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Abstract

Background: Biological processes at the molecular level are usually represented by molecular interaction networks.
Function is organised and modularity identified based on network topology, however, this approach often fails to
account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging
in spatially or temporally independent functions may be inappropriately clustered into a single functional module.
To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as
spatial/temporal units of molecular activity.

Results: We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology
terms sufficient to represent each pathway’s genes. The Gene Ontology terms were used to annotate 271
pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a
network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways
performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network
with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory
and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the
network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the
organisation of our pathway network is biologically significant.

Conclusions: Our representation of molecular function according to pathway relationships enables analysis of
gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-
based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological
processes and organises pathways into functionally related clusters with interdependent outcomes.

Introduction
Biological functions must be carried out in a synchro-
nised manner to ensure proper timing of processes like
cell division and metabolism. Molecular functions arise
from complicated sets of physical interactions between
large numbers of proteins, RNAs and various regulatory
pathways, which can be difficult to reconstruct, represent
and analyse. In systems biology, molecular function is

mapped using molecular interaction networks. Protein-
protein interaction (PPI) networks are frequently used to
map protein functionality [1-5]. Within interaction net-
works, molecules are usually represented as single nodes
connected by physical interactions. Functionally similar
nodes tend to cluster together into dense sub-networks,
referred to as functional modules [4,6,7] or “pathways”
[8], forming the basis of network analysis to study func-
tion [3-5]. One aim of identifying sub-networks is to
illustrate the position and connectivity that molecules
and functional modules have within the network [7].
They are used to examine the organisation of different
functions within the cell, showing how information is
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passed through physical interactions to enable the system
to function as a whole. Many studies have used Saccharo-
myces cerevisiae to model functionality [8-11] due to the
availability of extensive PPI, genetic interaction (GI) and
gene annotation data, making it an ideal organism for
developing methods of functional organisation.
A great deal of research has focused on computational

methods used to identify clusters/sub-networks based
on topological features [12-14]. However, such networks
tend to utilise the sum of a molecule’s interactions,
without accounting for the temporal and spatial nature
of its interactions. Simply because two proteins can
interact does not mean that they will interact in every
context [15]. Clustering approaches tend to treat spatial/
temporal edges as if they are constant. These sub-net-
works, which represent functional modules, may as a
result bring together functions that are unrelated in the
cell. Evidence for this comes from discrepancies in com-
munity detection in networks created from different
data types [16]. The combination of different data types
has been shown to improve the functional homogeneity
of topological clusters.
To deal with the issue of spatial/temporal edges we

propose a method using experimentally validated path-
ways as the units of cellular processes. In this context
pathways represent groups of proteins shown to interact
under specific experimental conditions. This differs
from the definition used in Kelley (2005) [8], in which
clusters in PPI networks were described as pathways. In
our approach proteins that participate in multiple, con-
text dependent, interactions appear in multiple path-
ways, rather than being represented by a single highly
connected node. Gene Ontology (GO) annotations
derived from experimental evidence or sequence homol-
ogy were used to assign collective functionality to the
pathways. Annotated pathways were then connected
according to functional overlap. Linking pathways by
shared functionality enables us to examine the flow of
information among biological functions, giving insight
into the organisation of function within the cell.

Methods
Gene annotation data was integrated with pathway data
to produce a set of annotated pathways, which were
assembled into a functional network and analysed. An
outline of the methods is given in Figure 1.

Pathway data
S. cerevisiae pathway names and their constituent genes/
proteins were retrieved from ConsensusPathDB (CPDB)
([17]. Pathways were represented as sets of genes. The ori-
ginal data set consisted of 1050 pathways with 2114 genes.
CPBD collects pathway data from multiple databases,

which results in a large degree of pathway duplication

and overlap, making pathway consolidation necessary
[18]. Three types of data duplication were identified:
duplicated pathway names, duplicated gene sets, and
small pathways that were subsets of larger pathways.
Databases resourced by CPDB may assign slightly differ-
ent gene sets to identical pathway names, as a result of
varying pathway boundaries. Repeated pathway names
were identified and amalgamated into single entities by
merging the gene sets. Pathways with identical gene sets
were identified and redundant pathways were removed.
The gene/protein sets of some pathways were found to

be subsets of larger pathways. Dealing with this form of
data duplication is more complex, as the choice of which
pathway to retain is not obvious. The pathways retrieved
from CPDB were also highly variable in their size (see
Table 1 standard deviations). To reduce this variability
and ensure pathways with high functional specificity
were conserved, the pathway whose size was closest to
the median pathway size was retained (min (|length of
pathway 1 - median|, |length of pathway 2 - median|)).
Pathways containing less than three genes/proteins

were considered too small for reliable statistical analysis
of function and were removed. The effect that our pro-
cessing had on the data set is documented in Table 1.
The final data set consisted of 271 pathways and 1433
genes, with a median of six genes/proteins per pathway.

Generation of a full set of GO identifiers for each gene
Functional gene annotations were retrieved from the
Gene Ontology [19]. GO terms were assigned to the
genes within each pathway. Only experimentally derived
annotations or annotations generated using sequence
orthologs were used, leaving 132 (9%) of genes unanno-
tated (Table 1). Unannotated genes were omitted from
the data set. To increase annotation completeness, the
GO hierarchy was downloaded and parent annotations
were added to genes.

Removal of uninformative GO terms
The hierarchical nature of the Gene Ontology resulted in
some annotations being too general and frequent to be
considered informative. For this reason, and based on
assessment of the GO annotation frequencies across the
genes in the data set, annotations present in over 50% of
genes were removed; these deleted annotations are listed
in Additional File 1. These annotations are highly unli-
kely to be identified as enriched within a single pathway
during later processing stages. Removing them at this
point reduces repeated testing.

Annotation of pathways
GO annotations associated with pathway genes were
used to infer the function of the CPDB pathways. Only
biological process annotations were used, molecular
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function and cellular component information were not
incorporated. The Shapiro test [20] was performed to
ensure that none of the GO terms were randomly dis-
tributed across the pathways (p << 0.001). Enrichment
profiles were created to include all the GO terms
enriched within a pathway’s genes. Functional profiles
were then generated to show the most specific enriched
GO terms capable of describing the gene set. Functional
profiles should therefore be considered as describing the
main functional roles of each pathway, at the highest
level of specificity possible.

Enrichment profiles
Functional enrichment profiles were created using Fisher’s
exact test to identify all annotations enriched to a p-value
of 0.01, within the pathway’s gene set. The parameters

used were: instances of the GO annotation within the
pathway (how many genes the annotation was attributed
to), instances of other GO terms in the pathway, instances
of the annotation outside the pathway, and instances of all
other GO terms outside the pathway. Using an enrichment
score of 0.01 as the threshold for allocating GO terms,
annotations are assigned at 99% specificity. Rather than
correcting for multiple testing, we use later processing
stages to remove false positive annotations, which are
designed to be flexible to the varying specificity of GO
term-pathway relationships. P-values gained from Fisher’s
exact tests are therefore referred to as enrichment scores.

Functional profiles
The functional profile of a pathway is defined as a
reduced set of enriched GO annotations that give

Figure 1 Outline of methods used in the construction of the network and network analysis.

Table 1. Transformation of data during processing

Original data Duplicated
names
merged

Short (<3)
pathways
removed

Duplicate
gene sets
removed

Pathway
subsets removed

Unannotated genes removed

Total pathways 1050 990 715 553 272 271

Number of unique genes 2114 2114 2113 2113 1565 1433

Median genes per pathway 5 5 8 8 7 6

Mean genes per pathway 11.9 12.2 16.3 17.6 11.4 10.2

Standard deviation 23.2 23.9 27.0 28.8 16.5 13.05
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maximum representation of a pathway’s genes. Enriched
annotations that were only present in one gene/protein
within the pathway were excluded, as they are likely to
be spurious and give a poor representation of the path-
way’s function.
The remaining annotations in each pathway’s enrich-

ment profile were considered for inclusion in the func-
tional profile, by the ranking of their enrichment score
(lowest enrichment scores first). The first GO term is
selected and checked against the annotations of each
gene/protein in the pathway (Figure 2). Genes associated
with the annotation are considered represented. If all
genes were not represented by the first GO term, GO
terms associated with the remaining genes were consid-
ered. Any genes connected with this GO term were
then considered represented. This process was contin-
ued until all genes were represented or until all the GO
terms with significant enrichment scores were utilised.
This resulted in a set of functional profiles with a med-
ian of two annotations per pathway.

Pleiotropic genes within pathways
Pleiotropy describes genes that contribute to more than
one phenotype, implying that the gene/protein is involved
in more than one function. This may be due to presence
of the gene/protein in different pathways, or the genes
within a single pathway affecting multiple functions [21],
resulting in pathway multi-functionality. These additional
functions may be missed in the initial formation of func-
tional profiles, as only the most enriched annotations for
each gene set are included. A second processing stage was
added to capture pleiotropic annotations. Semantic dis-
tances between GO terms were taken from Ames et al.
(2013) [16]. Semantic distances were available for 88% of
GO annotations within the enriched profiles. Identifying
phenotypic pleiotropy is complex, as the distinction
between different characters and multiple attributes of a
single character is often unclear [22]. To ensure that the
terms we add are truly pleiotropic we have chosen to use
only terms that are semantically very different from exist-
ing terms in the functional profile.

Figure 2 Functional Profile creation. (A) The figure shows one pathway, with genes represented as circles and gene annotations shown in
boxes to the right of each gene. The aim of the algorithm is to select the minimum number of GO annotations necessary to represent all the
genes in the pathway, preferentially selecting annotations with low enrichment scores. In this example GO 5 is the annotation with the lowest
enrichment score and is therefore selected first. GO 5 is associated with genes 1 and 2, therefore GO 5 is sufficient to represent these genes. GO
4 is selected next and represents genes 2, 3, and 4; therefore GO 4 and GO 5 represent all the genes in the pathway.
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Within functional profiles, the median semantic dis-
tance between pairs of GO terms was 6 and 95% of GO
term pairs had semantic distances above 11.2. Therefore
a semantic distance of 11.2 was used as the measure of
pleiotropy. To avoid false positive annotations, GO
terms from enriched profiles were only considered
pleiotropic if they had an enrichment score below
0.0005. The semantic distance between each GO term
in each pathway’s enriched profile and all the GO terms
in the functional profile was measured. Any enriched
annotations that had a distance greater than 11.2 from
all of the GO terms in the functional profile, were con-
sidered pleiotropic and added to the functional profile.
Using these parameters 32 GO terms were added to 25
pathways.
A concern when adding pleiotropic terms was that large

semantic distances may be more likely to arise in larger
pathways with more genes, resulting in less specific path-
way functions. Plotting the number of GO annotations
versus maximum semantic distances between annotations
in enriched profiles (Figure 3, where circle size indicates
the number of genes in a pathway), shows that although
pathway size is linked to the number of enriched GO
terms, it does not affect the maximum semantic distance
between the terms. Terms in several small pathways’ pass
the threshold distance of 11.2, indicating that small path-
ways can contain semantically diverse enriched terms,

which if omitted from the functional profile, could result
in useful information being lost.

Network generation
The annotated pathways were used as nodes and linked
by shared functionality into a network. Edges were cre-
ated using the Jaccard similarity coefficient to measure
proportional overlap between pairs of pathway annota-
tions (Equation 1). Jaccard coefficient scores were used
to weight the edges in an undirected network.

J(A,B) =
|A ∩ B|
|A ∪ B| (1)

where A and B are two sets of GO terms.

Linking functionally similar annotations
Due to the size and hierarchical nature of GO it is pos-
sible that multiple annotations may describe very similar
cellular functions. Pathways with different annotations
describing highly similar functions would not be linked,
therefore the network would fail to represent the path-
ways’ functional similarity. To overcome this issue, links
have been created between nodes with semantically
similar annotations below a threshold (T) of 0.8 (Equa-
tion 2). We calculated pairwise similarity scores (Sab)
between GO terms (a and b) of pairs of pathways
(A and B), retaining only scores below T. The retained

Figure 3 Annotation variability within different sized pathways. The Y-axis represents the maximum semantic distance between GO terms
in each pathway’s enriched profile. The X-axis represents the number of GO terms in the pathway’s enriched profile. Circle size indicates the
number of genes in the pathway. Pathways with low numbers of genes and annotations can be seen achieving high maximum semantic
distances.
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similarities were normalised, then summed to give a
value (VAB) expressing the total similarity between the
annotations in both pathways (if a GO annotation
appeared in both functional profiles it was not com-
pared to itself). The resulting value was then divided by
the number of possible GO term pairs, to obtain the
edge weight (WAB). GO term pairs with scores below
the threshold of 0.8 represent the most extreme cases of
semantic similarity (<0.1% of semantic distances), ensur-
ing that the majority of the edges in the network repre-
sent identical shared annotations (74%).

∑
a∈A,b∈B

T − Sab

T
WAB =

VAB

|A| ∗ |B| − |A ∩ B| (2)

Genetic interaction analysis
GIs frequently occur between genes/proteins in path-
ways that share functions [10]. Based on this knowledge
it is expected that topological clusters (see Additional
File 2) in the network will be enriched for GIs. This was
tested using a set of GIs from BIOGRID [23]. Excluding
GIs involving genes that were absent from the data set
resulted in a list of 29,309 GIs. For each GI, the set of
pathways that each gene/protein participates in was
retrieved, and all pathway combinations were examined.
If both genes/proteins appeared in a single pathway, a
within-pathway GI was recorded, whereas if each gene/
protein appeared in a different pathway but the path-
ways were in the same cluster, a within-cluster GI was
recorded. GIs linking pathways from different clusters
or involving unclustered pathways were recorded as
uncharacterised.

Characterising the profiles of multi-pathway genes/
proteins
To establish whether genes/proteins acting in multiple
pathways are performing different roles, we performed
pairwise comparisons of semantic distances between the
annotations in multiple functional profiles. The sum of the
semantic distances was divided by the number of genes in
the profiles’ union.

Generation of the gene/protein overlap heat map
Many proteins were present in multiple pathways. To
examine the relatedness of these pathways’ functions, a
heat map was created to compare gene/protein overlap
against functional similarity. Pathways were arranged into
a tree based on functional similarity, shown on both axes.
This was calculated by carrying out pairwise comparisons
of all GO terms between functional profiles, and taking
the mean semantic distances. The tree structure was cre-
ated by QuickTree using the Unweighted Pair Group
Method with Arithmetic Mean joining method [24].

The heat map was created by calculating the percentage of
gene/protein overlap between pathways and colouring
cells accordingly.

Results and discussion
We produced a set of functionally annotated pathways,
which were assembled into a network to show func-
tional organisation. The major functional subgraphs are
identified and the relationship between functions is dis-
cussed. The functional variability of genes/proteins that
participate in multiple pathways is evaluated. GI enrich-
ment within network clusters was measured.
Biological functions require the cooperation of multi-

ple genes and proteins. Most functional representations
associated with individual genes/proteins are derived
from the curation of scientific papers [25] which focus
on small numbers of genes making them highly idiosyn-
cratic and often failing to capture the cooperative aspect
of biological function. In order to create systems-wide
models that are more suitable to biological interpreta-
tion and understanding, new representations are needed
that better reflect the cooperative nature of function.
Biological pathways are a suitable candidate for higher-
level representation of biological function, since they
group genes and proteins that interact to produce a spe-
cific cellular or physiological outcome.

Generation of a functionally representative set of
pathways
A set of 1050 S. cerevisiae pathways was obtained from
CPDB and processed to remove data duplication and
reduce the range of pathway sizes (pathway sizes in the
original data set ranged from 1 to 310). Removal of dupli-
cated pathway names and gene sets, as well as pathways
containing fewer than three genes, reduced the number
of pathways in the data set to 553 (Table 1). Further pro-
cessing of duplicated data selectively removed pathways
whose size deviated from the median, helping to reduce
the standard deviation from 23.2 in the original data set
to 13.1 in the final data set. The largest pathway in the
original data set was ‘Metabolism’ containing 310 genes,
which would have dominated much of the network. The
largest pathway in the final data set was ‘Protein proces-
sing in endoplasmic reticulum’ with a more comparable
78 genes.

Assignment of Gene Ontology Terms to Genes
Annotations were available for 92% of genes in the data.
Adding parent annotations to the GO terms initially
assigned to the genes increased the median number
annotations from two to 38 and the maximum from
eight to 149.
Removing highly frequent, uninformative annotations

from the data set reduced the median number of
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annotations per gene from 38 to 31. Within this final
data set the range of annotations assigned to genes was
large, ranging from one to 208; 75% of genes had
between 14 and 66 annotations. This variability may be
due to genes being attributed GO terms with large num-
bers of parent annotations or gene/protein multi-
functionality.

Generation of functional profiles of pathways
Fishers exact test produced large numbers of overrepre-
sented GO terms for each pathway (median 26, range 1-
159). This is in part related to the hierarchical nature of
the Gene Ontology, implying that many of these annota-
tions are describing a small number of functions at var-
ious levels of detail. Functional profiles were created to
give a succinct representation of each pathway’s specific
functions, by selecting a reduced set of GO terms to
describe the maximum number of genes/proteins inside
each pathway (median 2, range 1-9). Only 35% of path-
ways were described by a single GO term, demonstrat-
ing that functions defined by the Gene Ontology cannot
be directly mapped onto pathways, as the relationship is
more complex. A moderate correlation was found
between the number of genes/proteins in a pathway and
the number of GO terms in its functional profile (coeffi-
cient 0.5). The majority of pathways had unique func-
tional profiles, however 13% of functional profiles were
not unique to a pathway indicating that some GO func-
tions may be shared by discrete groups of pathways.

Improved functional profile comprehensiveness through
incorporation of gene pleiotropy
The functional profile algorithm (see Methods) selects
the most enriched annotations for genes/proteins within
the context of each pathway; however, multiple func-
tions performed by genes/proteins may be missed. As a
result of incorporating pleiotropic terms, 32 additional
annotations were added to 25 pathways, with each path-
way receiving between one and three terms. Examples
of the information added by including pleiotropic terms
are given in Table 2.
We analysed the semantic distance between GO terms

co-occurring within functional profiles (Figure 4). The
distribution of semantic distances indicates that func-
tional profiles have a much higher proportion of close

GO terms than enriched profiles. The most frequent
(mode) semantic distance between GO terms in func-
tional profiles is four (median 6.1), which is notably
lower than in enriched profiles (mode 6, median 6.2).
Merging the GO terms from within functional profiles
and within enriched profiles gives the distribution of
semantic distances between random pairs of annota-
tions, accounting for annotation frequency. Both func-
tional and enriched profile sets contain many more
semantically close genes/proteins than expected from
chance (modes 9 and 7 respectively). Although most
functional profiles contain semantically similar annota-
tions, some are functionally diverse, as shown by the tail
of the functional profile distribution (Figure 4). The
spike in frequency seen at the semantic distance of 11-
12 is due to the addition of pleiotropic annotations. A
peak is also seen at a semantic distance of 8-9, corre-
sponding to the mode distance in combined enriched
profiles. This indicates that the pathways may incorpo-
rate a second cellular function, possibly acting as func-
tional bridges, facilitating cellular coordination.

Functional diversity of pathways
Multiple functions can be distributed across the genes/
proteins within a pathway in three ways. Functional pro-
file annotations are either distributed across overlapping,
discrete (disjoint) or pleiotropic sets of genes within the
pathway (Figure 5 A, B & C respectively). The majority of
pathways (84%) had all of their functional profile annota-
tions distributed across overlapping gene/protein sets.
This overlap of functions illustrates how information is
passed from one function to the next, connecting cellular
functions. Instances where a pathway’s genes are split
into discrete functional groups may indicate that the
boundaries of pathway are in discord with the functional
boundaries presented by the Gene Ontology. This dis-
crete distribution of function occurs in 26 pathways,
many of which are positioned in areas of the network
involved with energy production and amino acid metabo-
lism. These pathways have a median of three GO terms
and the semantic distances between GO terms are higher
than those observed within other pathways (median 10).
Pleiotropic annotation distributions were created by the
addition of pleiotropic terms following initial functional
profile creation, which were present in 25 pathways.

Table 2. Examples of the data added through the inclusion of pleiotropic genes

Pathway Original Annotations Pleiotropic Annotations

sucrose degradation cellular carbohydrate catabolic process fructose import

trehalose degradation II cellular carbohydrate catabolic process glucose import

mannose degradation fructose import fructose metabolic process

The annotation overlap across the pathways illustrates the functional overlap of these pathways. Sucrose is degraded into fructose and trehalose is degraded
into glucose, prior to cellular import [35]. Mannose and fructose are both transported into the cell by hexose transporters and degraded into Fructose-6-
phosphate.
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The five pathways with the highest betweenness cen-
trality (range 0.33 to 0.19, indicated by square nodes in
Figure 6) indicate pathways that are particularly impor-
tant for the transfer of information within the cell.
Betweeness centrality was highest in: endocytosis; glyox-
ylate and carboxylate metabolism; mitochondrial protein
import; toll-like receptor cascades; and adenosine ribo-
nucleotides de novo biosynthesis. Endocytosis is the pro-
cess by which the cell imports proteins and lipids from
the cell surface and links the cell membrane and signal-
ling pathways to the metabolic pathways (Figure 6) [26].
Glyoxylate and carboxylate metabolism is necessary for
the cell to grow on fatty acids and C2-compounds such
as ethanol and is in centre of the network between lipid
metabolism and energy metabolism (Figure 6) [27].

Mitochondria participate in several metabolic processes
and import the majority of their proteins. The proteins
required depend on the metabolic process taking place,
therefore mitochondrial protein import connects many
cellular functions and is in the centre of the network
(Figure 6) [28]. Toll-like receptor cascades are essential
for the cell to respond to pathogens [29]. Within the
network this pathway connects cell membrane and
signalling pathways to the main body of the network
(Figure 6). Adenosine ribonucleotides de novo biosynth-
esis is necessary for transcription, DNA repair and repli-
cation. This pathway links gene expression to nucleotide
biosynthesis.

Functional network subgraphs
By mapping the most frequent GO terms onto the net-
work of pathways, functional groups of pathways are
clearly observed (Figure 7). Groups of pathways are
formed involving genetic processes, metabolic processes
and signalling. Energy metabolism is in the centre of the
network, reflecting the necessity of energy to all biologi-
cal functions (Figure 7). Transcription and nucleotide
processes dominate one side of the network, with pro-
tein and lipid metabolism on the other. Cell signalling
forms a detached branch attached to the main body of
the network by cellular transport processes. Functional
maps created by others using yeast PPI data also found
that cellular communication and signal transduction
were highly segregated from the rest of the network [5],
while the network constructed by Yook et al. (2004)
placed cellular organisation and transcription together
rather than energy metabolism at the centre of the net-
work. Protein synthesis was found to be the least con-
nected functional module, whereas in our network
protein synthesis pathways are found within the main
body of the network.
A further difference between our network and PPI

networks is that PPI networks tend to be hub-based net-
works, the network topology dominated by a small
number of highly connected hub proteins and having
scale-free properties [5,30,31]. Scale free distributions,
characterised as having a power law degree distribution
of P(k) ~ k-g where g is typically between 2 and 3 are

Figure 4 Semantic similarity of GO annotations within/between
functional and enriched profiles. The solid blue line shows the
frequency of distances between pairs of GO terms within each
pathway’s functional profile. The solid green line shows the
frequency of distances between pairs of GO terms within each
pathway’s enriched profile. Annotations in functional profiles were
merged and distance frequencies are shown by the dashed blue
line. This process was repeated for the enriched profiles to create
the dashed green line. Merging profiles gives the random expected
distance between annotations, controlling for annotation
frequencies. When merging profiles annotations appear multiple
times, however, annotations were not compared to themselves.

Figure 5 Distribution of multiple functions across genes within pathways. Functionality may be distributed across a pathway’s genes in the
following ways: pathways may have multiple functions distributed across overlapping genes (A); multiple functions may be divided into discrete
(disjoint) sets of genes (B); or pleiotropic genes may have multiple layers of functionality (C).
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Figure 6 Networks of functional links (edges) between pathways (nodes). Node colour indicates functional organisation of genes within
the pathway: the network shows the position of pathways with overlapping functionality (dark grey), discrete functionality (red), pleiotropic
genes (green) and a single function (light grey). Nodes showing discrete functionality (see Figure 5B) and pleiotropic genes (see Figure 5C) tend
to form clusters and are particularly frequent within energy metabolism. Pathways with both discrete and pleiotropic function (blue) are seen
linking discrete and pleiotropic pathways. The size of the nodes indicates the number of GO annotations attributed to each pathway. Square
nodes indicate the five pathways with the highest betweenness centrality. Pathways with as few as two annotations have discretely distributed
functionality or pleiotropic genes.
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Figure 7 Networks of functional links (edges) between pathways (nodes), showing major functional groups. This figure depicts the same
network as shown in figure 6, portraying the major functional groups. Colours represent frequent GO terms within the network. Pathways with
less frequent GO annotations are shown in grey. GO terms linked as semantically close (equation 2) have been attributed the same colour.
Labels show the major functional communities.
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common in both biological and non-biological networks
[32]. Within our network hub nodes would be expected
to appear as highly multifunctional pathways. However,
although the degree distribution did follow a power law
distribution (g = 1.3), the low gamma value indicates
that none of the nodes are disproportionately influential.

Co-occurrence with genetic interactions
GIs tend to occur within pathways and between function-
ally similar genes [8,10]. It is therefore expected that
pathway-clusters within the network will be enriched for
GIs. To test this the proportion of GIs that occurred
within pathways and within clusters (Figure 8) was com-
pared to output from randomised GI data (Table 3). We
find GIs within pathways were increased by a factor of
6.5 compared to randomised data and within-cluster GIs
were enriched by a factor of 5.5. The topological network
clusters are shown in Additional File 2. This confirms the
biological significance of the network’s organisation.

Pathway dependent gene/protein multi-functionality
Of the 1433 genes/proteins in the data set, 44% were
found in multiple pathways (Figure 9), with the maxi-
mum number of pathways a gene/protein appeared in
being 11 (gene AAT2). If genes/proteins perform differ-
ent functions in the context of different pathways then
the functional profiles of these pathways will be different.
Within our data set, 83% of multi-pathway genes have
distinct functional profiles for each pathway they partici-
pate in. Pathway profiles were considered distinct if they

did not contain identical sets of GO terms; however over-
lapping annotations were allowed. Annotation overlap
between functional profiles is expected to be partially due
to physical overlap between the pathways. Figure 10
shows the number of discrete (disjoint) sets of functional
annotations found in genes participating in multiple
pathways. Two or more discrete gene sets are frequently
observed indicting that the genes are participating in dis-
tinct, context dependent pathways.
To further explore the possibility that genes/proteins

acting in different pathways have different functions, we
calculated semantic distances between the functional
profiles of multi-pathway genes/proteins (Figure 11
orange line). The mode distance between functional
profiles is 4 showing that many of these pathways have
highly similar profiles. These are likely to represent
overlapping pathways. However, semantically distant
GO terms (scoring between 5 and 11) were much more
common between functional profiles than within func-
tional profiles (blue line). This indicates that the path-
way dependent functions of multi-pathway genes/
proteins are frequently very different and the peak in

Figure 8 Genetic interactions (GIs) within pathways and pathway clusters. GIs are classified depending on whether the genes are in the
same pathway, within two pathways in the same network cluster, or uncharacterised (between two pathways in different clusters or involving
unclustered pathways). Genes present in multiple pathways will result in GIs appearing in many pathway pairs. In these situations all pathway
pairs are classified separately. The yellow nodes show three pathways in a single cluster. The green node represents a pathway in a separate
cluster. All possible ways of connecting gene 1 and gene 2 across all pathways are explored.

Table 3. Enrichment of GIs within pathways and network
clusters

Genetic interaction data Randomised data

Within-pathway 5.45% 0.840%

Within-cluster 4.37% 0.800%

Percentages of within-pathway or within-cluster GIs, compared to randomised
interactions.
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frequency at a semantic distance of 8 indicates that
these pathways may be as functionally unrelated as two
pathways selected at chance.
Finally we examined the relationship between gene/

protein overlap and pathway function by organizing
pathways based on functionality then considering gene/
protein overlap (Figure 12). Functionally divergent path-
ways can be seen sharing genes, indicating that some
genes perform different roles depending on pathway
context.

Comparison to Over Representation Analysis
To validate our results we compared them to DAVID
[33], a tool commonly used for over representation analy-
sis (ORA). We used DAVID to group genes based on GO
annotation similarity. We then measured the number of

shared annotations between genes from the same or dif-
ferent ORA groups. Gene pairs within the same ORA
groups shared a mean of 3.9 annotations (n 63143) while
genes in different ORA groups shared a mean of 0.6 (n
764398), indicating that the edges within our network are
strongly supported by DAVID functional groupings
(Welch’s T-test gave p = 0.0).

Limitations
Our method produces pathway annotations from GO
data and organises pathways into a network representa-
tion of cellular function. The network contains 271 path-
ways, covering a wide range of functions including
metabolism, signal transduction, gene expression and
DNA maintenance. Yeast has 6604 genes of which 5151
are characterised [34], therefore the 1433 annotated
genes analysed within the pathways of this network
should not be considered as complete coverage. Our
method can however be adjusted to allow more genes
and pathways into the final data set, or to study specific
sets of pathways. The highly frequent GO terms in Addi-
tional File 1 highlights the bias towards metabolic path-
ways within the data set.

Conclusion
We have developed a method for organising cellular pro-
cesses based on function, which accounts for temporal
interactions modelled through pathways and allows mul-
tifunctional genes to be portrayed independently in their

Figure 9 Frequency of gene participation in multiple pathways.
Of the 1433 genes in the network, 797 (56%) genes were found in
one pathway, 304 (21%) of genes were found in 2 pathways, 332
(23%) genes were found in 3 or more pathways.

Figure 10 Functional variability of multi-pathway genes. Bars
indicate the number of pathways that multi-pathway genes
participate in. Bar colours indicate the number of discrete functional
profiles (no GO terms overlap) associated with genes’ pathways

Figure 11 Semantic distance between multi-pathway genes’
functional profiles. The solid blue and green lines show the
frequency of distances between pairs of GO terms, within each of
the pathway profiles. The dashed lines show the frequency of
semantic distances between random annotation pairs. The orange
line shows pairwise GO annotation distances between functional
profiles of pathways sharing a multi-pathway gene. Comparison to
the solid blue line shows increased semantic distances between the
functional profiles of multi-pathway genes.
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different biological contexts. The network illustrates the
organisation of function, as multiple pathways co-operate
to ensure cellular processes are coordinated. Pathway
multi-functionality was examined, determining that path-
ways vary greatly in the number and diversity of GO
functions they facilitate. The functional variability of
genes within multiple pathways was also demonstrated.
Appreciation of multi-functionality at the level of both

genes and pathways is critical for understanding pleiotro-
pic genes and their relationship to multiple phenotypes,
interpreting GIs and considering the transfer of informa-
tion within the cell. Our representation of cellular func-
tion will enable analysis of gene/protein activity in the
context of their functional roles, instead of the typical
molecule-centric approach. This method can be adapted
to incorporate different data types into the network, such

Figure 12 Relationship between pathway functionality and gene/protein overlap. Trees show pathways clustered by functional similarity.
The heat map shows gene/protein overlap. Dark cells from the diagonal showing pathway self-comparison have been removed. Dark cells along
diagonal show that similar pathways are likely to share genes, showing some degree of pathway overlap in the data set. Dark cells positioned
away from the diagonal show functionally unrelated pathways sharing genes.
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as expression data and genetic interaction data. Future
work will include incorporation of expression data to cre-
ate directed edges showing the information flow between
edges.

Additional material

Additional file 1: Table S1: GO annotations considered too frequent
to be informative (>50% of annotations) and removed from the
data set.

Additional file 2: Figure S1: Network clusters created using ONECLUST.
The Cytoscape plugin ClusterONE was used to calculate network clusters,
using weighted edges and a minimum cluster density of 0.25 to include
all the main clusters. (*.pdf).
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