study by
Tjong and Zhou. Here, we discarded 2abk because the
sequence identity between the bound and unbound pro-
teins was only 45%. In this section, the DNA-binding sites
on the 13 unbound proteins will be predicted using the
graph kernel method. The prediction results are evaluated
based on the actual DNA-binding sites gleaned from the
corresponding protein-DNA complexes. For each surface
residue on the test proteins, we obtained a surface patch
that included the residue and its 5 closest neighbors.
Then, the patches were classified into interface versus
non-interface patches using the 146 proteins as training
set. For each test protein, the training set was filtered such
that none of the proteins in the training set shares > 30%
identical residues with the test proteins.

Table 1 Contributions of features

Features PSSM1 E_P2 Ent3 StrCn4 rASA5 Cur6 Poc7 All8

Accuracy (%) 86.9 77.0 67.5 54.7 54.5 54.1 54.1 88.7
1 PSSM: position-specific scoring matrix; 2 E_P: electrostatic potential; 3 Ent:
sequence entropy; 4 StrCn: structural conservation; 5 rASA: relative solvent
accessibility; 6 Cur: surface curvature; 7 Poc: size of the pocket where the
residue is located; and 8 All: all the seven attributes were used.

Figure 1 The ROC of the proposed method in predicting DNA-
binding site residues.
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For 8 of the 13 proteins (Italic in Table 2), DALI was
not able to find structural neighbors in PDB. Thus, the
structural conservation of these proteins could not be
computed. For these 8 proteins, only PSSM was used to
compute similarities in the graph kernel, since table 1
shows that the proposed method can still achieve high
accuracy when only PSSM is used in the graph kernel.
For the remaining 5 proteins, all seven features were
used in the graph kernel.
The top 1 patch overlaps with the actual DNA-binding site
Using the voting strategy, each patch was assigned a
number representing the number of votes it got. The
higher the vote number, the more similar is the patch to
the interface patches. For each test protein, we sorted the
patches based on the numbers of votes they get, such
that the top 1 patch got the most votes. Table 2 shows
that on every test protein, the top 1 patch overlaps with
the actual DNA-binding site. On 7 of the 13 proteins, all
the six residues in the top 1 are actually interface resides
(6 true positives, 0 false positive). When averaged over
the 13 proteins, the top 1 patch contains 4.8 interface
residues and 1.2 non-interface residues, i.e., on average,
80% of the residues in the top 1 patch are interface resi-
dues. These results show that on a test protein, the top 1
patch can precisely indicate the location of the actual
DNA-binding site.
If a patch is randomly picked from a test protein, what

is the probability (Prandom) to obtain a patch that is at
least as good as the top 1 patch in terms of predicting the
DNA-binding sites? For each test protein, Prandom is

calculated as N/Nall , where Nall is the total number of
patches on the protein, N is the number of the patches
that have at least as many interface residues as the top 1
patch. The results (Table 2) show that for 9 of the 13
proteins, Prandom is less than 10%. The average Prandom
for the 13 protein is 9.8%. This indicates the significance
of the predicting method.
Obtaining higher coverage by combining multiple top-
ranking patches
In the evaluation of DNA-binding site prediction meth-
ods, there are mainly two measures that researchers are
interested in: coverage (TP/Nint) and accuracy (TP/Npr),
where TP is true positive, i.e. the number of residues
that are predicted to be interface residues and are actu-
ally interface residues, Nint is the total number of inter-
face residues and Npr is the number of residues that are
predicted to be interface residues. Coverage shows per-
centage of the actual interface residues that are correctly
predicted and accuracy is the percentage of the pre-
dicted interface residues that are actually interface
residues.
The above section has shown that the top 1 patch can

precisely indicate the location of the DNA-binding site on
each test protein. However, since a patch has only 6 resi-
dues, the predictions solely based on the top 1 patch only
have low coverage. We can obtain higher coverage by
combining the predictions of multiple top-ranking
patches. For example, if only top 1 patch is used to predict
DNA-binding sites, the average coverage and accuracy are
23% and 81% for the 13 proteins. When the union of the
top 3 patches is used to predict DNA-binding sites, cover-
age increases to 42%, but accuracy decreases to 72%.
Figure 2 shows the tradeoff between coverage and accu-
racy when multiple top-ranking patches are used. Figure 2
shows the trend that as more top-ranking patches are
used, coverage increases but accuracy decreases. If
researchers prefer to identify more interface residues at
the cost of lower accuracy, then they can choose to use
more top-ranking patches to predict DNA-binding sites.
The performance will fall at the right side of the curve. On
the other hand, if they desire higher accuracy, then they
can use fewer patches.
Comparison with other methods
While many computational methods have been pro-
posed for the prediction of DNA-binding sites, it is diffi-
cult to make direct comparisons between them, due to
lack of a standardized benchmark for the evaluation.
Here, it is not our intent to make a systematic compari-
son between different methods. We only compared our
method with two recent methods, MV [9] and DISPLAR
[7], regarding their ability to find DNA-binding sites on
the 13 unbound proteins. Both MV and DISPLAR use
both structural and sequence information in predicting
DNA-binding sites.

Table 2 Predictions by the top 1 patch.

Unbound
PDB id1

Bound
PDB id

Top 1 patch PRandom (%)4

TP2

1iknA,C 1leiA,B 6 0 0.4

1g6nA,B 1zrfA,B 6 0 2.4

1zzkA 1zziA 6 0 2.9

1mml 1ztwA 4 2 4.2

1a2pC 1brnL 6 0 4.5

1ko9A 1m3qA 6 0 4.9

1qc9A 1cl8A,B 4 2 8.0

1lqc 1l1mA,B 6 0 8.7

1qzqA 1rfiB 2 4 9.5

1xx8A 1xyiA 6 0 10.7

1qqiA 1gxpA,B 4 2 19.3

1l3kA 1u1qA 3 3 25.6

2alcA 1f5eP 4 2 26.7
1 For the proteins in italic, the interfaces were predicted using only PSSM. For
the others, all seven features were used; 2 TP: the number of the interface
residues falling in the top 1 patch; 3 FP: the number of non-interface residues
in the top 1 patch. 4 Prandom: When a patch is randomly picked, the probability
of it containing at least as many interface residues as the top 1 patch.
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The MV method [9] integrates a wide range of struc-
tural, evolutionary, energy-based and experimental data
and uses a random forest method to predict functional
sites, including protein-, peptide-, DNA-, RNA-binding
sites on protein structures. The 13 unbound protein
structures were submitted to the MV online server to
obtain the predicted DNA-binding sites. The MV
returned a list of amino acid residues with their corre-
sponding prediction scores. By changing the score
threshold using for prediction, the MV method obtained
an AUC of 0.85 for the ROC. In comparison, our
method returned a list of surface patches with their pre-
diction scores (i.e. vote counts). Our method achieved a
slightly better AUC of 0.87.
The 13 test proteins used in this study were also used

to evaluate the DISPLAR method when Tjong and Zhou
proposed it [7]. In their publication, Tjong and Zhou
also used coverage and accuracy to evaluate the

predictions. However, they defined accuracy using a loo-
sened criterion of “true positive” such that if a predicted
interface residue is within four nearest neighbors of an
actual interface residue, then it is counted as a true
positive. Here, in the comparison of the two methods,
the strict definition of true positive is used, i.e., a pre-
dicted interface residue is counted as true positive only
when it is an actual interface residue. The original data
were obtained from table 1 of Tjong and Zhou [7], the
accuracy for the neural network method was recalcu-
lated using this strict definition (Table 3).
MV and our method returned a list of residues (or

patches) with decreasing prediction scores and allowed
users to tradeoff between coverage and accuracy by
choosing a threshold. To compare them with DISPLAR,
for each test protein, we gradually decreased the predic-
tion threshold until the coverage achieved was equal to
or higher than that of DISPLAR. Then the coverage and
accuracy of the methods were compared. On a test pro-
tein, method A is better than B, if accuracy(A)>accuracy
(B) and coverage (A)≥coverage(B). Table 3 shows the
comparisons. On each protein, the best performance
among the three methods are shown in the bold font.
On 1 mml no method is better than others are on both
accuracy and coverage, thus a best performance cannot
be identified. Our method achieved the best perfor-
mance in 6 of the 13 proteins (tie with MV on 1zzk).

Conclusions
This paper presents competitive method for predicting
DNA-binding sites on proteins. The effectiveness of the
method is demonstrated using cross-validation and by
applying it to 13 unbound protein structures. Different

Figure 2 Tradeoff between coverage and accuracy for the
proposed method.

Table 3 Comparison with other methods.

Proteins Graph Kernel1 DISPLAR2 MV3

Coverage Accuracy Coverage Accuracy Coverage Accuracy

1a2p 0.454 0.90 0.44 0.33 0.45 0.45

1ikn 0.46 0.60 0.46 0.38 0.46 0.39

1lqc 0.95 0.56 0.95 0.68 0.95 0.49

1qqi 0.70 0.67 0.75 0.66 0.70 0.33

1zzk 0.40 0.53 0.37 0.47 0.40 0.53

1qc9 0.55 0.41 0.58 0.66 0.55 0.23

2alc 0.90 0.67 0.90 0.59 0.75 0.47

1ko9 0.50 1.00 0.48 0.80 0.50 0.89

1qzq 0.57 0.63 0.57 0.24 0.57 1.00

1l3k 0.44 0.56 0.44 0.68 0.44 0.63

1xx8 0.74 0.93 0.60 0.92 0.74 0.32

1g6n 0.48 0.73 0.77 0.75 0.48 0.52

1 mml 0.46 0.35 0.38 0.50 0.46 0.40
1 The method proposed in this study; 2 The DISPLAR method developed by Tjong and Zhou [7]; 3 The MV method developed by [9]; 4 The bold font shows the
best performance among the three methods on each protein.
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from other methods that represent sequence and struc-
tural properties of surface using vectors, the method
proposed in this study uses labeled graphs. Compared to
vectors, one advantage of labeled graphs is that they can
specifically encode the spatial arrangement of the prop-
erties on protein surface. Since proteins and DNA inter-
act in a 3-dimensional space, the spatial arrangement of
the properties on protein surface plays a pivotal role in
the interactions. Therefore, computational methods for
prediction of the interface should consider the spatial
arrangement of the properties. The proposed method
uses a graph kernel to explore this information. Using
this graph kernel method, the proposed method avoids
the demanding computation involved in the structural
alignment and comparison.
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