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Abstract

Background: The protein-protein interaction plays a key role in the control of many biological functions, such as
drug design and functional analysis. Determination of binding sites is widely applied in molecular biology research.
Therefore, many efficient methods have been developed for identifying binding sites. In this paper, we calculate
structural neighboring property through Voronoi diagram. Using 6,438 complexes, we study local biases of
structural neighboring property on interface.

Results: We propose a novel statistical method to extract interacting residues, and interacting patches can be
clustered as predicted interface residues. In addition, structural neighboring property can be adopted to construct
a new energy function, for evaluating docking solutions. It includes new statistical property as well as existing
energy items. Comparing to existing methods, our approach improves overall Fnat value by at least 3%. On
Benchmark v4.0, our method has average Irmsd value of 3.31Å and overall Fnat value of 63%, which improves upon
Irmsd of 3.89 Å and Fnat of 49% for ZRANK, and Irmsd of 3.99Å and Fnat of 46% for ClusPro. On the CAPRI targets, our
method has average Irmsd value of 3.46 Å and overall Fnat value of 45%, which improves upon Irmsd of 4.18 Å and
Fnat of 40% for ZRANK, and Irmsd of 5.12 Å and Fnat of 32% for ClusPro.

Conclusions: Experiments show that our method achieves better results than some state-of-the-art methods for
identifying protein-protein binding sites, with the prediction quality improved in terms of CAPRI evaluation criteria.

Introduction
The protein-protein interaction plays a key role in many
biological functions, such as drug design and functional
analysis. Gaining insights of various binding abilities will
deepen our understanding on interaction. Determination
of binding sites is widely applied in molecular biology
research. Therefore, many efficient methods [1,2] have
been developed for identifying binding sites.
Some existing approaches are based on analyzing dif-

ferences between interface residues and non-interface
residues, through machine learning methods or statisti-
cal methods. They analyze different features, such as
sequence and structural properties or physical attributes.
ProMate [3] creates interface or non-interface sphere

around each residue. The histograms of many features
are statistically obtained from spheres in training pro-
teins. The probability for each sphere of a testing pro-
tein can be estimated to be on interface or not. The
interface spheres are clustered to identify binding sites.
PPI-Pred [4] uses several features to build an SVM
model on interface prediction. It generates an interact-
ing patch and a non-interacting patch for each training
protein. Seven features are extracted from all interacting
and noninteracting patches to predict if a testing patch
is an interacting patch. Li et al. [5] divide protein resi-
dues into four different classes, which are distinguished
by percentage of their neighboring interface residues.
The core-SVM model is built over eight features and
used to compute whether a residue is a core interface
residue. In PINUP [6], an empirical scoring function
consists of interface propensity and residue conservation
score for predicting binding sites. PINUP takes top
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scoring patches and ranks residues based on their occur-
rences in these patches, clustered as predicted interface
residues. Burgoyne et al. [7] analyze clefts on surface,
that are likely to be binding sites. They can be ranked
according to sequence conservation and physical proper-
ties. Meta-servers have also been constructed to com-
bine strengths of some existing approaches. The
program called meta-PPISP [8] combines three indivi-
dual servers, namely cons-PPISP, ProMate and PINUP;
another program called metaPPI [9] combines five pre-
diction methods, namely PPI-Pred, PINUP, PPISP, Pro-
Mate, and Sppider.
In addition, several structural algorithms have also

been used to identify binding sites, through analyzing
surface structures. SiteEngine [10] recognizes surface
regions of a testing protein that are similar to some
known binding sites, using geometric hashing triangles.
ProBiS [11] predicts interface residues by local surface
structure alignment. It compares a testing protein to
known binding sites, for detecting structurally similar
residues. Ortuso et al. [12] define most relevant interac-
tion areas, based on 3D maps. The GRID program is
used to compute on known structural complexes.
Another kind of methods are to examine all possible

poses of two protein subunits; that is, how subunits may
dock. Docking methods based on fast Fourier transfor-
mation (FFT) [13], geometric surface matching [14], as
well as intermolecular energy [15] have been proposed.
ZRANK [16,17] combines an atom-based potential
(IFACE) with five residue-based potentials for ranking
docked conformations. It provides fast and accurate re-
scoring of ZDOCK models [18]. ClusPro [19] develops a
fast algorithm for filtering docked conformations with
good surface complementarity, and ranks them based on
their properties. RosettaDock [20] constructs an energy
function using van der Waals energies, orientation-
dependent hydrogen bonding, implicit Gaussian solva-
tion, side-chain rotamer probabilities and a low-
weighted electrostatics energy. HADDOCK [21] makes
use of biochemical and biophysical interaction data,
such as chemical shift perturbation data resulting from
NMR titration experiments. Fernandez-Recio et al. [22]
apply docking simulations and analyze interaction
energy landscapes to identify interface residues. They
use a global docking method based on multi-start
energy optimization, and predict low-energy regions as
binding sites.
Identifying of protein-protein interface depends on

many features, such as sequence, structure, as well as
other physicochemical properties. Hydrogen bonds and
salt bridges are known to be essential in identifying
binding specificity [23]. Most of binding sites are hydro-
phobic and conserved polar residues at specific locations
[24]. Secondary structure composition analysis shows

that neither helices nor b-sheets are dominantly popu-
lated on interface [25]. Several geometrical features such
as weighted atomic packing density, relative surface area
burial and weighted hydrophobicity are most effective
features for predicting interface residues [26]. Some fea-
tures only describe properties of current interacting resi-
dues, but cannot represent real situation well, thus are
insufficient to predict binding sites with high accuracy.
In this paper, we analyze structural neighboring prop-

erty on protein-protein interface, through Voronoi dia-
gram. Using 6,438 complexes, we study local biases of
structural neighboring property on interface. We propose
a novel statistical method based on structural neighbor-
ing property to extract interacting residues, and interact-
ing patches can be clustered as predicted interface
residues. In addition, structural neighboring property can
be adopted to limit the search space, for discovering
native-like poses. Here, we construct an energy function
to evaluate docking solutions, which includes new statis-
tical property as well as existing energy items [27].
Finally, we use trained SVM models to further select best
poses for each pair of input proteins.
Experiments show that our method achieves better

results than some state-of-theart methods. Here, we use
CAPRI evaluation criteria, Irmsd and Fnat. Comparing to
existing methods for identifying binding sites, our
approach improves overall Fnat value by at least 3%. On
Benchmark v4.0, our method has average Irmsd value of
3.31Å and overall Fnat value of 63%, which improves
upon Irmsd of 3.89Å and Fnat of 49% for ZRANK, and
Irmsd of 3.99 Å and Fnat of 46% for ClusPro. On CAPRI
targets, our method has average Irmsd value of 3.46 Å
and overall Fnat value of 45%, which improves upon
Irmsd of 4.18 Å and Fnat of 40% for ZRANK, and Irmsd

of Å and Fnat of 32% for ClusPro.

Methods
In this paper, we calculate structural neighboring property
on protein-protein interface, through Voronoi diagram.
We propose a novel statistical method to extract interact-
ing residues, and interacting patches can be clustered as
predicted interface residues. In addition, structural neigh-
boring property can be adopted to construct an energy
function to evaluate docking solutions, which includes
new statistical property as well as existing energy items.

Data set
To obtain statistical property on interface, we adopt a
high quality, non-redundant experimental data set. We
select 6,438 complexes from Protein Data Bank [28];
each complex consists of two or more subunits. These
complexes are determined from X-ray data with resolu-
tion less than 2.2Å. Any two complexes share no more
than 30% identity.
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A complex may contain several subunits and multiple
interfaces. Each interface in a complex occurs in a pair
of subunits. Two residues between a pair of subunits are
called interface residues, if any two atoms, one from
each residue, interact. By interact, we mean distance
between two heavy atoms is less than 6 Å.

Structural neighboring property
Most of those features only describe current interacting
residues, but cannot represent real situation well, thus
are insufficient to predict binding sites with high accu-
racy. Here, we develop a method to calculate structural
neighboring property on interface, using Voronoi
diagram.
Site features
The physicochemical features are used to characterize
potential interacting residues. The most interesting fea-
tures are described as follows.

• Hydrophobicity: a numerical hydrophobicity of an
amino acid [29],
• Electrostatic potential: the number of electrostatic
charge in an amino acid [30],
• Hydrogen bonds: the number of potential hydro-
gen bonds for all atoms in an amino acid [31].

We use Voronoi diagram to evaluate polygonal face
area of each surface residue, and calculate structural
neighboring property on these physicochemical features.
Polygonal face area
We use VLDP [32] for geometrically analyzing protein
3D structures, based on Voronoi Tessellation. Voronoi
Tessellation is a partition of space into polyhedra,
whereas Delaunay diagram builds a graph with vertices
at atoms. These graphs define nearest neighbours for
each atom of one protein. It calculates Delaunay dia-
gram by using an optimized incremental algorithm. The
weights can be interpreted as squared radius. The sur-
face residues appear as a packing of polyhedra, that is
necessary to have a reasonable Tessellation throughout
entire system.
VLDP can be used to evaluate residue contacts and

residue volumes, defined as polygonal face area and
polyhedral volume for each atom. In particular, contact
area of two residues is sum of atomic interface areas on
pairs of atoms; surface area of one residue is sum of
surface areas exposed to solvent in this residue; total
area of one residue is sum of all areas in this residue.
We calculate structural neighboring property, based on
polygonal face area.
Property function
Given a protein, structural neighboring property of one
surface residue x is defined as follow:

p′(x) =
surface(x)
total(x)

× p(x) +
∑

contact(x;y)>0

surface(y)
total(y)

× p(y)

where p(x) is site feature of each residue, contact(x, y)
>0 means that contact area between residues x and y is

greater than zero,
surface(x)
total(x)

shows surface area of resi-

due x divided by its total area, as shown in Figure 1.
We use a normal distribution F (x) to estimate prob-

ability of structural neighboring property on one side of
interface. We also use a bivariate normal distribution F
(x1, x2) [33] to estimate probability of structural neigh-
boring property on both sides of interface. Given a pair
of proteins, effective free energy of interacting residue
pair can be calculated as:

S(x1, x2) = −kBT
∑

(x1 ,x2 )∈R
ln

F(x1, x2)
F(x1) × F(x2)

where R is a set of all residue pairs on interface.

Extracting interface residues
We propose a statistical method to extract interacting
residues, and interacting patches can be clustered as
predicted interface residues. The threshold value sth is
used to harvest all possible residue pairs between two
proteins. The residue pairs with S(x1, x2) ≤ sth are called
interacting residues.
Considering neighboring residues, we construct a

sphere with a radius of 10Å for all interacting residues.

Figure 1 Calculating structural neighboring property of residue
x (green), based on neighboring residues y (orange).
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The updated statistical property of each interacting resi-
due pair is calculated as follows.

S′(x1, x2) = S(x1, x2) +
∑

dis(x1,ri)≤10Å

1
dis(x1, ri)

S(ri, x2)

+
∑

dis(x2,rj)≤10Å

1
dis(x2, rj)

S(x1, rj)

where dis(x, r) is 3D distance of two Ca atoms in resi-
dues x and r. The residues ri are from protein having
residue x1, and the residues rj are from protein having
residue x2.
We rank interacting residues by using updated statistical

property. Top interacting residues can be grouped into dif-
ferent regions. All interacting residues served as graph
nodes, and each undirected edge is built when two nodes
are within distance 10 Å. Strongly connected components
are considered as interacting patches. One region, contain-
ing a very small number of interacting residues, indicates a
weak signal and can be discarded. We cluster interacting
patches as predicted interface residues.

Energy function for docking
Given two input proteins, our task is to find the pro-
tein-protein interface between them. In first step, we
identify docking solutions of two subunits. It performs a
large number of rigid transformations to enumerate
poses. Top ranking poses are selected through a linear
combination of energy items. In second step, we gener-
ate possible conformational changes of interface residues
from their unbound states to bound states, based on
multidimensional scaling method. In third step, we use
trained SVM models to further select best poses for
input proteins. Structural neighboring property can be
effectively applied to identify docking solutions.
Here, we construct a new energy function to evaluate

docking solutions, which includes new statistical prop-
erty as well as existing energy items [27]. The following
lists all energy items, and how they are computed:

• Structural neighborhood energy is calculated by
probability of structural neighboring property on
interface.
• π-π interaction energy is calculated by geometrical
property on π-π interaction [27].
• Dihedral angle energy is calculated by statistical
analysis of dihedral angle frequency and correlation
on interface [27].
• Amino acid energy is constructed by probabilities
of interface residues.
• Side-chain atoms of interface residues are packed
by SCWRL4 [34], and sidechain energy is extracted.

We use a linear combination of these energy items,
referred to as initial energy function, to rank poses. The
coefficient of each item is optimized by using a linear
combination method in [35]. We output top 100 poses
with lowest energy values. For conformational changed
structures, our method calculates a set of possibly chan-
ged conformations of interfaces.
As in [27], we use a training set consisting of 79 com-

plexes from Dockground [36] to produce 79 SVM mod-
els, one for each complex, based on these energy items.
Finally, we use trained SVM models to further select
best 10 poses with lowest energy values for two input
proteins.

Assessment of interface prediction
According to CAPRI evaluation criteria [37], three evalua-
tion measures are commonly used in identifying protein-
protein interface. A pair of residues on interface is consid-
ered to be in contact if any of their atoms are within 6 Å
One is the fraction of native contacts Fnat, defined as the
number of correct residue-residue contacts in predicted
complex divided by the number of contacts in native com-
plex. The other is the fraction of non-native contacts
Fnon−nat, defined as the number of incorrect residues-
residue contacts in predicted complex divided by the
total number of contacts in that predicted complex. The
third is root-mean-square deviation of interface Irmsd,
defined as the rmsd value between all backbone atoms of
interfaces in predicted structure and in native complex,
after two interfaces are superimposed.
We also calculate P value for binding sites prediction.

The calculation of P value should be probability of
obtaining not less than n correctly predicted interface
residues by randomly picking out N predicted interface
residues. The probability that a random method obtains

success in one trial is
m

M
, where M is the number of all

surface residues, and m is the number of correctly inter-
face residues among them. Therefore, P value for bind-
ing sites prediction is given by

p =
∑N

i=n

N!
n!(N − n)!

(m
M

)n(
1 − m

M

)N−n

Results
In this section, we have done three kinds of experi-
ments. First, we present statistical analysis of structural
neighboring property on interface. Then, we compare
our method to some existing methods, for identifying
binding sites. The results show that our method per-
forms better than other machine learning and statistical
approaches. Finally, we examine docking solutions of
our method on Benchmark v4.0 and CAPRI targets.
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Experiments show that our method outperforms some
state-of-the-art methods.

Statistical property
The physicochemical features are used to characterize
potential interacting residues. The most interesting fea-
tures are described by three values, as shown in Table 1.

We present statistical analysis of structural neighboring
property on interface. The statistics are carried out on
6,438 complexes. For each feature, we model a bivariate
normal distribution. First, we represent an assessment for
hydrophobicity on interface, as shown in Figure 2(a). The
cluster centered at (1.89, 2.21) can be obtained. The
groups of more hydrophobic amino acids often appear on
interface. Second, local bias preferences of electrostatic
potential on interface are shown in Figure 2b. We observe
probability distribution centered at (0.12, −0.09). Many
interfaces usually involve a lot of neutral amino acids.
Third, we analyze hydrogen bonds on interface, as shown
in Figure 2c. The data contains one cluster centered at
(8.37, 7.96). The interface residues contain several poten-
tial hydrogen bonds, and the number of potential hydro-
gen bonds on each side of interface must be very similar.
We further investigate whether changing value of sth

help to improve interface prediction. Here, we calculate
structural neighboring property on 100 interface residues
and 100 non-interface residues, randomly extracted from
Benchmark v4.0 [38]. The relationship between interface
prediction and the value of sth is shown in Table 2. We
can observe that when increasing the value of sth, the
overall Fnat value of prediction is improved; however, the
overall Fnon−nat value of prediction also increases as well.

Binding sites prediction
Some existing methods use machine learning and statisti-
cal approaches to predict binding sites. The results show
that our method performs better than other existing meth-
ods in binding sites prediction.

Table 1 The physicochemical features of amino acids.

Amino
Acid

Hydrophobicity Electrostatic
potential

Hydrogen
bonds

Ala 1.8 0 2

Arg -4.5 1 4

Asn -3.5 0 4

Asp -3.5 -1 4

Cys 2.5 0 2

Gln -3.5 0 4

Glu -3.5 -1 4

Gly -0.4 0 2

His -3.2 0 4

Ile 4.5 0 2

Leu 3.8 0 2

Lys -3.9 1 2

Met 1.9 0 2

Phe 2.8 0 2

Pro -1.6 0 2

Ser -0.8 0 4

Thr -0.7 0 4

Trp 0.9 0 3

Tyr -1.3 0 3

Val 4.2 0 2

Figure 2 The density plot of structural neighboring property on interface: (a) Hydrophobicity; (b) Electrostatic potential; (c) Hydrogen bonds.
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Comparison to Fernández-Recio’s method
In this test, we compare the performance of our method
to Fernández-Recio’s method. The test data used by this
method consists of 43 complexes [22]. The results are
reported in Table 3. The overall Fnat and Fnon−nat values
for our method are 65% and 32%, respectively. Fernández-
Recio method achieves overall Fnat and Fnon−nat values of
62% and 60%, respectively.
Comparison to metaPPI, meta-PPISP and PPI-Pred
In this experiment, we compare our method to metaPPI,
meta-PPISP and PPIPred. The test data consists of 41
complexes by metaPPI [9], divided into two categories:
enzyme-inhibitor (EI) and others. The overall Fnat and
Fnon−nat values for each prediction method are reported
in Table 4. The overall Fnat values for our method,
metaPPI, meta-PPISP and PPI-Pred achieve 62%, 28%,
38% and 38%, respectively. The overall Fnon−nat values
for these four methods achieve 34%, 51%, 54% and 64%,
respectively. Our method improves overall Fnat value by
at least 24%.
Comparison to ProMate and PINUP
Our method is compared to ProMate and PINUP. The
test data is originally used by ProMate [3], including 57
unbound proteins and their complexes. The results are
reported in Table 5. The overall Fnat values for our
method, PINUP and ProMate achieve 61%, 42% and
13%, respectively. The overall Fnon−nat values for these

three methods achieve 45%, 55% and 47%, respectively.
Our method improves overall Fnat value by at least 19%.
Comparison to core-SVM
We compare our method to core-SVM with 50 dimers [5].
The results are reported in Table 6. The overall Fnat values
for our method and core-SVM are 63% and 60%, respec-
tively. The overall Fnon−nat values for these two methods
are 36% and 46%, respectively. Our method improves
overall Fnat value by at least 3%.

Docking result
In this study, we compare our docking solutions with
ZRANK [16,17] and external tool, FiberDock [39], specifi-
cally designed to handle conformation change after bind-
ing. We also compare our docking results with ClusPro
[19]. For unbound-unbound docking, experiments show
that our method significantly outperforms these existing
docking approaches.
Training set
We consider 79 complexes from Dockground [36] as
training set. In order to avoid over-fitting, we exclude
complexes, which share more than 30 percent identity
with cases in testing set. The average Irmsd value is
1.49Å, and the overall Fnat and Fnon−nat values are 85%
and 16%.
Evaluation on Benchmark v4.0
On Benchmark v4.0, the average Irmsd values predicted
by our method, ZRANK+FiberDock and ClusPro are
3.31Å, 3.89Å and 3.99Å, respectively. The overall Fnat
values predicted by these three methods are 63%, 49%
and 46%, respectively. The results are shown in Table 7.
The complexes are classified into three categories,

according to the magnitude of conformational change
after binding. In rigid-body group, the average Irmsd

values predicted by our method, ZRANK and ClusPro
are 2.89Å, 3.31Å and 3.33Å, respectively. The overall Fnat
values predicted by these three methods are 69%, 56%
and 55%, respectively. In medium difficulty group, the
average Irmsd values predicted by our method, ZRANK
+FiberDock and ClusPro are 3.38Å, 4.46Å and 4.71Å,
respectively. The overall Fnat values predicted by these
three methods are 59%, 39% and 30%, respectively. In dif-
ficulty group, the average Irmsd values predicted by our
method, ZRANK+FiberDock and ClusPro are 5.41Å,

Table 2 The relationship between interface prediction
and the value of sth.

Fnat Fnon−nat

sth = −100 38% 21%

sth = −50 62% 37%

sth = 0 65% 53%

sth = 50 68% 68%

sth = 100 69% 72%

Table 3 Comparison to Fernández-Recio method.

Our method Fernández-Recio

Fnat Fnon−nat P value Fnat Fnon−nat P value

Overall 65% 32% 6.47E-6 62% 60% 0.002

Table 4 Comparison to metaPPI, meta-PPISP and PPI-Pred.

Type Our method metaPPI meta-PPISP PPI-Pred

Fnat Fnon−nat P value Fnat Fnon−nat P value Fnat Fnon−nat P value Fnat Fnon−nat P value

E-Ia 65% 23% 1.15E-6 37% 39% 0.004 55% 44% 0.001 47% 54% 0.017

others 59% 42% 3.91E-4 22% 59% 0.128 26% 61% 0.137 31% 71% 0.206

Overall 62% 34% 3.09E-5 28% 51% 0.035 38% 54% 0.032 38% 64% 0.121
a E-I is the type of enzyme-inhibitor.
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6.18Å and 6.53Å, respectively. The overall Fnat values
predicted by these three methods are 36%, 28% and 21%,
respectively.
Evaluation on CAPRI
We evaluate docking solutions of our method, ZRANK
and ClusPro on CAPRI targets. CAPRI [37] is a commu-
nity-wide experiment to assess the capacity of docking
methods. The average Irmsd values predicted by our
method, ZRANK+FiberDock and ClusPro are 3.46Å,
4.18Å and 5.12Å, respectively. The overall Fnat values
predicted by these three methods are 45%, 40% and
32%, respectively. The results are shown in Table 8.

Assessment of energy items
To assess effectiveness of energy items, we re-optimize
coefficients in each case with only four of five items.
We evaluate docking poses of 176 complexes on Bench-
mark v4.0, by leaving one energy item out. The results
are shown in Table 9. The overall Fnat value for case
without Enb is 58.6%, for case without Epi is 60.5%, for
case without Eda is 60.2%, for case without Eaa is 59.3%,
and for case without Esc is 58.1%. The average Irmsd

values of five cases are less than that for case with all
items. As can be seen, five energy items are all effective,

among which structural neighborhood energy item is
the most effective one.

Conclusion
In this paper, we calculate structural neighboring prop-
erty on interface, through Voronoi diagram. We propose
a novel statistical method to extract interacting residues,
and interacting patches can be clustered as predicted
interface residues. Experiments show that our method
achieves better results than some state-of-the-art meth-
ods. Comparing to existing methods for binding sites

Table 5 Comparison to PINUP and ProMate.

Our method PINUP ProMate

Fnat Fnon
−nat

P
value

Fnat Fnon
−nat

P
value

Fnat Fnon
−nat

P
value

Overall 61% 45% 2.37E-
4

42% 55% 0.025 13% 47% 0.161

Table 6 Comparison to core-SVM.

Our method core-SVM

Fnat Fnon−nat P value Fnat Fnon−nat P value

Overall 63% 36% 5.54E-5 60% 46% 2.42E-4

Table 7 The prediction results by our method, ZRANK
+FiberDock and ClusPro on Benchmark v4.0.

Subseta No.
of
cases

our method ZRANK
+FiberDock

ClusPro

Irmsd Fnat Fnon
−nat

Irmsd Fnat Fnon
−nat

Irmsd Fnat Fnon
−nat

Rigid
body

123 2.89 69% 35% 3.31 56% 49% 3.33 55% 51%

Medium
difficult

29 3.38 59% 39% 4.46 39% 59% 4.71 30% 69%

Difficult 24 5.41 36% 58% 6.18 28% 67% 6.53 21% 77%

Overall 176 3.31 63% 39% 3.89 49% 53% 3.99 46% 58%
a Subset is based on the magnitude of conformational change after binding.

Table 8 The prediction results by our method, ZRANK
+FiberDock and ClusPro on CAPRI targets.

Target our method ZRANK+FiberDock ClusPro

Irmsd Fnat Fnon
−nat

Irmsd Fnat Fnon
−nat

Irmsd Fnat Fnon
−nat

T01 4.54 10% 89% 8.10 7 % 88% 12.6 0 % 100%

T02 1.53 87% 11% 0.51 96% 3 % 19.0 0 % 100%

T03 7.69 8 % 91% 1.92 60% 37% 3.61 23% 67%

T04 3.98 34% 60% 4.56 23% 72% 10.5 1 % 85%

T05 9.74 7 % 72% 10.1 5 % 90% 1.95 56% 38%

T06 5.76 16% 66% 3.10 28% 70% 3.68 23% 69%

T07 4.77 11% 87% 6.43 3 % 88% 12.1 0 % 100%

T08 6.07 16% 69% 1.09 47% 51% 6.50 8 % 91%

T09 2.85 33% 66% 9.77 8 % 80% 24.7 0 % 100%

T10 3.52 29% 66% 5.05 11% 77% 6.18 5 % 88%

T11 2.56 61% 35% 2.63 61% 38% 3.12 42% 54%

T12 1.55 76% 23% 0.65 84% 15% 0.78 93% 4 %

T13 0.63 94% 4 % 2.38 54% 39% 3.98 32% 64%

T14 9.62 4 % 87% 0.95 73% 25% 1.89 51% 45%

T15 1.40 69% 28% 0.86 91% 7 % 1.83 51% 47%

T18 3.08 25% 67% 1.86 66% 31% 3.70 21% 69%

T19 1.74 59% 38% 10.3 3 % 88% 2.58 32% 62%

T20 7.48 5 % 83% 6.31 7 % 79% 3.24 21% 74%

T21 1.56 84% 15% 3.23 36% 59% 2.78 67% 32%

T22 2.48 75% 19% 5.61 5 % 86% 3.12 42% 49%

T23 1.90 61% 34% 1.34 72% 27% 4.80 16% 70%

T24 2.01 50% 48% 3.13 20% 75% 5.65 2 % 89%

T25 2.13 57% 40% 1.51 64% 33% 1.85 65% 32%

T26 0.89 84% 14% 0.93 78% 20% 1.21 54% 43%

T27 1.95 60% 39% 1.86 59% 37% 3.70 21% 73%

T29 2.46 69% 25% 3.13 49% 50% 3.57 42% 49%

T30 7.48 9 % 79% 4.84 16% 77% 5.40 11% 75%

T32 2.98 34% 59% 9.45 3 % 95% 0.52 87% 12%

T35 3.71 29% 62% 8.71 4 % 82% 6.90 7 % 83%

T36 3.70 27% 69% 3.64 25% 66% 6.20 9 % 79%

T37 1.25 53% 45% 0.93 92% 7 % 6.89 5 % 88%

T39 0.87 75% 24% 15.6 0 % 100% 1.60 56% 42%

T40 2.17 56% 43% 0.43 86% 13% 1.17 62% 36%

T41 1.09 67% 30% 1.45 46% 51% 1.20 51% 48%

T42 3.70 28% 68% 4.13 15% 75% 0.91 75% 24%
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prediction, our approach improves overall Fnat value by
at least 3%.
In addition, structural neighboring property can be

adopted to construct an energy function, for evaluating
docking solutions. It includes new statistical property as
well as existing energy items. On Benchmark v4.0, our
method has average Irmsd value of 3.31Å and overall Fnat
value of 63%. On CAPRI targets, our method has aver-
age Irmsd value of 3.46Å and overall Fnat value of 45%.

Availability
The test sets of protein complexes and the prediction
results are available here
https://sites.google.com/site/guofeics/

structural_neighboring_property.
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