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Abstract

circuit to achieve control of cell population density.

Background: Cell population control allows for the maintenance of a specific cell population density. In this study,
we use lysis gene BBa_K117000 from the Registry of Standard Biological Parts, formed by MIT, to lyse Escherichia
coli (E. coli). The lysis gene is regulated by a synthetic genetic lysis circuit, using an inducer-regulated promoter-RBS
component. To make the design more easily, it is necessary to provide a systematic approach for a genetic lysis

Results: Firstly, the Iytic ability of the constructed genetic lysis circuit is described by the relationship between the
promoter-RBS components and inducer concentration in a steady state model. Then, three types of promoter-RBS
libraries are established. Finally, according to design specifications, a systematic design approach is proposed to
provide synthetic biologists with a prescribed I/O response by selecting proper promoter-RBS component set in
combination with suitable inducer concentrations, within a feasible range.

Conclusion: This study provides an important systematic design method for the development of next-generation
synthetic gene circuits, from component library construction to genetic circuit assembly. In future, when libraries
are more complete, more precise cell density control can be achieved.

Background

Cell population control is a method of regulating cell den-
sity to maintain a self-sustaining population. Self-regulating
mechanisms of cell population control have existed in nat-
ure for a long time. For example, the spore-forming bacter-
ium Bacillus subtilis delays sporulation under nutrient-
limited conditions by killing non-sporulating siblings and
feeding on the dead cells to support spore formation [1].
Colicin-producing bacteria produce bacteriocins to destroy
nearby competitors through amino-acid starvation or DNA
damage [2]. Recently, a programmed control of cell popu-
lation is proposed, using an endogenous genetic regulatory
circuit [3]. However, to make genetic lysis circuit design
more easily, it is necessary to provide a systematic
approach to achieve control of cell population density.
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Naturally occurring lytic systems have the ability to
trigger host cell lysis with specific proteins under certain
circumstances, such as in the presence of antibiotics or
competitors, or under conditions of amino-acid starva-
tion. Some species of bacteria and bacteriophage have
lytic protein that induces cell lysis. For example, expres-
sion of cloned T4 phage genes e or ¢ can be used to the
disrupt E. coli cells [4,5]. Lysis by the T4 phage usually
requires two gene products, transcribed by genes e and
t, respectively. Gene e encodes a lysozyme, Gpe; gene ¢
encodes a holin, Gpt. The expression of gene e weakens
E. coli cell wall but does not lead to cell disruption,
while the expression of gene ¢ enables to induce cell
lysis. Another example of a lytic protein is colicin E7
(ColE7), which is encoded by E. coli. Expression of
ColE7 is regulated by an SOS response operon. The
SOS response operon is composed of the ceaE7, ceiE7
and celE7 genes, the products of which are ColE7, ImE7
and LysE7, respectively [6]. ColE7 can be neutralized
through the formation of a protein complex with the
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immunity protein ImE7. The ColE7-ImE7 complex is
exported from the colicin-producing cells by the lysis
protein LysE7, which induces lysis of the host cell
through break down of the cell membrane [7-12].

Lysis protein is able to activate the outer membrane
phospholipase A (OMPLA), which allows colicin to cross
the cell envelope and enter into the medium. Colicins are
plasmid-encoded bacteriocins produced by E. coli that
have antibiotic-like activity against closely related bac-
teria [12,13]. Release of lysis protein can therefore control
the population density of E. coli. In this study, lysis pro-
tein expression level in the genetic lysis circuit relies on
tunable genetic components and inducer concentrations.
The degree of cell lysis could therefore be fine-tuned by
changing external inducer signals. Different inducer con-
centrations could result in different fates of the cells, for
example severe death, modulated death, or slow growth.
To make the design more easily, the lytic ability of the
constructed genetic lysis circuit is described by the rela-
tionship between the promoter-RBS components and
inducer concentrations in a steady state model. Accord-
ing to user-oriented specifications, the genetic lysis cir-
cuit can be constructed via selecting adequate promoter-
RBS components in combination with a feasible range of
inducer concentrations. In general, it requires long com-
putation times when component libraries become large.
Hence, a genetic algorithm (GA) search method is pro-
posed to save time in evaluating and selecting promoter-
RBS components.

This study provides an important systematic design
method for the development of next-generation synthetic
biology, from component library construction to genetic
circuit assembly. When libraries are more complete, more
precise cell density control for genetic lysis circuit can be
achieved. The mechanism of cell lysis can be used to
release useful macromolecules that cannot pass through
cell membranes [4,14]. For example, an operon encoding
besA, besB, besC, and besD is required for bacterial cellu-
lose synthesis (bcs) in Acetobacter xylinum [15]. The
expression of the operon can transform redundant glucose
into cellulose to maintain intestinal peristalsis. In addition,
an appropriate amount of cellulose has a proven role in
preventing obesity. Cellulose, however, is a macromolecule
that normally cannot pass through the cell membrane. A
genetic lysis circuit can be combined with a bacterial cellu-
lose synthesis system to promote cellulose release. In
future, genetic lysis circuits may apply to development in,
for example, drug discovery, metabolic control, and thera-
peutic treatment, with the help of the proposed design
methodology.

The contributions of this paper are threefold: (1) Based
on promoter-RBS kinetic strengths, we establish three
kinds of promoter-RBS libraries. (2) Inducible promoter-
RBS components are used to construct genetic lysis
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circuits with different lytic abilities for cell population
control. (3) The proposed GA-based systematic searching
method could provide synthetic biologists with a useful
tool to design synthetic genetic lysis circuits.

Methods

Construction of genetic lysis circuit

Two type of synthetic genetic lysis circuits are shown in
Figure 1(a) and (b), with different external inducers /; and
I,. In Figure 1(a), a constitutive promoter continuously
produces the repressor protein x.;. The protein x,;
represses the downstream promoter and reduces expres-
sion of the lysis gene. The inducer I; can bind to the
repressor protein and prevent binding to the promoter
operon, enhancing expression of the lysis gene. In Figure 1
(b), a constitutive promoter continuously produces the
activator protein x,;. The protein x,;, however, needs to
form a complex with the inducer I,. The complex consti-
tutes a quorum sensing mechanism. When this complex
accumulates, it activates the downstream promoter and
enhances expression of the lysis gene.

Dynamic model of genetic lysis circuit
Before we introduce the dynamic model of a genetic
lysis circuit, a normal equation for cell growth, without
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Figure 1 Genetic lysis circuit for controlling cell population
density. (a) Inducible repressor-regulated circuit with lysis gene in E.
coli. (b) Inducible activator-regulated circuit with lysis gene in E. coli.
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the lysis protein, is as follows:

N(t) = k- N(1) (1 _ NU)) (1)
Nrnax

where N and N,,,, denote cell population density (O.
D. 600) and maximum cell population density, respec-
tively, and k denotes the dilution rate due to cell growth.
Since our study utilizes the lysis protein to regulate cell
population density, the relationship between cell density
and the concentration of the lysis protein can be
described in the following equation:
N(1)
Nm

ax

N(t) =k-N(t) (1 - ) — N - N(t) - x(1) (2)

where x; and ¥y denote the concentration of the lysis
protein and the lysis rate of the lysis protein, respec-
tively. Under normal growth conditions, cells do not
suffer from the toxicity of the lysis protein. We used the
endogenous gene (BBa_K117000) encoded in E. coli to
control cell population density. The lysis protein can
activate OMPLA to cause cell lysis and reduce cell den-
sity [12,13]. From equation (2), it can be seen that the
concentration of lysis protein x; is the negative regulator
of cell population density. Because lysis ability is related
to the concentration of lysis protein x; and the toxicity
¥ of the lysis protein, we construct a dynamic model of
the genetic lysis circuit to regulate the concentration of
lysis protein x;, and thus lysis ability.

To construct the dynamic model, promoter-RBS regula-
tion must be introduced. We first define the promoter-
RBS regulation function P(P,, P;, TF, I), in which P, and
P; denote the maximum and minimum promoter-RBS
strengths, respectively, TF denotes transcription factor
concentration, and / denotes inducer concentration. This
function describes the biochemical aspect of the transcrip-
tion and translation process. The details of the function
(the mathematical model) can be found in Additional file
1. The dynamic model of the genetic lysis circuit with the
repressor-regulated promoter-RBS component in Figure 1
(a) thus is described as follows:

1(£) = Pea(Puis 0,0,0) — (v, + k) - %1 (1) + 1 (1), i=1,..C
12(8) = Pra(Puji Pijiden, 1) = (va, +0) - 22(8) +@2(1), j=1,...R
N(t) =k N(t) (1 = N(£)/Nmax) — vn - N(t) - x12(t) + w3(t)

Py~ Py wo G

Pra(Pyj, Prj,xr1, 1) = Prj+

N o Xy (%1, 1) =
1+ x5 (e, L) \™ T 1+ I
Ko K,

where (i, j) denote the i constitutive promoter-RBS
component and the j” repressor-regulated promoter-
RBS component, respectively. P (P, ;0,0,0) denotes the
promoter-RBS regulation activity of the first stage of the
constitutive promoter-RBS components. P, ; denotes the
maximum promoter-RBS strength of the i constitutive
promoter-RBS component. P5(P,;,P;;X1,11) denotes the

Page 3 of 8

promoter-RBS regulation activity of the second stage of
the repressor-regulated components. P,,; and P;; denote
the maximum and minimum promoter-RBS strengths of
the j repressor-regulated promoter-RBS component,
respectively. I; denotes the concentration, and x,;
denotes the concentration of the repressor. K5 and #,,
denote the binding affinity and binding cooperativity
between the repressor x}; and the corresponding promo-
ter-RBS component in the second stage, respectively. Kj;
denotes the dissociation rate between the inducer I; and
the repressor x,;. ¥y is the lysis rate of the lysis protein.
1(t) and w,(t) denote cellular noise in the transcrip-
tional and translational processes, respectively. Finally,
w3(t) denotes cellular noise in the cell population
density.

From equation (3), the change in concentration of
repressor protein x,; is due to the difference between
the protein generation rate P;(P,;0,0,0) and the protein
degradation rate ¥,;, in combination with the dilution
rate k. The repressor protein x,; binds to the second
stage of repressor-regulated components and reduces
the regulation activity Pyy (P,,;,P;%,1,11). The inducer I
can remove the inhibitory effect of the repressor and
increase the regulation activity Py, (Py,P;;,%.1,11). Simi-
larly, the change in concentration of lysis protein x, is
due to the difference between the protein generation
rate Py (Py,;,P;;,X,1,1;) and the protein degradation rate
Yx12» in combination with the dilution rate k. Cell popu-
lation density is regulated by the concentration of lysis
protein x),. Lytic ability is therefore controlled by the
regulation activity Pyy(Py;P;jX,1,11), and the four regu-
lated factors Py Pij %1, and I; can be used to control
cell population density by selecting appropriate promo-
ter-RBS components and inducer concentrations.

The only difference between Figures 1(a) and (b) is the
replacement of a repressor-regulated promoter-RBS
component with an activator-regulated promoter-RBS
component. The dynamic model of the genetic lysis
circuit in Figure 1(b) can be described as follows:

Xa1(t) = Pe1(Py,is 0,0,0) — (yx,, + k) - xa1(t) + 1 (1), i=1,..,C
(56'12([) = P2 (Pums Pioms Xa1, 1) — (v + R) - x2(t) + 02(t), m=1,..,A
N(1) =k-N(t) (1 = N()/N(t)Nmax) — ¥n - N(t) - x2(t) + w3(t)
Pum — Pim Xa1 (4)

Pas(Pums Piyms Xa1, 1) = Py + e+ X1 (Xa1, 1) =
1+ ( Kez ) 1+ (Kl2>
X (¥ar 12) L

where (i, m) denote the i constitutive promoter-RBS
component and the ™ activator-regulated promoter-RBS
component, respectively. I, denotes the concentration of
the inducer, x,; denotes the concentration of the activator
protein, and K,; and #,, denote the binding affinity and
the binding cooperativity between activator x7; and the
corresponding promoter-RBS component in the second
stage, respectively. Finally, Kj, denotes the dissociation
rate between inducer I, and activator x,;.
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The dynamic models for the genetic lysis circuit are
then transformed into steady-state models by assuming
the derivatives of the dynamic models in (3) and (4) are
equal to zero. The steady-state concentrations x,;ss,
Xa1ss, and xjass of the repressor protein, activator pro-
tein, and lysis protein, respectively, as well as the steady
state cell population density Ngs are obtained as follows:

PC] (Pu,i/ O/ 0/ O)

Xrlss = VU1, i=1,..C
P B e
jr ir X ’ .
mM=TA“ MH“O+W,]=LWR (5)
Nss = Nmax (1 - k xl255> + U3

for the genetic lysis circuit with repressor-regulated
promoter-RBS component in Figure 1(a), and

P (Py,, 0,0,0) .

Xalss = V1, i=1,..C
P I
r7 l‘xl ’
X = a2( u,mr Ll,ms Xalss 2) + 1, m=1, ,A6)
yxl2y+ k
N
Nis = Nmax <1 - k xl2ss) + V3

for the genetic lysis circuit with activator-regulated
promoter RBS component in Figure 1(b). In these equa-
tions, the Gaussian noise parameter v, i =1, 2, with a
zero mean and variance of ¢;%, denotes cellular noise for
both the transcriptional and translational gene expres-
sion processes in the steady state. v3 denotes cellular
noise in cell population density in the steady state. In
(5) and (6), the steady state population density Ngg
changes depending on inducer concentration, constitu-
tive promoter-RBS components, repressor-regulated
components, and activator-regulated promoter-RBS
components, ie. i = 1,..,C, j = 1,.,Ror i = 1,...,C, m =
1,..,A. In this study, we select values for these compo-
nents from promoter-RBS libraries (see Additional file
1) to achieve a specified I/O reponse with the genetic
lysis circuit. The details of the construction procedure
for promoter-RBS component libraries can see in Addi-
tional file 1.

In general, biological components are inherently uncer-
tain in a molecular biological system. Hence, parameter
uncertainties in equations (5) and (6) must be taken into
consideration. For example, the kinetic parameters of the
promoter-RBS components including the processes of
transcription and translation, the degradation rates of
regulatory proteins, dilution rates of the cells, and the
lysis rates of the lysis proteins, are all stochastically
uncertain in vivo, as a result of gene expression noise
from biochemical processes, thermal fluctuations, DNA
mutation, parameter estimation errors, and evolution
[16]. These are defined as follows:
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Pyi — Pyi+ APying (1),

Pyj— Pyj+ APyjny (t), Pij — Prij+ APjng (1),

Pym = Pym + APymny (t), Pim — Pim + APpyny (1),

Yart = Yol + AVer11 (0, Yeal = Yaal + AVeiam (), (7)
Yxi2 = Va2 + Ayxiana (1),

k— k+ Akns (t),

YN = YN + Aynns (D)

where AP, ;, APy j, APyj, APy, APy, A1 AYxa1, A¥uaos
Ay, and Ak denote the standard deviations of the corre-
sponding stochastic parameters, and n(t), i = 1,2,3 denote
Gaussian noise, have zero mean and unit variance, and
account for random fluctuation sources. Thus, AP, ;, AP,
APy, APy, APy AYirr, Axar, A%z, A and Ak denote
the deterministic aspects of parameter variation, and 7;(¢),
i = 1,2,3 denote the random fluctuation sources. The
kinetic parameters in the steady state model in equations
(5) and (6) are replaced by the parameter perturbations
shown in (7) for robust design of the genetic circuit. These
parameter fluctuations must be considered in the design
procedure so that the synthetic genetic circuit can tolerate
fluctuations in vivo [17].

Design specifications for the genetic lysis circuit
The purpose of our design is to construct a genetic lysis
circuit by selecting a set of suitable promoter-RBS com-
ponents from the corresponding libraries in combination
with a feasible range of inducer concentrations, to
achieve optimal tracking of a desired I/O response. To
achieve this, the following design specifications are
needed:

+ Desired I/O response N,(I) of the genetic lysis circuit.

* Well-characterized promoter-RBS component libraries
and a feasible range of inducer concentrations.

 Standard derivations of parameter fluctuations and
environmental disturbances to be tolerated in vivo.

* A cost function between the steady state cell population
density Ngs in equations (5) and (6) and the desired
reference steady state cell population density N,.ras follows:

1@0=E/@%@0—Nwmfm ®)

where S denotes the set of promoter-RBS components i
and j (or i and m) selected from the corresponding com-
ponent libraries, i.e. S = (i, j) for constitutive promoter-
RBS components and repressor-regulated promoter-RBS
components in (5), and S = (i, m) for constitutive promo-
ter-RBS components and activator-regulated promoter-
RBS components in (6). The inducer concentration I for I;
isS=(j)and L is S = (i, m).

If the cost function in equation (8) is minimized by
choosing the most appropriate set of components in
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combination with a feasible range of inducer concentrations
under design specifications, the cell population density of a
engineered genetic lysis circuit will optimally match the
specified steady state cell population density N,.AI) under
intrinsic parameter fluctuations and environmental distur-
bances. Although the cost function can be minimized by
traditional conventional search methods, the combination
of promoter-RBS components with inducer concentrations
to minimize J(S, I) will require long computation times as
well as trial-and-error experimentation when component
libraries become large. Hence, the more effective and effi-
cient genetic algorithm (GA) search method is proposed to
save time in evaluating and selecting promoter-RBS com-
ponents. Since genetic algorithm searches for the optimal
solution, on basis of the maximum fitness, which is inver-
sely proportional to the minimum error in (8), we need to
define the fitness function as follows

F(S,I) = 9
(81 151) )
Therefore,
maxF(S,I) = . -
Go o T min/(5,1) (10)

Summary of design procedure for the genetic lysis circuit

1. Choose a species for cell population density control.
In this study, we used E. coli.

2. Provide user-defined design specifications for the
genetic lysis circuit.

3. Select an initial set S of promoter-RBS components
and inducer concentrations.

4. Calculate the fitness function F(S, I) in equation (9)
for each set S of promoter-RBS components and inducer
concentrations.

5. Create an offspring set S using GA operators such
as reproduction, crossover, and mutation.

5.1. Make copies of possible solutions, on basis of
their fitness.

5.2. Swap values between two possible solutions.
5.3. Randomly alter the value in a possible solution.

6. Calculate the cost value of the new set S obtained by
natural selection. Stop when the design goal is achieved
or an acceptable solution is obtained. Otherwise, create
the next generation and return to step 5.

Results

Genetic lysis circuit design example for cell population
density control in silico and verification via experiment in
vivo

For the convenience of description and explanation, as
shown in Figure 2, a genetic lysis circuit is assembled by
selecting a set of promoter-RBS components, namely, a
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Figure 2 Inducible LuxR-regulated circuit with lysis gene in E.
coli. A constitutive promoter continuously produces the activator
protein LuxR. The protein LuxR needs to form a complex with the
inducer AHL. The LuxR-AHL complex constitutes a quorum sensing
mechanism. It activates the downstream promoter and enhances
expression of the lysis gene when this complex accumulates.

constitutive promoter-RBS component C; from Addi-
tional file 1 and an activator-regulated promoter-RBS
component A,, from Additional file 1. The lysis gene is
embedded downstream of the activator-regulated promo-
ter-RBS component. The genetic lysis circuit is divided
into two stages. The first stage involves a constitutive
promoter-RBS component C; for producing regulatory
protein, LuxR. The second stage involves an activator-
regulated promoter-RBS component A,, for driving the
expression of the lysis protein. The external inducer AHL
is used to regulate the lysis activity. The desired popula-
tion response N,//) to different inducer concentrations
described as follows:

0.6

Ny (I) = 0.1
(1) TliaxD

(11)
Note that the standard deviations of parameter fluc-
tuations that are supposed to be tolerated in vivo are
given by
APy = 0.05Pyi, APy =0.05Pym, AP =0.05P;m, Ayyar = 0.05¥xa1,
Ayyp = 0.05y4p, Ak =0.05k, Ayny = 0.05yn

(12)

as well as the environmental noise parameters v; and v,,
for transcription and translation processes, and v; for cell
population density, are all Gaussian, with zero mean and
unit variance. In order to efficiently solve the constrained
optimal matching design problem of the genetic lysis cir-
cuit, a GA-based library search method is employed to
search a set S from corresponding libraries in Additional
file 1 to minimize the following cost function:

J(S. 1) =E/ (Ns(S. 1) —N,-ef(l))zdl, I€[0.1, 10] (nM) (13)

Then, to minimize the cost function (13), the adequate
promoter-RBS components from the corresponding
libraries are found to be Cg¢ and A;,. The desired
response is shown in Figure 3, with the experimental
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Figure 3 The simulation and experiment results of a synthetic
genetic lysis circuit. By minimizing the cost function in (13) for the
genetic lysis circuit in Figure 2, the adequate set S=(Ce, Ay)) is
selected from the corresponding libraries in Additional file 1. The
green points are the experimental results by S=(C¢A+,). The gray
solid line is the desired 1/O response.

steady state O.D. 600 values taken from Figure 4 under
different inducer concentrations at 240 min. Clearly, the
cell population density of the genetic lysis circuit can
robustly match the desired I/O response despite the
intrinsic parameter fluctuations and environmental dis-
turbances. If the desired cell density, for example, is 0.5,
the suitable AHL concentration of 0.5nM can be taken,
based on the prescribed I/O response. The experimental
result of 0.487 is observed, with percentage error of
2.6%, confirming that the prescribed cell population
density is well controlled by the proposed lysis circuit.
Similarly, when the desired cell density is 0.3, the suita-
ble AHL concentration of 1nM can be taken, based on
the prescribed I/O response. The experimental result of
0.311 is observed, with percentage error of 3.6%, again
indicating that the prescribed cell population density is
well controlled by the proposed genetic circuit.

Discussion

In this study, we focus on the design of synthetic genetic
lysis circuit to achieve density control of cell population.
A mathematical model is introduced to describe the
dynamic and steady state regulatory behavior of the
genetic lysis circuit. From the steady state mathematical
models in (5) or (6), we find that if we want to control
cell population density, we need to control lysis ability,
which is related to transcriptional and translational pro-
cesses. The promoter allows the RNA-polymerase mole-
cules to latch onto a DNA strand and initialize the
transcription of a downstream gene into mRNA, and
the RBS allows the ribosome to bind and translate the
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mRNA. Hence, in this study, the promoter combined
with the RBS is viewed as a genetic component for regu-
lating lytic ability.

For convenient measurement of promoter-RBS com-
ponents, we use GFP as a reporter to identify characteri-
zations of promoter-RBS components. We can therefore
use the parameters identified in Additional file 1 as
component libraries to design the genetic lysis circuit.
We also provide the design specifications for genetic
lysis circuit for use by synthetic biologists. With a sys-
tematic approach, we can control the desired cell popu-
lation density by selecting appropriate promoter-RBS
component set in combination with a feasible range of
inducer concentrations. In this study, for validation of
the proposed design method, we perform some experi-
ments with proper promoter-RBS components and
inducer concentrations. The experimental results show
that the simulation can robustly predict actual cell
population density.

The precise control of cell population density with
protein release is useful in medicine to cure disease[18],
because changing medicine dosages may not achieve the
desired effects. Additionally, evidence from systems biol-
ogy indicates that apoptosis is involved in many path-
ways causing cell death [19,20]. Each pathway depends
on expression levels and can trigger cell death. For
example, we embed a genetic lysis circuit into E. coli.
Through the control of different expression levels of
repressor-regulated or activator-regulated promoter-RBS
components, a simple genetic lysis circuit can regulate
cell death. This bottom-up design approach can poten-
tially be extended to other complicated processes invol-
ving programmed cell death, which could help us to
understand systematic phenomena that have always
existed in nature.

The construction procedure for cell population density
control is very important for engineering a more com-
plex synthetic genetic lysis circuit. We characterize the
genetic circuit and provide the desired cell population
density beforehand. Using GA, we search for an appro-
priate set of promoter-RBS components in combinations
with a feasible range of inducer concentrations to
achieve the desired cell population density. The GA pro-
vides a useful tool in the construction of genetic lysis
circuit for control of cell population density. In future,
when libraries are more complete, more effective and
efficient design methods for synthetic genetic lysis cir-
cuits may aid developments in drug discovery, metabolic
control, and therapeutic treatment.

Conclusion

In this study, we engineer a genetic lysis circuit to con-
trol cell population density. Inducible promoter-RBS
components are used to construct genetic lysis circuits
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Figure 4 Population density time profiles under different inducer concentrations of AHL. The green points are the experimental results.
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with different lytic abilities for cell population control.
Moreover, we provide four design specifications for cell
population density control, allowing designers to select
proper promoter-RBS components from libraries for the

synthetic genetic lysis circuits. The design problem can
be transformed by selecting proper promoter-RBS com-
ponents in combination with a feasible range of inducer
concentrations to achieve a desired 1I/O response. The
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proposed GA-based systematic searching methodology
could provide synthetic biologists with a useful tool to
design synthetic genetic lysis circuits. From the experi-
mental results, we find that the data are close to the
prescribed cell densities. Therefore, we believe that the
proposed user-oriented design method for cell popula-
tion density control will provide a useful guide in the
rapidly growing field of synthetic biology.
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