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Abstract

should be included in a bicluster.

Background: Biclustering is a popular method for identifying under which experimental conditions biological
signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus
algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in
determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions.
Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals

Results: Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the
popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm
significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004).
Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast
peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct.

Conclusions: We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered,
resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to
more accurately detect under which experimental conditions the genes are co-clustered. Features derived from
this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a
cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/
cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/
BSCM. BSCM has been incorporated in the official cMonkey release.

Background

Biclustering is a technique for examining mRNA expres-
sion data and discovering genes that are conditionally
co-regulated -i.e., genes that have common expression
patterns under certain conditions, but not under others
[1]. Thus biclustering is a valuable tool for analysing
large gene expression datasets, particularly when those
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data have been generated under multiple experimental
conditions. As mRNA expression data have become ever
more plentiful, many diverse public datasets have
become available. While it remains difficult to make the
most biological sense of this largess, biclustering has
been successfully used to mine it for novel biological
relationships, to correlate environmental condition with
expression patterns, and to predict gene expression
under new conditions not in the original datasets [2].
cMonkey is a particularly powerful biclustering tool
that finds putatively co-regulated genes by combining
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mRNA expression levels (or similar measurements), de
novo detected TF binding motifs, and networks of
known gene associations [3]. It was originally developed
to reconstruct regulatory networks for Halobacterium
salinarum [4]. Since then, cMonkey has been continu-
ously developed and has been applied to discover novel
biology in other organisms such as humans [5] and
Saccharomyces cerevisiae (S. cerevisiae) [2], revealing
novel challenges. One challenge is building biclusters on
consortium datasets containing expression data gener-
ated in multiple labs using different mRNA measure-
ment technologies and yeast grown under drastically
different conditions. These compendium experiments
potentially have different noise levels and can be diffi-
cult to compare.

While cMonkey is an effective tool for these circum-
stances, we found that the mRNA expression evaluation
model used by existing versions of cMonkey does not han-
dle such situations as well as it could. It quantifies biclus-
ter coherence by comparing the measured distribution for
each gene in a bicluster to an idealized normal distribu-
tion, which is based upon the mean expression of the
other genes in the bicluster, and the expected variance for
each experiment with a uniform systematic error constant.
This uniform variance assumption is often inaccurate for
expression compendia, because multiple measurement
technologies applied in multiple labs will almost certainly
have different errors associated with them.

Biclustering of gene expression measurements con-
tinues to be an active area of research, and there has
been significant progress in improving gene expression
biclustering [6], however very little of it has focused on
combining multiple datasets from disparate sources, such
as are available from GEO (the gene expression omnibus)
[7,8]. Classical gene expression biclustering, based upon
co-expression heuristics such as the Cheng and Church
mean-squared-residue [9], have achieved impressive
methodological diversity and results [10]. However, the
original cMonkey implementation instead used a prob-
abilistic model that enabled a more rigorous integration
of co-expression with bicluster evidence based on non-
gene expression data types [3]. Other methods have
focused on biclustering in the context of specific biologi-
cal problems. Reference gene biclustering finds biclusters
that match the expression pattern for a single reference
gene [11]. Differential co-expression biclustering finds
biclusters that are differentially co-expressed between
two conditions [12]. Time series biclustering finds genes
that follow common temporal co-expression patterns as
revealed in time series data [13]. However, none of these
methods is well suited to analyse variable compendium
data and discover globally relevant biclusters. Reference
gene biclustering will only find biclusters relevant
for a single reference gene; differential co-expression
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biclustering requires exactly two well annotated datasets;
and time series biclustering requires time series data. As
variable compendium data can contextualize behaviour
and reveal novel biology that a single condition specific
dataset cannot [2], it is important to develop a metric
appropriate for analysing these diverse data sets.
Therefore, we developed our bicluster sampled coher-
ent metric (BSCM). BSCM calculations modify the origi-
nal cMonkey co-expression model, in order to treat the
genome-wide measurements from individual experiments
independently. Specifically, a new background distribu-
tion is calculated empirically for each experiment and
each cluster size. This removes the uniform systematic
error term and, as shown in Figure 1, accounts for the
effects of cluster size on expected coherence (thus
removing the need for a user-defined prior distribution).
Running cMonkey with this refined BSCM improves
the conditional co-regulation of genes assigned to each
bicluster. cMonkey has an internal scoring function that
(without using BSCM) estimates bi-cluster quality by
considering gene co-expression, known protein and
genetic interactions, and the quality of common
upstream binding motifs [3]. Using a test dataset con-
sisting of 252 Mycoplasma pneumonia (M. pneumoniae)
experiments [6], the new coherence metric improved
the score in 75 out of 125 runs (binomial p-value < =
0.01). We then applied a similar test to S. cerevisiae
(Additional File 1, [1]), but measured potentially more bio-
logical relevant Gene Ontology (GO) annotation [7]
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Size. Shown is the standard deviation of gene variances when
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enrichments to score the clusters and found improvement
in 21 of 29 experiments using the new co-expression
p-value (Figure 2, binomial p-value = 0.004).

Another important aspect of biclustering and cMonkey
is to select under which experimental conditions genes
in a bicluster are co-expressed (i.e. conditional co-
expression). Existing versions of cMonkey do this using
a method that classifies half of all experimental condi-
tions (on average) as part of each cluster. This method
is limited because genes under certain experimental
conditions would be considered not co-expressed simply
because they were slightly more coherently expressed
under other experimental conditions and vice versa
(Figure 3). BSCM provides a more robust method to
determine which experiments belong in a bicluster: with
a p-value cutoff of 0.05.

To test if this BSCM indeed improves cMonkey’s ability
to accurately detect condition dependant bicluster coher-
ence, we tested the quality of the biclusters with a biolo-
gical application. We used compendium data to predict
which growth conditions induce peroxisomes to prolifer-
ate[2,8-14]. Peroxisomes are organelles that perform a
variety of functions including the metabolism of fatty
acids. In yeast, peroxisomes are conditionally required,
and their size and abundance can change dramatically
with growth condition. Peroxisomes proliferation is:
1) repressed by fermentative growth-conditions such as

Effects of Variance Based Coherence on GO Annotations
( p-Value = 0.004)
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Figure 2 Improved GO Co-expression with Larger Dataset.
Shown are the changes in the GOScores comparing clusters built
with BSCM versus the previous method. The horizontal line
indicates what the average score would be if the new and old
methods were equally good. The p-value is calculated using a two-
tailed paired t-test between the BSCM and non-BSCM GOScores -

Page 3 of 8

glucose and galactose [15]; 2) de-repressed under non-
fermentative growth such as glycerol, lactate, pyruvate,
oxylacetate, acetate, fatty acids (e.g. oleate), antimycin,
and the lack of mitochondrial DNA [16-18]. Peroxi-
some proliferation is controlled at the level of
transcription by up-regulation genes involved in per-
oxisome biogenesis and function [15]. To predict con-
ditions of peroxisome proliferation using biclusters, we
used conditional co-expression features to build a classifier
to predict conditional dynamics of peroxisome prolifera-
tion. We compared the existing cMonkey biclusters to
BSCM resplit biclusters and found that this greatly
improved cross-validated predictions of peroxisome prolif-
eration (Figure 4).

Results & discussion

In cMonkey, the coherence p-value for a gene i in cluster k
is referred to as r;. Mathematically, cMonkey improves
the coherence of its biclusters by minimizing r; for all
genes in each cluster (subject to other constraints). BSCM
changes how ry is calculated. By thus improving the
co-expression p-value function with BSCM, we were able
to improve the overall quality of the biclusters. We assess
this improvement using three metrics: 1) We use cMon-
key’s internal scoring which calculated overall cluster qual-
ity using the non-BSCM ry and test on M. pneumoniae;
2) We use a GO term enrichment score and test on
S. cerevisiae; and 3) We use the experiments included in
clusters to build a classifier that predicts peroxisome pro-
liferation in S. cerevisiae.

Bicluster Sampled Coherence Metric (BSCM) improves

M. pneumoniae model

We compared cMonkey biclusters derived using our
updated BSCM-based p-value with those of the previous
version (i.e. version 4.8.2). We ran each version 125
times on the small, quickly calculated, M. pneumoniae
dataset [6]. The average score (Equation 2) for each
bicluster was improved in 75 out of 125 runs when we
used our BSCM co-expression p-value (binomial p-value =
0.009), and also showed similar improvement across other
metrics (Table 1). Importantly, because we used the Equa-
tion 2 scoring function, the coherence portion of the score
was calculated using the old coherence p-value (r;). Thus
the new scores were better, even when the evaluation was
biased towards the non-BSCM r;.

Bicluster Sampled Coherence Metric (BSCM) improves

S. cerevisiae model

We further tested BSCM using a S. cerevisiae dataset
consisting of 26 public sets resulting in 1455 experi-
ments [8-10,19-41] (Additional File 1). S. cerevisiae has
over 6,000 genes compared to 688 for M. pneumoniae
so it was impractical to run cMonkey 125 times for the
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Figure 3 Re-splitting Biclusters Based on BSCM. These biclusters were built on S. cerevisiae grown in batch culture and chemo stat and run
through a microarray at different time points. Those conditions to the left of the dotted red line are included in the cluster and those to the
right are excluded. The variance based p-value is applied to re-split the biclusters and change which conditions are included. Cluster 0005
contains 15 ribosomal genes that are expected to be co-regulated. Re-splitting increases the number of included conditions from 30/62 to
56/62. Cluster 0156 contains 31 genes related to mitosis, DNA damage, and metabolism. Re-splitting increases the number of included
conditions from 32/62 to 35/62. Cluster 0229 contains 34 genes of mostly unknown function although some were related to carbohydrate
metabolism. Re-splitting reduces the number of included conditions from 34/62 to 18/62.

entire S. cerevisiae dataset. However, because S. cerevi-
siae is much better annotated, it was possible to use a
GO annotation enrichment based scoring metric
(GOScore, Equation 5) that was independent of cMon-
key’s scoring function. We identified 29 random experi-
ment subsets with 50-1445 microarrays each, eliminated
genes without large expression changes, and then ran
cMonkey with both the BSCM and non-BSCM based p-
values. We applied the GOScore and found improve-
ment in 21 of 29 experiments using the new BSCM
p-value (Figure 2, binomial p-value = 0.004).

New BSCM allows more accurate bicluster inclusion
The primary advantage of biclustering over standard clus-
tering is that biclusters include the notion of conditional

inclusion. That is to say that the genes in the bicluster are
conditionally co-expressed under certain experimental
conditions, but not under others. The original cMonkey
implementation assumed (via a prior probability) that
approximately half of all experiments included in a cluster
should be included, and half should be excluded. However,
as shown in the left panel of Figure 3, this did not work well
in conditions where the genes are co-regulated under all
conditions (such as was the case for ribosomal biclusters),
or in clusters where the genes are co-regulated under a very
small subset of conditions. By contrast, the new BSCM pro-
vided a natural cutoff for re-splitting biclusters. As shown in
Equation 3, ry estimates the p-value for each experiment j,
given a cluster k. Those experiments where r; < 0.05 are
included in the cluster, all others are excluded.
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Figure 4 Peroxisome Proliferation Classification with Re-split Clusters. Predictions were made using the Naive Bayes, Support Vector
Machine (SMO), Logistic Regression, and J48 decision tree classifiers. Error bars show one standard deviation. Mean refers to the mean fraction
correct for the seven experimental conditions. Two-tailed paired t-test p-values are less than 1022 for all experimental conditions (n = 100).
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These new splits were more visually satisfying (Figure 3,
right panel), however we were interested in determining if
the re-split clusters were biologically more relevant. To
test this we built a classifier that would predict if yeast
would proliferate peroxisomes under certain conditions
based on whether or not experiments performed under
those conditions were included or excluded from biclus-
ters. We assembled a dataset of relevant conditions (see
Methods), extracted the features, and tried four common
machine learning algorithms (Figure 4). The classifier per-
formed similarly well regardless of the machine learning

algorithm, but the patterns were most obvious when using
a Naive Bayes classifier. Using this classifier, overall per-
oxisome proliferation prediction accuracy improves from
41.9% to 76.1% correct when using the BSCM bicluster
inclusion rather than the previous method. The classifier
accuracy was nearly perfect (>95%) for four of the seven
conditions, while it is poor only for predictions of glucose.
This probably reflects a biological reality: the glucose
response pathway is included in the galactose response,
but not vice versa. Thus, the information necessary for
understanding the galactose response is present when
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Table 1. BiCluster Quality Score on M. pneumoniae (MPN)

Non-BSCM BSCM Significance
p-value
n 125 125
Score -12.26 -12.34 240E-003
Improved Score 75/125 50/125 9.84E-003
Mean p-value 0.129 0.109 2.20E-016
cMonkey Version 482 482

Non-BSCM refers to cMonkey runs that used the classical cMonkey cluster
coherence score. BSCM refers to the new coherence p-value discussed in this
paper. n refers to the number of cMonkey runs. Score refers to the average
cluster score used to determine bicluster quality in cMonkey (lower is better).
Improved Score refers to the number of cMonkey runs in which a coherence
scoring method has a lower Score. Mean p-value refers to the average p-value
for all experiments in all clusters for all cMonkey runs. Significance p-value
compares the old to the new using a t- test for Score, binomial distribution
for Improved Score, and t-test for Mean p-value.

glucose is in the training set. However, when only galac-
tose is present in the training set, a key piece of informa-
tion is missing necessary to inform the classifier.

Conclusions

mRNA expression data is becoming ever more plentiful as
microarrays become more commonplace or are replaced
by multiplexed RNA-seq technology. The improved
Bicluster Sampled Coherence Metric (BSCM) provides a
better way to simplify and interpret large amounts of
expression data that come from multiple sources. Beyond
directly improving biclusters, this algorithm is useful for
drawing additional information out of each bicluster and
using it to train a classifier. We anticipate that this method
will become particularly relevant for the broad bioinfor-
matics community interested in humans — where each cell
type may be regarded in the same manner as yeast or bac-
teria in different environmental conditions. This opens the
potential to classify cell types based on mRNA signatures,
and to reveal conditions or perturbations that induce a
specific cellular response.

Methods

Let I represent the set of all genes, / all experiments,
and K all biclusters. A bicluster k € K contains genes Ij,
where each gene is j € I, and includes experiments
j €Jr such that J, C J.

In the original cMonkey [3], the variance for each
experiment j is calculated as 0]—2 = III_IZiGI (o — a_c].)2
where x;; is the expression level for gene i in experiment
j and % = Y, x;i/|I|. The likelihood for a given x;; in
cluster k is

1 (x5 — J_C'k)z +&?
p(xi) = exp [— P (1)
\/27T(O'J~2+82) o ¢
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where ¢ is a constant error term, X, = Zidxij/”k"
and [, is the genes in cluster k. The co-expression
p-value, ry, for each gene i is derived from Equation (1).
This is combined with weighted log p-values calculated
for the TF binding motifs (Qy) and known gene associa-
tions (S;x) as gik = 1o logTi + Qi + Sir. where log7y, is
the a z-score normalized version of logry, and r, is a
weight for adjusting the relative importance of r;. A
final score for each bicluster is calculated as

scorey, = Zgik/|1k| (2)

i€l

Bicluster Sampled Coherence Metric (BSCM) method
Here we change how the co-expression p-value, r; was
calculated as follows:

e 0 exp %, =~ iy .
jk = - 2
\/27[0%%\ 5
Tik
Tik = Z A (4)

jElk

Ojlk is the mean variance for the number of genes in
bicluster k as determined bootstrap sampling. a{%‘k‘ is the

standard deviation of the values used to calculate oj.
The background distribution is calculated for each con-
dition j €] and for each number of genes that occurs
in a given bicluster k by sampling |k| genes 200 times
from experimental condition j and drawing additional

samples in sets of 200 until oj and 0;,2].”(‘ change by less

than 1%. To determine which genes should be added or
removed from a cluster, we calculate a new r; suppos-
ing gene i were added or removed. As a practical mat-
ter, background distributions for are pre-calculated for
all cluster sizes less than or equal to the maximum size
represented in the initial seed clusters, and additional
background distributions are calculated as needed dur-
ing program execution.

Cluster scoring based on GO terms

To independently evaluate the quality of the clusters, we
calculate a Gene Ontology[7] based GOScore from the
binomial enrichment of GO slim terms, G.

8
GOScore =y " —log(pGOy,) (5)
k G

where pGOy, is the enrichment p-value for term g in
cluster k.
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Classifier construction

We tested whether r;; could be used with a p-value cutoff
of 0.05 to predict if experimental conditions would result
in peroxisome proliferation (“YES”) or not (“NO”). We
built 544 yeast biclusters using 233 experiments in seven
different experimental conditions with known peroxi-
some proliferation: thirty glucose (“NO”), twenty early
oleate (“YES”), and twenty-one late oleate experiments
(“YES”)[2], seventy-five galactose (“NO”), eighteen lactate
(“YES”), five rho- (“YES”), and sixty-four antimycin
(“YES”) experiments [8,9,13,17]. For every bicluster, each
of the 233 experiments was assigned a value indicat-
ing whether genes are “UP” or “DOWN” -regulated if
included in a given bicluster, or “EXCLUDED” otherwise.
Many experiments were replicates, so standard n-fold
cross-validation was inappropriate. Therefore, each of the
seven growth-conditions was treated as a splitting bound-
ary. Thus when the classifier predicted proliferation in
antimycin, antimycin was absent from the training set.
During each split we downsampled, thus providing sto-
chastisticity. Predictions were made using decision trees,
logistic regression, support vector machines (SVMs), and
naive bayes [42,43]. (See supplemental code and data for
implementation.)

Additional information

This file contains code and data necessary to run the
experiments presented in this paper. Available at Aitchi-
sonLab.com/BSCM/TestData.BSCM.tar.gz (156 MB)

Additional material

Additional File 1: Contains details about the public datasets
download from GEO.
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