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Abstract

Background: Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes
of raw genomic data. Traditional machine learing approaches to genome annotation typically rely on large
amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and
expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small
amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the
problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging
problem, due to the highly imbalanced distribution of the data, i.e, small number of splice sites as compared to
the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised
classifiers, specifically self-training and co-training classifiers.

Results: Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99,
showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of
labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and
self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations
show improvements over the corresponding supervised ensemble baselines.

Conclusions: In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can
successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data
distributions. Given that such distributions are common for many biological sequence classification problems, our

seguence annotation in a semi-supervised framework.

work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological

Background

Advances in biochemical technologies over the past dec-
ades have given rise to Next Generation Sequencing
platforms that quickly produce genomic data at much
lower costs than ever before. Such overwhelmingly large
volumes of sequenced DNA remain difficult to annotate.
As a result, numerous computational methods for gen-
ome annotation have emerged, including machine learn-
ing and statistical analysis approaches that practically
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and efficiently analyze and interpret data. Supervised
machine learning algorithms typically perform well
when large amounts of labeled data are available. In
bioinformatics and many other data-rich disciplines, the
process of labeling instances is costly; however, unla-
beled instances are inexpensive and readily available. For
a scenario in which the amount of labeled data is rela-
tively small and the amount of unlabeled data is sub-
stantially larger, semi-supervised learning represents a
cost-effective alternative to manual labeling.

Because semi-supervised learning algorithms use both
labeled and unlabeled instances in the training process,
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they can produce classifiers that achieve better perfor-
mance than completely supervised learning algorithms
that have only a small amount of labeled data available
for training [1-3]. The principle behind semi-supervised
learning is that intrinsic knowledge within unlabeled data
can be lever-aged in order to strengthen the prediction
capability of a supervised model that only uses labeled
instances, thereby providing a potential advantage for
semi-supervised learning. Model parameters learned by a
supervised classifier from a small amount of labeled data
may be steered towards a more realistic distribution
(which more closely resembles the distribution of the test
data) by the unlabeled data.

Unfortunately, unlabeled data can also drive the model
parameters away from the true distribution if misclassifi-
cation errors reinforce themselves. Thus, in practice,
semi-supervised learning does not always work as
intended [4-6]. Moreover, under incorrect assumptions,
e.g., regarding the relationship between marginal and
conditional distributions of data, semi-supervised learn-
ing models risk to perform worse than their supervised
counterparts. Given that for many prediction problems
the assumptions made by learning algorithms cannot be
easily verified without considerable domain knowledge
[7] or data exploration, semi-supervised learning is not
always “safe” to use. Advantageous utilization of the
unlabeled data is problem-dependent, and more
research is needed to identify algorithms that can be
used to increase the effectiveness of semi-supervised
learning [8,9], in general, and for bioinformatics pro-
blems, in particular. At a high level, we aim to identify
semi-supervised algorithms that can be used to learn
effective classifiers for genome annotation tasks.

In this context, a specific challenge that we address is
the “data imbalance” problem, which is prevalent in
many domains, including bioinformatics. The data
imbalance phenomenon arises when one of the classes
to be predicted is underrepresented in the data because
instances belonging to that class are rare (noteworthy
cases) or hard to obtain. Ironically, minority classes are
typically the most important to learn, because they may
be associated with special cases. In general, anomaly or
novelty detection problems exhibit highly imbalanced
distributions. Specific applications outside the bioinfor-
matics area include credit card fraud, cyber intrusions,
medical diagnosis, face recognition, defect detection in
error-prone software modules, etc. As established in the
literature (e.g., [10]), the existence of a major uneven-
ness between the prior class probabilities leads to impar-
tial learning. As a result, classifiers that produce good
classification results under normal circumstances (i.e., in
the presence of balanced or mildly imbalanced distribu-
tions) can be seriously compromised when faced with
skewed distributions, as classifiers become strongly
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biased towards the majority class. In bioinformatics, pro-
blems such as promoter recognition, splice site detec-
tion, and protein classification are especially difficult
because these problems naturally exhibit highly imbal-
anced distributions.

Resampling datasets in order to reach balanced distri-
butions is a common practice that sometimes improves
classification performance, as the model encounters an
equal number of instances from each class, thereby pro-
ducing a more appropriate discriminative function as
opposed to a function obtained from skewed distribu-
tions. However, it is not well understood what is the
most appropriate balancing method. Context-dependent
conclusions are usually driven by empirical observations
concerning both the classifier used and the imbalance
degree. The most straightforward method is under-sam-
pling, in which instances that belong to the majority
class are eliminated until a balanced distribution is
reached. As a consequence, information is lost, which is
obviously not desirable, given the value of labeled
instances, yet this is a good way to speed up the compu-
tation. Moreover, studies have shown the effectiveness
of under-sampling [11] despite its obvious limitations.
Over-sampling is another popular resampling method in
which instances of the minority class are generated arti-
ficially to counterbalance majority instances. These syn-
thetic instances can potentially improve the classifier, as
it gains access to more labeled data. The trade-off
between longer computation times associated with
larger datasets and better classification performance is
usually worthwhile. However, with oversampling, classi-
fiers are prone to overfitting, due to duplicate instances.

An algorithmic approach to handle imbalanced data
distributions is based on ensembles of classifiers.
Limited amounts of labeled data naturally lead to
“weaker” classifiers, but ensembles of “weak” classifiers
tend to surpass the performance of any single constitu-
ent classifier. Moreover, ensembles typically improve the
prediction accuracy obtained from a single classifier by
a factor that validates the effort and cost associated with
learning multiple models. Intuitively, “bagging” several
classifiers leads to better overfitting control, since aver-
aging the high variability of individual classifiers also
averages the classifiers’ overfitting. The first effective
model ensemble surfaced in the mid 1990s [12], under
the name “bootstrap aggregating” (bagging), which is a
meta-algorithm that performs model averaging over
models trained on multiple subsets, i.e., bootstrap repli-
cates of the training set. The predictions of the models
are combined by voting (in the case of classification) or
averaging (in the case of regression) in order to output
a single final verdict that reflects the ensemble decision.
Originally applied to decision trees, bagging can be used
with any classification or regression model and it is
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especially effective in conjunction with utilization of
unstable nonlinear models (i.e., a small change in the
training set can cause a significant change in the mod-
el’s learned parameters). Ensembles of classifiers that
utilize bagging, boosting, and hybrid-approaches for
imbalanced datasets in the supervised framework were
reviewed by Galar et al. [13].

For a comprehensive survey of data resampling and
algorithmic approaches to the imbalanced data problem
in the supervised learning framework, the reader is
referred to [14]. As opposed to supervised learning,
fewer efforts have been aimed at the data imbalance
problem in the semi-supervised learning framework,
with some notable exceptions. In particular, in a pre-
vious study [15], we experimented with data resampling
and algorithmic solutions and observed that dynamically
balancing the classifiers during the semi-supervised
iterations of the algorithm is a useful solution that
works better than under- and SMOTE (Synthetic Min-
ority Over-sampling Technique) over-sampling for splice
site prediction in the context of single semi-supervised
classifiers. We also found that ensembles usually tend to
perform better than resampling techniques, except for
extreme cases when the imbalance degree is 1-t0-99, in
which case oversampling performs slightly better than
the ensemble-based approach. In a subsequent study
[16], we empirically evaluated ensembles of self-training
semi-supervised classifiers and found that maintaining
diversity during the process of semi-supervised learning
is an important requirement for the ensemble. In the
current study, we experiment with both self-training
and co-training, utilizing a different feature representa-
tion than the one we used in [16], to accommodate co-
training, which requires two views (representations) of
the data.

Similar to our prior work, the current study is per-
formed on the problem of predicting splice sites, a chal-
lenging but important task in genome annotation [17].
Splice sites are located at the boundaries between exons
and introns. At the 3’ end of an intron, the “AG” dimer
denotes an acceptor splice site; at the 5" end of the intron,
the “GT” dimer denotes a donor splice site. Other non-
consensus splice sites exist, but they are not considered
in this work. We formulate the task of predicting accep-
tor splice sites as a binary classification problem in which
the positive class represents true acceptor splice sites and
the negative class is comprised by decoy “AG” sites. We
use five relatively large datasets from five organisms. The
distribution of the data (ratio of the size of the minority
class to majority class) is very skewed - approximately 1%
of “AG” dimers are actually acceptor splice sites.

Among others, Sonnenburg et al. [18] previously
addressed the splice site prediction problem, in the
supervised framework, using Support Vector Machines
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(SVM) and specialized kernels. As opposed to prior
work, in this work, our goal is to investigate ensemble-
based semi-supervised learning as a potential solution
for splice site prediction and to study the effects of
imbalanced distributions on semi-supervised algorithms
when labeled data is sparse. Given the large datasets of
our case study and the numerous models that needed to
be trained to simulate different imbalanced degrees for dif-
ferent ensemble variants, we chose Naive Bayes as the base
classifier in co-training and self-training, because of its
computation speed and to avoid tuning hyper-parameters
(that many other classifiers require in order to perform
well). Although theoretically, the i.i.d. assumption (that
the observed features are identically and independently
distributed) does not hold for many problems (including
for the problem studied in this work), generative models
such as Naive Bayes can show superior performance to
discriminative models such as SVM, especially when small
amounts of labeled data are available [19,20].

The rest of this paper is organized as follows. We con-
tinue with a review of related work in the next section,
where we also contrast our study with other similar stu-
dies. In Methods, we describe our approaches, namely
the semi-supervised learning ensembles based on self-
training and co-training. The Data section is dedicated
to describing the datasets and the feature representation
used with our classifiers. The experimental setting is
described in Experimental setup, starting with the
research questions that motivated the study and conti-
nuing with details of the evaluation procedure. We dis-
cuss the performance of our approaches in Results, and
finally, in the Conclusion section, we conclude the
study and suggest directions for future work.

Related work
Genome annotation is an ample task that requires
machine learning and statistical methods to assist
experimental approaches, especially given the large
amount of genomic data being generated at unprece-
dented rates. Supervised machine learning approaches
have been widely used in bioinformatics for many tasks,
including splice site prediction [18,21-24]. For example,
human splice site detection was explored in [25] using
SVM classifiers with a Gaussian kernel, and in [21]
using a combination of Markov Models and SVM classi-
fiers with polynomial kernels. The work in [22] pro-
posed a Markov Model approach for splice site
detection in a human dataset with imbalance degrees of
1-t0-96 for acceptors and 1-to-116 for donors.
Semi-supervised learning has generally been used in
bioinformatics to solve protein classification problems
[26-31], with a few notable exceptions focused on
DNA classification [2,3]. A small number of studies
[32,26,33] have explored the data imbalance problem
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in the semi-supervised context and proposed effective
solutions, but the imbalance degrees were moderate.
For example, in [32], the authors addressed the problem
of molecule activity prediction and experimented with
transductive SVM classifiers on datasets with relatively
small sizes (3K instances), exhibiting imbalance degrees
no higher than 1-to-40.

As opposed to that, we focus on datasets with higher
degrees of imbalance (up to 1-to-99) and study the beha-
vior of semi-supervised learning algorithms when the
available labeled data is less than 1% of the total amount
of training data. In general, such a small amount of labeled
data is expected to lead to weak classifiers, but an ensem-
ble of classifiers could help overcome this shortcoming to
some extent. Galar et al. [13] showed that, in supervised
frameworks, ensembles perform better than single learners
trained on resampled data. Lusa and Blagus [34] found
that balancing the class prior in the training set via “multi-
ple down-sizing”, in other words, training an ensemble of
subclassifiers on balanced subsets, is particularly useful for
high-dimensional representations. They showed this using
a simulated set and a genuine, publicly available dataset
from a breast cancer gene expression microarray study.
Another study by Li et al. [11] also concluded that an
ensemble of co-training classifiers is suitable for imbal-
anced datasets.

Our objective in this study was to adapt existing semi-
supervised learning ensembles to datasets with high
degrees of imbalance. Towards this goal, we used the
approach from [11] as inspiration for two of the methods
presented in this work. In [11], the authors proposed
that, as the co-training sub-classifiers iterate, the
balanced labeled subsets are augmented with the same
instances, specifically, the most confidently labeled posi-
tive instances and the most confidently labeled negative
instances. In our previous work on the problem of splice
site prediction [16], we found that adding different
instances to each self-training subsets leads to improved
prediction because diversity is maintained. However, it
was not clear what was the best way to manipulate the
original distribution to ensure the largest diversity among
ensemble members. Motivated by the results of our
dynamic balancing technique, where only positive
instances are added to the training set during the self-
training iterations [15], and also by our preliminary
results on ensemble approaches based on self-training
classifiers [16], in the current study, we further analyze
various combinations of ensembles and dynamic balan-
cing, with focus on how the augmentation of labeled data
should be managed during the semi-supervised iterations.
We also experiment with co-training, in addition to self-
training, and investigate how ensembles of self-training
and co-training Naive Bayes classifiers behave in the
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semi-supervised framework when dealing with various
imbalance ratios.

A study from Wei and Dunbrack [35] that explored the
effects of various distributions on supervised learning
was centered around classification of human missense
mutations as deleterious or neutral. By systematically
varying the ratio of deleterious to neutral mutations in
the training set, the authors concluded that balancing the
training dataset improves the performance of SVM as
evaluated by several accuracy measures, even when the
distribution of the data is just mildly imbalanced. The
study in [35] was performed under the assumption that
the real distribution of deleterious versus neutral muta-
tions is unknown. In the datasets used in our work [36],
the proportion of true splice sites was assumed to be
approximately 1% of the total number of occurrences of
the “AG” dimer throughout the genome, and thus this
was the highest imbalance degree that we experimented
with (i.e., 1-to-99). However, we varied the ratio of splice
site to non-splice site “AG"s from 1-to-5 to 1-to-99, to
perform a systematic study of the performance obtained
using ensemble-based semi-supervised approaches as a
function of the imbalance ratio.

Methods

This section describes the algorithms studied. As we focus
on ensemble-based semi-supervised learning from imbal-
anced class distributions, specifically ensembles of self-
training and co-training classifiers, we will first provide
background on self-training and co-training, and also on
ensemble learning. Then, we will describe the supervised
ensemble approach used as a baseline in our evaluation,
and finally, our proposed self-training and co-training
ensemble variants.

Self-training

Self-training, also known as self-teaching or bootstrap-
ping, is an iterative meta-algorithm that can be wrapped
around any base classifier. Yarowsky [37] originally intro-
duced self-training and applied it to a natural language
processing problem, namely word-sense disambiguation.
The first step in self-training is to build a classifier using
the labeled data. Then, the labeled dataset is augmented
with the most confidently predicted instances from the
unlabeled pool, and the model is rebuilt. The process is
repeated until a criterion is met, e.g.,, until the unlabeled
dataset has been fully classified or a fixed number of
iterations has been reached. In our work, we classify a
sub-sample of unlabeled data at each iteration (as
opposed to all unlabeled data) in order to increase com-
putation speed. The most confidently classified instances
are assigned the predicted class and used to retrain the
model. The remaining instances, classified with less
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confidence, are discarded. The algorithm iterates until
the unlabeled dataset has been exhaustively sampled.

Co-training

Blum and Mitchell [38] introduced co-training, also an
iterative meta-algorithm, to solve the problem of identi-
fying course pages among other academic web pages.
Similar to self-training, co-training is applicable to any
base classifier. Unlike self-training, which is a single
view algorithm, co-training requires two independent
and sufficient views (a.k.a., feature representations) of
the same data in order to learn two classifiers. At each
iteration, both classifiers label the unlabeled instances
and the labeled training data of one classifier is augmen-
ted with the most confidently labeled instances pre-
dicted by the other classifier. Similar to self-training, in
our work we classify only a sub-sample of unlabeled
data at each iteration. Instances from the sub-sample
classified with small confidence are discarded. The algo-
rithm iterates until the unlabeled dataset has been
exhaustively sampled.

Ensembles

Ensemble learning exploits the idea that combinations of
weak learners can lead to better performance. Moreover,
it is known that diversity among subclassifiers is an
important constraint for the success of ensemble learn-
ing [38,39]. However, learning Naive Bayes classifiers
from bootstrap replicates will not always lead to suffi-
ciently “diverse” models, especially for problems with
highly imbalanced distributions. In order to ensure suffi-
cient variance between the original training data subsets
of our highly imbalanced datasets, we used a technique
initially recommended by Liu et al. [39], who proposed
training each subclassifier of the ensemble on a balanced
subset of the data, providing subclassifiers with the oppor-
tunity to learn each class equally, while the ensemble con-
tinues to reflect the original class distribution. An
implementation of this technique by Li et al. [11] proved
to be successful for the problem of sentiment classifica-
tion, and was used as inspiration in our work.

Supervised Lower Bound

Generally, supervised models trained only on the avail-
able labeled data are used as baselines for semi-super-
vised algorithms. Thus, the hypothesis that unlabeled
data helps is verified against supervised models that
entirely ignore unlabeled instances. Because our focus is
on ensemble methods and ensembles of classifiers typi-
cally outperform single classifiers, the lower bound for
our approaches is an ensemble of supervised classifiers.
Specifically, we train ensembles of Naive Bayes classifiers
using resampled balanced subsets and use their averaged
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predictions to classify the test instances. This approach
is referred to as the Lower Bound Ensemble (LBE).

Ensembles inspired by the original approach: CTEO and
STEO

In [11], co-training classifiers were augmented with the
topmost confidently labeled positive and negative
instances, as found by classifiers trained on balanced
labeled subsets. The authors set the number of iterations
at 50, and classified all unlabeled instances at each itera-
tion. Moreover, the two views of the co-training classi-
fiers were created at each iteration, using “dynamic
subspace generation” (random feature splitting into two
views), in order to ensure diverse subclassifiers.

However, this exact approach did not produce satis-
factory results in our case, so we modified the algorithm
from [11] in order to better accommodate our problem.
We named the resulting approach Co-Training Ensem-
ble inspired by the Original approach (CTEO). We also
experimented with a variant where co-training was
replaced with self-training, and named this variant Self-
Training Ensemble inspired by the Original approach
(STEO). The pseudocode for both CTEO and STEO
variants is illustrated in Algorithm 1. As can be seen,
Steps 7-9 are described for co-training (first line) and
self-training (second line, in italic font), separately.

The first modification we made to the original ensem-
ble-based approach, for both self-training and co-train-
ing variants, is that we kept the features fixed, i.e., used
“static” instead of “dynamic subspace generation.” For
co-training, we used a nucleotide/position representa-
tion as one view, and a 3-nucleotide/position representa-
tion as the second view, under the assumption that each
view is sufficient to make accurate predictions, and the
views are (possibly) independent given the class.

The second modification we made is that we did not
classify all unlabeled instances at each iteration; instead,
we classified only a fixed subsample of the unlabeled
data, as proposed in the classical co-training algorithm
[38]. This alteration speeds up the computation process.
The last modification that we made is that once a sub-
sample was labeled and the top most confidently labeled
instances were selected to augment the originally labeled
dataset, we simply discard the rest of the subsample,
thereby differing from the classical co-training approach
[38] and from the original co-training ensemble
approach [11]. This change also leads to faster computa-
tion times and, based on our experimentation, reduces
the risk of adding mistakenly labeled instances to the
labeled set in subsequent iterations. Furthermore, the last
two adjustments lead to a fixed number of semi-super-
vised iterations, i.e., as the algorithm ends when the unla-
beled data pool is exhausted. We use a subsample size
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that is dependent on the dataset size, and selected such
that the algorithm iterates approximately the same num-
ber of times (50) for each set of experiments, for a certain
imbalance degree. After the iterations terminate, the
ensemble is used to classify the test set by averaging the
predictions of the constituent subclassifiers.

An important observation regarding Step 9 in Algo-
rithm 1 is that, in the case of co-training, when the two
classifiers based on viewl and view2, respectively, make
their predictions, an instance is added to the pseudola-
beled set P only if (1) no conflict exists between the
classifiers, i.e., both classifiers agree on the label, and
(2) one classifier predicts the label with high confidence,
while the other predicts the same label with low confi-
dence. These conditions ensure that the two views
inform each other of their best predictions, thereby
enhancing each other’s learning.

Algorithm 1 Ensembles inspired by the original
approach [11] - CTEQ/STEO

1: Given: a training set comprised of labeled and
unlabeled data D = (D, D,), |D)| < |D,|

2: Create U by picking S random instances from D,
and update D, = D,, - U, S = sample size

3: Generate N balanced subsets from D; : Dy, . .

4: repeat

5: Initialize P = &

6: fori=1toNdo

7: CT: Train subclassifiers C;; on view; and Cj,
on view, of balanced subset Dy

ST: Train subclassifier C; on combined views of
balanced subset Dy,

] Dln

8: CT: Classify instances in U using the classifiers
C;; and Cp,

ST: Classify instances in U using subclassifier C;

9: CT: Use C;; and C;, to select 2 positive and

2 negative instances and add them to P
ST: Use C; to select 2 positive and 2 negative
instances, and add them to P

10:  end for

11: Augment each balanced subset with the
instances from P

12:  Discard remaining unused instances from U

13:  Create a new unlabeled sample U and update D,
=D,-U

14: until U is empty (i.e., the unlabeled data is
exhausted)

As mentioned above, STEO differs from the co-training
based ensemble, CTEO, at Steps 7-9 in Algorithm 1:
instead of using two subclassifiers trained on two different
views, only one classifier is built using all features (view;
and view, combined), and then this classifier is used to
select the best two positive predictions and the best two
negative predictions. Because each subclassifier in CTEO
contributes one positive and one negative instance, after
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one iteration, the set P of pseudo-labeled instances con-
tains 2N positive instances and 2N negative instances.
Therefore, in STEO, we add the top two positives and top
two negatives as predicted by the same subclassifier C; in
order to maintain an augmentation rate identical to the
augmentation rate in CTEO. After the semi-supervised
iterations terminate, the ensemble is used to predict the
labels of the test set. The predictions of every subclassifier
in the ensemble on a test instance are combined via aver-
aging, and the resulting probabilities represent the final
class distribution of the instance.

Ensembles using dynamic balancing with positive: STEP
and CTEP
The following two approaches use the dynamic balan-
cing technique proposed in [15], found to be successful
for the classical self-training algorithm when the dataset
exhibits imbalanced distributions. The dynamic balan-
cing occurs during the semi-supervised iterations of the
algorithm and uses only the instances that the classifier
(or subclassifiers in the ensemble) predicted as positive
to augment the originally labeled set. In the ensemble
context, subclassifiers are used to select the most confi-
dently predicted positive instances. These variants are
named Co-Training Ensemble with Positive (CTEP) and
Self-Training Ensemble with Positive (STEP), and
illustrated in Algorithm 2. As before, the co-training
and self-training variants differ at Steps 7-9. For CTEP,
during Step 9, the instance classified as positive with
topmost confidence in one view and low confidence in
the second view is added to P, and vice-versa. For STEP,
the two most confidently labeled positive instances are
added to P, such that the augmentation rate is identical
to that from CTEP.

Algorithm 2 Ensembles using dynamic balancing with
positive - STEP/CTEP

1: Given: a training set comprised of labeled and
unlabeled data D = (D, D,), |D)| < |D,|

2: Create U by picking S random instances from D,
and update D, = D,, - U, S = sample size

3: Generate N balanced subsets from D; : Dy, . .

4: repeat

5.  Initialize P = &

6: fori=1toNdo

7: CT: Train subclassifiers C;; on view; and Cj,
on view, of balanced subset Dy

ST: Train subclassifier C; on combined views

of balanced subset Dy

) Dln

8: CT: Classify instances in U using subclassifiers
Cil and Ci2
ST: Classify instances in U using subclassifier
G
9: CT: Use C;; and C;;, to select 2 positive

instances and add them to P
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ST: Use C; to select 2 positive instances and

add them to P

10:  end for

11: Augment each balanced subset with the
instances from P

12:  Discard remaining unused instances from U

13: Create a new unlabeled sample U and update
Du =Du-U

14: until U is empty (i.e., the unlabeled data is
exhausted)

Ensembles that distribute the newly labeled instances:
CTEOD and STEOD
Our next semi-supervised ensemble variants are based on
CTEO and STEO, respectively, and distribute the most
confidently labeled instances among the classifiers in the
ensemble. They are referred to as Co-Training Ensemble
Original Distributed (CTEOD) and Self-Training Ensemble
Original Distributed (STEOD), and shown in Algorithm 3.
In CTEOD and STEOD, as opposed to CTEO and STEO,
instances are distributed such that each balanced subset
receives two unique instances, one positive and one nega-
tive, from each view, instead of adding all instances from
P to every balanced subset. The idea that motivated this
change was that different instance distributions would
ensure a certain level of diversity for the constituent classi-
fiers of the ensemble. In Algorithm 3, the co-training and
self-training variants differ at Steps 6-8. As can be seen, the
main difference compared to CTEO and STEO is at Step
9, where classifier C;; trained on view; is augmented with
the top positive and top negative instances as predicted by
classifier C;, trained on view,, and vice-versa. Therefore,
each balanced subset is augmented with two positive
instances and two negative instances, and the ensemble
better conserves its initial diversity.

Algorithm 3 Ensembles that distribute newly labeled
instances - CTEOD/STEOD

1: Given: a training set comprised of labeled and unla-
beled data D = (D, D,), |D)| << |D,|

2: Create U by picking S random instances from Du
and update D, = D, - U, S = sample size

3: Generate N balanced subsets from D; : Dy, . . ., Dy,
4: repeat

5: fori=1toNdo

6: CT: Train subclassifiers C;; on view, and Cj,

on view, of balanced subset Dj;
ST: Train subclassifier C; on combined views
of balanced subset Dy;
7: CT: Classify instances in U using subclassi-
fiers C;; and Cj,
ST: Classify instances in U using subclassifier
G
8: CT: Use C;; and C;, to select 2 positive
instances and 2 negative instances
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ST: Use C; to select 2 positive instances and 2
negative instances

9: Augment current balanced subset, Dj;, with
selected positive and negative instances

10:  end for

11:  Discard remaining unused instances from U

12: Create a new unlabeled sample U and update
D,=D,-U

13: until U is empty (i.e., the unlabeled data is
exhausted)

Ensembles that distribute only positive instances - CTEPD
and STEPD

Our last semi-supervised ensemble variants are based on
CTEP and STEP. We again use the dynamic balancing
technique from [15] that adds only positive instances in
the semi-supervised iterations. In addition, instances are
distributed among the balanced labeled subsets, such
that diversity is maintained and the subclassifiers are
trained on diverse enough instance subsets, thus
increasing the diversity of the constituent ensemble clas-
sifiers. The resulting variants are named Co-Training
Ensemble with Positive Distributed (CTEPD) and Self-
Training Ensemble with Positive Distributed (STEPD),
and shown in Algorithm 4. The co-training and self-
training variants differ at Steps 6-8. Overall, at each
iteration, 2N unique positive instances augment the
ensemble in which N is the imbalance degree since two
instances originated from each co-training subclassifier.
More specifically, each of the N subclassifier receives
two positive instances, different from the instances
received by the other subclassifiers.

Data and feature representation
For our empirical evaluation, we used five imbalanced
and relatively large datasets, originally published in [36]
and used for a domain adaptation study. The datasets
belong to five organisms, C. elegans, which contains
approximately 120K instances, and C. remanei, P. pacifi-
cus, D. melanogaster, and A. thaliana, which contain
approximately 160K instances each. In each of these
datasets, the true acceptor splice sites represent 1% of
the total number of instances, hence the datasets exhibit
a 1-to-99 imbalance ratio. The class label of each
instance is either positive to indicate a true acceptor
splice site, or negative to indicate a decoy splice site.

Algorithm 4 Ensembles that distribute only positive
instances - CTEPD/STEPD

1: Given: a training set comprised of labeled and unla-
beled data D = (D, D,), |D)| < |D,|

2: Create U by picking S random instances from D,
and update D, = D, - U, S = sample size

3: Generate N balanced subsets from D; : Dy, . .

4: repeat

9 Dln



Stanescu and Caragea BMC Systems Biology 2015, 9(Suppl 5):S1
http://www.biomedcentral.com/1752-0509/9/55/51

5: fori=1toNdo
6: CT: Train subclassifiers C;; on view, and Cj,
on view, of balanced subset Dj;
ST: Train subclassifier C; on combined views
of balanced subset Dy;
7: CT: Classify instances in U using subclassi-
fiers C;; and Cj,
ST: Classify instances in U using subclassifier
G
8: CT: Use C;; and C;, to select 2 positive
instances and add them to P
ST: Use C; to select 2 positive instances and
add them to P

9: Augment the current balanced subset with
positive and negative instances

10:  end for

11:  Discard remaining unused instances from U

12: Create a new unlabeled sample U and update
D,=D,-U

13: until U is empty (i.e., the unlabeled data is
exhausted)

In our previous work [15,16], we used 141-dimen-
sional feature vectors to represent instances,
x = (x1,%2,...,xy) € RN (N = 141). Each dimension cor-
responds to a position in the original sequences, and
takes as values one of the four nucleotides {4, C, G, T },
as shown in Figure 1. Specifically, feature x; indicates
the nucleotide found at the corresponding position i. In
the current work, because the co-training algorithm
requires two views of the data, we use the nucleotide/
position representation as the first view and the
3-nucleotide/position representation from [40] as the
second view. As the name suggests, 3-nucleotides are
sequences of length 3 (also referred to as 3-mers or
“codons”). Intuitively, 3-nucleotides can capture more
context information, as compared to single nucleotides.
The 3-nucleotide/position representation, thus, captures
additional correlations between nucleotides, while main-
taining a low number of features (specifically, 139 features
for our sequences which have length 141), thereby making
the two views comparable. Given that nucleotide/position
and 3-nucleotide/position features have shown to be effec-
tive in a domain adaptation scenario [40], we hypothesize
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that semi-supervised learning could also benefit from
these feature representations. For self-training, we used
the two views together and trained the classifiers on the
complete set of features.

1 Experimental setup

1.1 Research questions

The experiments were designed to answer the following
research questions:

1 Which ensembles are more affected by imbalanced
distributions, supervised ensembles or semi-supervised
ensembles?

2 How does the performance of the approaches vary
with the imbalance degree?

3 What is the best strategy for utilizing newly labeled
instances when using ensembles of semi-supervised
classifiers trained on highly imbalanced data?

The five datasets used in this study were labeled, and
therefore we were able to create, via resampling, various
data subsets with various imbalance degrees (from 1-to-
5 to the original 1-t0-99), in order to observe the algo-
rithms’ performance with respect to the imbalance
degree. For example, in the original D. melanogaster
dataset, with the imbalance degree of 1-to-99, there are
159,748 instances, 1,598 positives and 158,150 negatives.
In order to create the dataset for each experiment, we
kept the positive instances and resampled at random
N number of negative instances to obtain a new dataset
with an imbalance degree of 1-to-N. For example, in the
1-to-5 experimental dataset for D. melanogaster, there
are 9,588 instances, 1,598 positives and 7,990 negatives.
The rest of the datasets, corresponding to higher imbal-
ance degrees, were built incrementally so that the dataset
with the imbalance degree of 1-to-10 contains all the
instances from the 1-to-5 dataset, and also contains addi-
tional negative instances to reach the desired imbalance.

As can be seen, for each experiment, the number of
instances varies, and in the semi-supervised iterations,
we used a sample size proportional to the dataset size,
such that the experiments iterate roughly the same
number of times.

View I: Nucleotide Features

Intronic Nucleotides = Exonic Nucleotides

Class

ACATGCTA ... ATCGATCTAG GGATGCTACATCGCGAT ... ATCGATCTC ‘ + |

1 615 Position
View II: 3-mer Features

Figure 1 Acceptor Splice Site: Each instance is a 141-nt window around the splice site, with the “AG” dimer starting at position 61.
The sequence is used to generate two views for co-training: one based on nucleotides and another one based on 3-mers.

1475t
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Because classifiers are highly susceptible to data varia-
tion and prone to sampling bias, we evaluated the mod-
els using 10-fold cross validation in which nine folds
were used to train the model and the tenth fold was
used for testing. Data comprising the nine training folds
is further divided into labeled and unlabeled. We ran-
domly pick labeled instances such that the ratio of posi-
tive to negative is maintained and the total number of
instances represents no more than 1%.

Evaluation

Because of the highly skewed distributions of the data-
sets, in order to objectively measure the predictive abil-
ity of our approaches, we compared their performance
in terms of the area under the Precision-Recall Curve
(auPRC), which is a more appropriate assessment mea-
sure than the area under the Receiver-Operating Curve
(auROC) [41,42]. In order to evaluate the results, we
averaged auPRC values for the minority (positive) class
across the ten folds for each organism. While the
trends are generally maintained for individual organ-
isms, we report averages of auPRC values over the five
organisms, for easier interpretation. We performed
two-tailed paired t-tests, as opposed to one-tailed
t-tests, to identify statistically significant differences in
either direction, on all semi-supervised algorithms for
all variations of imbalance degrees. The test determines
if the difference between a semi-supervised ensemble
algorithm and its corresponding supervised ensemble

Table 1 Table of Results.
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baseline (seen as a lower bound) is statistically signifi-
cant [43].

Results and discussion

Our experimental results are compiled in Table 1. The
first column represents the imbalance degree of the
experiment, which is varied from 1-to-5 to 1-to-99, by
randomly discarding negative (majority) instances. The
second column, LBE, shows the results of the supervised
lower bound, which is also an ensemble, consisting of
supervised classifiers. LBE is used as the baseline against
which to compare the semi-supervised approaches.
From the third column onwards, each method is pre-
sented for co-training and self-training. The results are
discussed by addressing the research questions. Values
marked with bold font represent performances of the
semi-supervised experiments that outperform the super-
vised lower bound. The starred (*) values denote experi-
ments whose variation in comparison to the lower
bound was found to be statistically significant by the
paired t-test in all five organisms. The values marked
with a plus (t) indicate experiments that the paired t-
test found to be statistically significant in four out of
five organisms. The values marked with a diamond ()
indicate experiments that the paired t-test found to be
statistically significant in three out of five organisms.

1 Which ensembles are more affected by imbalanced
distributions, supervised ensembles or semi-supervised

Imbal. LBE CTEO STEO CTEP STEP CTEOD STEOD CTEPD STEPD
Degree

1-to-5 0452 0.526° 0.567* 0.647* 0.479° 0.692* 0.652* 0.6441 0.612°
1-t0-10 0434 0.462 0.455+ 0.5571 0343t 0.584* 0.573t 0.5841 0.573t
1-t0-20 0437 0434 0.440° 0.5221 0292° 0.515° 0.5291 0.523° 0.526*
1-t0-25 0437 0.384° 0423° 0.497° 0.245* 0.507° 0.465° 0.510° 0.507+
1-t0-30 0430 0.336* 0408° 0.484° 0.239* 0.509t 0.470° 0.503° 0.514*
1-t0-40 0443 0404t 0409 0.492° 02221 0.503° 0.468 0.504° 0.497+
1-t0-50 0450 0372t 0409° 0.491 0.236* 0.508° 0.451 0.504 0.486
1-t0-60 0471 0388t 0.398 0.472 0.195t 0.496 0423 0.494° 0.474
1-t0-70 0450 0.392t 0411 0.462 0.207+ 0.474° 0444 0.480° 0.478
1-t0-75 0454 0.388 0.399° 0.460° 0.249t 0.483° 0435 0.483 0.471
1-t0-80 0.449 0.353t 0.386t 0436 0.204* 0.457 0421° 0.460° 0.4651
1-t0-90 0453 0359t 0410 0449 0242 0.470 0423 0.473t 0.456
1-t0-99 0446 0376 0.389° 0440t 0.226+ 0.464 0414 0.459 0.457

The values represent averages of auPRC values for the positive class over the five organisms when the class imbalance degree varies from 1-to-5 to 1-t0-99 and
the amount of labeled instances represents less than 1% of the training data. LBE is the ensemble-based supervised lower bound. CTEO and STEO are the co-
training-based and self-training-based ensembles inspired by the original approach in [11]. CTEP and STEP are the co-training and self-training based ensembles
that use the “dynamic balancing” approach introduced in [15], in which only positive instances are used in semi-supervised iterations to augment the originally
labeled training data. CTEOD and STEOD add positive and negative instances but distribute them among all subclassifiers, such that the balance and diversity of
each subclassifier's labeled subset is maintained. CTEPD and STEPD use “dynamic balancing” but also distribute instances among all subclassifiers. The bold font
denotes the semi-supervised experiments that outperform the lower bound. The starred (*) values denote experiments whose variation in comparison to the
lower bound was found to be statistically significant by the paired t-test in all five organisms. The values marked with a plus (1) indicate experiments that the
paired t-test found to be statistically significant in four out of five organisms. The values marked with a diamond (¢) indicate experiments that the paired t-test
found to be statistically significant in three out of five organisms.
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ensembles? The supervised baseline remains some-
what constant irrespective of the imbalance degree,
showing that additional labeled data can help allevi-
ate problems caused by extreme cases of imbalance.
Note that experiments with milder degrees of imbal-
ance contain less instances than experiments with
higher degrees of imbalance, given the way we con-
structed our datasets. When the imbalance degree is
the highest, 1-to-99, we used the entire dataset.
Compared to supervised learning, semi-supervised
learning ensembles show a slow decrease in perfor-
mance as the imbalance degrees become more pro-
minent, most probably due to the fact that
additional unlabeled data is more difficult to label
correctly.

2 How does the performance of the approaches vary
with the imbalance degree? As can be seen from the
table, for lower degrees of imbalance (1-to-5 to 1-to-
40), semi-supervised ensembles are considerably sur-
passing the supervised baselines. As the experiments
become increasingly difficult (the imbalance degree
becomes more prominent), some semi-supervised
ensembles deteriorate as a result of unlabeled data
being incorrectly classified with high confidence, and
they are surpassed by the supervised baselines.

In the original study [11] that inspired our CTEO
and STEO variants, the ensemble approach was used
to predict the sentiment polarity of Amazon reviews
with imbalance degrees ranging between 1-to-5 and
1-to-8, and proved to be superior to supervised base-
lines. Our variants, CTEO and STEQ, also produced
good results for experiments with relatively low
imbalance degrees, 1-to-5 and 1-to-10. From 1-to-20
onwards, however, the CTEO and STEO semi-super-
vised ensembles performed worse than their super-
vised baselines, but, surprisingly, the self-training
ensembles more effectively utilized the unlabeled
data as compared to the co-training ensembles. For
approaches that employ the “dynamic balancing”
technique [39] in which only positive instances are
used, the ensemble based on co-training CTEP lever-
aged the unlabeled data and surpassed the super-
vised counterpart for experiments with up to 1-to-60
imbalance degree, after which point no discernible
difference was observed between CTEP and the
baseline. The ensemble based on self-training, STEP,
is more sensitive and was deteriorated by the unla-
beled data beginning with Experiment 1-to-10. The
“pseudo” positive instances could have been misclas-
sified, thereby misleading the classifiers, which all
use the same newly labeled positive instances. In
general, the ensembles that do not distribute the
instances among their subclassifiers deteriorate and
fall below the baseline for moderate and high
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degrees of imbalance. Variants of the algorithms
where instances are distributed tend to outperform
the other approaches. When both positive and nega-
tive instances are used to augment the labeled data,
CTEOD and STEOD outperformed the not-distribu-
ted versions CTEO and STEO. The self-training
based approach STEOD still falls below the super-
vised baseline for experiments over 1-to-50, but the
co-training based approach CTEOD is surpassing
the baseline for all experiments. The variants
CTEPD and STEPD, which add only positive
instances and distribute them, surpassed the baseline
for all experiments. No significant difference in per-
formance between CTEOD and CTEPD was
observed, but STEPD out-performed STEOD and
surpassed the baseline in all experiments. Thus, the
“dynamic” balancing approach proved to be more
useful for the self-training based ensemble.

3 What is the best strategy for utilizing newly labeled
instances when using ensembles of semi-supervised
classifiers trained on highly imbalanced data? One
important observation that can be made based on
our results is that the distribution of the newly
labeled instances among subclassifiers in order to
ensure subclassifier diversity is a useful approach for
semi-supervised ensembles. Variants that distribute
the newly labeled instances (either positive and
negative for CTEOD and STEOD, or solely positive
for CTEPD and STEPD) achieved overall better per-
formance than the classifiers that receive all the
newly labeled instances (CTEO, STEO, CTEP, and
STEP). Therefore, the conclusion is that diversity in
this case is more useful than the addition of substan-
tially more “pseudo” (newly) labeled instances during
the semi-supervised iterations.

Our results for the paired t-test showed no particular
consistency, specifically some experiments and results
were statistically significant and others were not.

Conclusions

In this work, we proposed and studied several ensemble-
based variants of two popular semi-supervised learning
algorithms, self-training and co-training, and tested their
performance on the task of predicting splice sites. The
task was formulated as a binary classification problem
and the models’ performance was tested on five large
acceptor splice site datasets from five organisms. We
adapted the ensembles to address the highly imbalanced
datasets of our case study, and we used various
approaches to augment the labeled data during the
semi-supervised iterations. Our results showed that one
important constraint of any ensemble (based on self-
training or co-training) is to maintain diversity of the
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ensemble’s subclassifiers, by augmenting the labeled
subsets of subclassifiers with unique newly labeled
instances. Maintaining the ensemble diversity by adding
less but unique instances to each sub-classifier is a bet-
ter approach than adding the same (larger sets of)
instances to all subclassifiers.

In order to address highly skewed distributions, we
found that dynamically balancing of ensembles by utiliz-
ing only positive instances during semi-supervised itera-
tions to augment the labeled data and distributing them
among constituent subclassifiers is a useful technique
that benefits both types of ensembles, but especially the
self-training-based approaches. For co-training-based
approaches, whether instances from both classes are
added (CTEOD) or just positives (CTEPD), the perfor-
mance variations are negligible. Both approaches
CTEPD and CTEOD surpass the other semi-supervised
ensembles studied.

In general, our results show that ensembles based on
self-training are surpassed by the ensembles based on
co-training, a trend that has been reported many times
in the literature for single classifiers, e.g., in the predic-
tion of alternatively spliced exons [3], or text classifica-
tion [5].

As part of future work, we consider exploring other
base learners (e.g., large margin classifiers) for self-train-
ing and co-training algorithms. Given that aggregated
stacking produced the best results for protein function
prediction and genetic interactions prediction in [44], it
would be interesting to explore meta-learning and
ensemble selection for the splice site prediction pro-
blem. Transductive approaches demonstrated great
potential for protein classification from imbalanced
datasets [32], and SVM has previously been shown to
successfully identify splice sites [18]. Therefore, the
behavior of SVM in a transductive context is of interest
in relation to splice site prediction.
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