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Abstract

Background: Resistance to therapy remains a major cause of the failure of cancer treatment. A major challenge

in cancer therapy is to design treatment strategies that circumvent the higher-level homeostatic functions of the
robust cellular network that occurs in resistant cells. There is a lack of understanding of mechanisms responsible
for the development of cancer and the basis of therapy-resistance mechanisms. Cellular signaling networks have
an underlying architecture guided by universal principles. A robust system, such as cancer, has the fundamental
ability to survive toxic anticancer drug treatments or a stressful environment mainly due to its mechanisms of
redundancy. Consequently, inhibition of a single component/pathway would probably not constitute a successful
cancer therapy.

Results: We developed a computational method to study the mechanisms of redundancy and to predict
communications among the various pathways based on network theory, using data from gene expression profiles
of hepatocellular carcinoma (HCC) of patients with poor and better prognosis cancers. Our results clearly indicate
that immune system pathways tightly regulate most cancer pathways, and when those pathways are targeted by
drugs, the network connectivity is dramatically changed. We examined the main HCC targeted treatments that are
currently being evaluated in clinical trials. One prediction of our study is that Sorafenib combined with immune
system treatments will be a more effective combination strategy than Sorafenib combined with any other targeted
drugs.

Conclusions: We developed a computational framework to analyze gene expression data from HCC tumors

with varying degrees of responsiveness and non-tumor samples, based on both Gene and Pathway Co-expression
Networks. Our hypothesis is that redundancy is one of the major causes of drug resistance, and can be described as
a function of the network structure and its properties. From this perspective, we believe that integration of the
redundant variables could lead to the development of promising new methodologies to selectively identify and
target the most significant resistance mechanisms of HCC. We describe three mechanisms of redundancy based on
their levels of generalization and study the possible impact of those redundancy mechanisms on HCC treatments.
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Background

Hepatocellular carcinoma (HCC) is one of the deadliest
cancers worldwide [1,2]. Treatments of advanced disease
are largely ineffective, mainly due to the lack of under-
standing of mechanisms responsible for the development
of the cancer and the basis of therapy-resistance mecha-
nisms. Cellular signaling networks have an underlying
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architecture guided by universal principles. One such
principle is that networks include redundant variables. A
robust system, such as cancer, has the fundamental ability
to survive toxic anticancer drug treatments or a stressful
environment mainly due to its mechanisms of redundancy.
Redundancy means that two or more elements potentially
could perform the same function and that inactivation
of one of these elements has no significant effect on the
biological phenotype or on the dynamic process. Conse-
quently, inhibition of a single component or even an en-
tire pathway would probably not constitute a successful
cancer therapy. Choosing drugs for therapy is a complex
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task. Researchers often choose a specific element to target
(e.g., the VEGFR2 tyrosine kinase inhibitor) using statis-
tical analysis of gene expression, or the target’s ability to
affect cell fate (ie., does the target act as an upstream
hub?). However, many cancer drugs fail or underperform
due to redundancies in their target’s pathways or the exist-
ence of alternative pathways. Efficiently targeting pathways
is problematic, because it is unclear whether we should
identify pathway targets by level of expression or by their
location in the pathway (e.g., upstream elements). There
are many examples indicating that redundancy serves as
a resistance mechanism with clinical implications. For
instance, several different ABC transporters can confer
resistance to the same drugs, so inhibitors must target all of
these transporters to be effective in reversing transporter-
related multidrug resistance [3].

In general, there are many computational and math-
ematical approaches to directly/indirectly address redun-
dancy, such as network theory. Network theory helps to
describe relationships between every pair of elements,
where the elements could be genes, proteins, metabolites,
etc. The relationships could be physical integration, corre-
lations, targets, etc. The network could be as complex
as we need it to be. For example, a multilayer network
can include many components and types of relationships,
depending on the objective [4]. Describing a system via a
network can help to find properties that could potentially
lead to treatment strategies, or better understanding the
process. Redundancy in a network, for instance, can be
expressed by the redundant paths that start at one node
and end at another, or by the redundant nodes that are
part of one layer and connect to the same node in the sec-
ond layer. The main objective of this current paper is to
describe the redundancy of biological function (i.e., path-
way) that is modeled using the network framework and
gene expression data.

HCC is known to be a heterogeneous disease. Thus,
numerous genomic-based classifications have been pro-
posed to describe its various forms. These kinds of studies
indicate the complexity in finding a consistent molecular
classification for such a problem. Gene expression profil-
ing has been used extensively in cancer research, provid-
ing useful information. A prediction of patient therapeutic
response based on tumor gene singularities would im-
prove overall efficacy of molecular therapies used to com-
bat HCC. Computational algorithms that predict the
recurrence of HCC based on clinical, pathological, and
gene expression data are the current approach in the field
[5]. The studies by Hoshida and colleagues based on gene
expression profiles highlight the significance of integrating
multiple data sets to provide a robust molecular classifica-
tion of HCC. They presented a meta-analysis of 9 inde-
pendent cohorts, including 603 patients [6,7], and defined
three robust HCC subclasses (termed S;, S5, and S5), that
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were correlated with clinical parameters. The S;-signature
reflected abnormal activation of the WNT signaling path-
way, the S,-signature was described by the proliferation
pathway as well as MYC and AKT activations, and the
S3-signature was associated with hepatocyte differenti-
ation. These three signatures were shown to predict the
recurrence of HCC. S; and S, signatures had poor overall
survival and those with the S3-signature had good overall
survival.

However, gene expression profiling provides an incom-
plete picture, since it does not include communications
among the genes. It is increasingly believed that cancer
cells involve a large number of biochemical components
that interact through complex networks and as a result,
display nonlinear dynamics [4]. Therefore, a system level
approach, rather than a gene-signature approach, is more
appropriate to handle this level of complexity and will
undoubtedly provide new insights for cancer research.
Constructing a co-expression network is the next logical
step following gene expression profiling. Gene Co-expres-
sion Networks (GCNs) have become a rapidly developing
area of study with implications in cancer research [8-10].
A GCN is an undirected graph, with genes forming the
network nodes, and significant relationships serving as
indirect network edges [11,12]. These relationships are
usually defined as statistical correlations (e.g., Pearson,
Spearman). A GCN does not necessarily include physical
gene interactions as would be found in a genetic inter-
action network, but includes information on the gene
connectivity with the entire system, which is usually
overlooked in other types of statistical analysis [13]. The
expression edges could be defined using other theoretical
approaches [9,14], such as using a generalized definition
of the pairwise correlation, as in the mutual information
method. One application of a co-expression network that
poses computational challenges is the identification of
functional gene modules (ie., clusters of highly inter-
connected genes). One example of a module could be a
signaling pathway [8,15].

The problem of redundancy at the functional level has
mainly been addressed by identifying differentially
expressed pathways based on gene expression data by
calculating activity levels for each pathway within the
samples [16,17]. The next development in this field was
the quantification of relationships between co-expression
pathways [18]. A pathway is not an isolated process. Most,
if not all, signaling pathway activities are driven by cross-
talk between other pathways within the same cellular
network. Determining the design principles behind this
network complexity is key to understanding the cellular
activity. Crosstalk between pathways has an important
effect on the dynamics of a system. For instance, it was
demonstrated that pathway crosstalk can generate ro-
bust oscillations in calcium and cAMP concentrations
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[19]. Moving from specific crosstalk between two pathways
to crosstalk between all pairs of pathways, researchers
proposed a global pathway crosstalk network [20,21]. This
approach assumes that a pathway edge exists if significantly
more protein-protein (P-P) interactions are detected be-
tween a pair of pathways than expected by chance. It
is important to note that in individuals with cancer,
the genetic and epigenetic changes that accompany
malignant transformation alter the known P-P network,
and thus a better reference network needs to be
described.

Our hypothesis is that redundancy is one of the major
causes of drug resistance, and can be described as a
function of the network structure and its properties.
Therefore, methods that deal with this structural network
problem should be developed. By this view, integration of
all the redundant variables could lead to the development
of promising new methodologies to selectively identify
and target the most significant resistance mechanisms in
HCC. Here, we develop a computational methodology to
analyze gene expression data from HCC cells with varying
degrees of responsiveness as well as non-tumor samples,
based on both the Gene Co-expression Network (GCN)
and Pathway Co-expression Network (PCN), where
the reference network is constructed based on random
sample selection from the two groups. We offered three
mechanisms of redundancy based on their levels of
generalization: Redundant Genes of a given pathway,
Redundant Crosstalk Paths between pair of pathways, and
the Redundant Circles (also known as triangles) of a given
set of pathway categories (Figure 1A). Using the Hoshida
et al. profiles [7], and the responsiveness classification of
Lee et al [12], we study the possible impact of those
redundancy mechanisms on HCC treatments (Figure 1B).
We find unique PCNss for better and poor overall survival.
Our results reveal the distinctive effect of Immune System
genes on HCC pathway crosstalk compared to the Signal
Transduction genes that are mostly being targeted by
current HCC treatments. This model can provide guide-
lines for better treatments that circumvent the resistance
of HCC. Our system-level analysis reveals a possible
reason for the limited effectiveness of current treatment
strategies and demonstrates how treatment efficacy could
be improved based on network connectivity.

Results

In this section, we introduce three redundancy mecha-
nisms based on network features, which include the two
levels of gene and pathway analysis of both poor survival
and better survival phenotypes. Figure 1A illustrates the 3
redundancy mechanisms (involving Genes, Paths, Circles),
and a schematic diagram of the Pathway Co-expression
Network method can be found in Figure 1B. Using the
gene expression profiles of robust molecular classifications
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of HCC published by Hoshida and colleagues, we deter-
mined the initial differentially expressed genes [7].

Co-expression networks were constructed using clinical
samples of 91 HCC tissues and 60 matched non-tumor
surrounding liver tissues (containing both hepatitis B
(HBV) and hepatitis C virus (HCV)). These samples were
previously classified by Lee et al. into two groups of
cancer based on overall survival, where group A demon-
strated poor overall survival and group B demonstrated
good overall survival [22]. The Gene Co-expression Net-
work that was calculated in this study is an undirected
graph, with genes forming the network nodes, and signifi-
cant relationships, defined as Pearson correlations, serving
as indirect network edges. Our new method of Pathway
Co-expression Network is also introduced here. Only
significant results are reported, and for more details see
the Methods section.

We created a multilayered network that includes
genes, pathways, and pathway families. We begin by
examining the first redundant mechanism, i.e., the effect
of Redundant Genes of a given pathway on the Pathway
Co-expression Network connectivity (Figure 1A;). We
then explore the abnormal crosstalk among the different
genes and pathways that is significantly different from
non-specific cancer networks. We address the important
concepts of network theory to elucidate HCC resistance
mechanisms (involving hubs, circles, network structure,
and other properties) [4]. In addition, we present two
other redundant mechanisms, Redundant Paths between
pair of pathways (Figure 1A,), and the Redundant Circles
of a given pathway category (Figure 1A3). We explore the
biological implications of several pathway examples, and
ask about their dependence on the gene level analysis.
Lastly, based on the Type A HCC network, we estimate
the impact of drugs that are currently under evaluation in
order to optimize treatment.

Genomic signatures of HCC poor and better survival
phenotypes

The HCC poor survival phenotype signature proposed
by Hoshida and colleagues [7] included 354 different
genes with 169 unique pathways, while only 261 genes
with 177 pathways were included in the better survival
phenotype. Note that the number of genes per pathway
is not uniformly distributed (Additional file 1). Sorting
the top 10 pathways with their subcategorized descrip-
tions, we observed that, prior to our analysis, in the poor
prognosis phenotype most pathways belong to the sub-
category Cellular Processes, while in the better outcome
phenotype most pathways belong to the subcategory
Metabolism. We apply these expression profiles and the
computed Pearson correlations between every pair of
genes, we study the Gene Co-expression Network and
Pathway Co-expression Network of non-tumor samples



Lavi et al. BMC Systems Biology 2014, 8:88
http://www.biomedcentral.com/1752-0509/8/88

Page 4 of 15
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Figure 1 Mechanisms of redundancy. (A) All genes function as parts of pathways (e.g. A-H, shown as yellow spheres). Some genes (e.g., a-m,
shown as purple squares) affect one another and form a gene sub-network (nodes are genes, and edges, shown as blue lines, describe correlations,).
Theoretically, if we assume only two pathways (A and B), this gene sub-network can be simplified to a single edge/crosstalk between the two
pathways (gray lines). The perturbation of a single gene may not significantly affect the expression of this pathway crosstalk. Thus, the redundant genes
in each pathway and their connectivity may act as a resistance mechanism. Moreover, each instance of crosstalk may be regulated by another pathway
and form a simple network structure, such as triangle/3-node circle. If the network is well connected, a single crosstalk may be included in many
3-node circles (i.e, redundant paths per crosstalk). An indirect approach to perturb a crosstalk would be through its shortest paths. Having many
alternative paths may lead to formation of a robust structure. Lastly, those alternative 3-node circles may be grouped together into categories

(e.g. 1-4 in magenta diamonds) based on their biological system (e.g., pathways G and H share the same category number 4). Thus, instead of having
six 3-node circles, we have two main category circles: [1-3] and [1,24]. These three mechanisms of redundancy reveal the impact of network structures
on the level of resistance. (B) Our method of determining the pathway co-expression network is described here in steps as a flow chart (see Methods

section for more details).

(termed N) and HCC samples with poor (termed type A)
and better (termed type B) survival groups using data
from Thorgeirsson and colleagues [22]. Our goal was to
provide a novel method of analysis that accounts for
redundancy with a pathway-network perspective that
highlights potential drug targets (for model details see
Methods).

Redundancy: limited effects of targeting a single gene on
the entire network

Mutations in Mitogen-Activated Protein Kinase (MAPK)
pathways are a frequent cause of increased cell prolifera-
tion, resistance to apoptosis, and resistance to other

therapies [23]. There are currently many clinical trials
evaluating MAPK pathway targeting in cancer patients,
using inhibitors such as Sorafenib, Sunitinib, or Gefitinib,
where the strategy is to target a gene or several genes, and
thus affect the entire pathway. We show here that in the
case of a well communicated pathway such as MAPK, this
approach by itself may not yield promising results, as
there are many redundant genes as well as redundant
crosstalk involving other pathways.

We explore here one level of redundancy and study
the changes in crosstalk between pairs of pathways when
a single gene is targeted. We generalize the gene net-
work to a pathway network, where each gene edge is
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translated into pairs of pathways. The pathway network
is composed of pathways as nodes, and the weight of a
pathway edge is the mean of all the gene correlations
that form it. We use permutation re-sampling of the ori-
ginal data to model the null distribution and calculate
the p-value of each pathway edge (see Methods). We
demonstrate how targeting a specific gene of the MAPK
pathway does not necessarily target its pathway and its
communications with other pathways in the network
(Figure 2). The MAPK pathway communicates with 90
other pathways with different degrees of intensity (weights)
based on the poor responders network (cancer type A,
Figure 2A). A gene sub-network can be simplified and
translated into a single weighted pathway edge, or many
pathway edges, depending on the initial information con-
cerning gene and pathway relationships, differentially
expressed genes in given cancer samples, and if the path-
way edges are significantly different from a non-specific
cancer case (Figure 2B). For example, four genes function
as part of the MAPK pathway: FGFR3, FGFR4, FLNA, and
AKTS3 (these genes function as part of 5,3,2, and 35 path-
ways respectively). We estimate the effect of deleting each
gene separately on the weight and p-value of the MAPK
sub-network (Figure 2C). We found that the gene con-
nectivity in a gene network and the number of pathways
in which a gene initially functions are valuable parameters
to estimate its effect on the pathway network, although
they may have a very limited effect on the global pathway
network. Our results demonstrate that in a case where a
single gene with only two linked pathways is deleted, but
that gene is correlated with many genes, the connectivity
of the MAPK pathway sub-network is affected. For ex-
ample, removing the FLNA gene reduces the connectivity
of the MAPK pathway: from 90 to 74 pathways. On the
other hand, the number of linked pathways is important
when the number of correlated genes is low. Deletion of
AKT3, which functions as part of 35 known pathways,
(i.e., a central gene), reduces the size of the pathway
sub-network to 83 pathways. This first redundancy-
based mechanism shows the limited changes in the
overall pathway crosstalk based on a single target gene,
which may explain the occurrence of resistance to tar-
geted cancer therapy.

Simplifying the complexity: a systems approach to
studying pathway network connectivity

As mentioned earlier, studying the structure of a net-
work is a critical first step to reveal redundancy and re-
sistance mechanisms. Here we explore several network
properties that quantify the topology and complexity of
both gene and pathway cancer networks (Additional files
2, 3, 4 and 5) and present our approach to finding targets
based on network features. A weighted gene network
based on Pearson correlations (with no threshold) and
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its higher-correlated sub-network (|correlation|>0.5) are
constructed separately for each HCC type. Both cancer
gene networks are well-connected, with many circles
composed of 3 or 4 correlated genes. These special
circle structures, which are composed of a limited num-
ber of genes that affect one another, have a direct effect
on the probability of having modules and limit the effect
of targeted therapy by offering redundant regulator
motifs and/or feedback loops [24]. In both cancer gene
networks there are more positive correlations than
negative. In cancer type A, about 40% of the gene corre-
lations are above 0.5, while in cancer type B only 17%
are above 0.5 (in absolute values). To confirm pheno-
type specificity, we compared the properties of each
network to the random networks, and found signifi-
cant differences (see Additional files 2 and 3). Overall,
both cancer gene networks have a structure that is
less connected than random cases, with lower numbers
of edges, edge densities, averages of node degrees,
and averages of clustering coefficients, but with a
higher number of nodes (network features are given in
Additional file 4).

Local regulations

When the gene network is generalized to a pathway net-
work, the structures of both cancer pathway networks
(types A and B) appear to include many small circles
(order of 3 and 4) that are connected to most pathways.
For example, the crosstalk between the MAPK pathway
and Focal Adhesion in the cancer type A network is
included in 63 different 3-node circles (Figure 3). This is
the second redundancy mechanism, shown as Figure 1A,.
The 63 shared neighboring pathways can be grouped
into 23 pathway categories. For example, two circles that
are associated with the Lipid Metabolism category would
be [MAPK pathway, Focal Adhesion, Steroid Hormone
Biosynthesis] and [MAPK pathway, Focal Adhesion,
Sphingolipid Metabolism]. Thus, this structure reveals
multiple redundant circles from the same category com-
binations. Although there are thousands of small circles
(network features are given in Additional file 5), most of
them function as part of the same pathway categories.
We investigated the pathway types of all pathways that
are included in 3-node circles and found that for the
cancer type A network (with high gene correlation), most
of the pathways from the categories Immune System,
Infectious Diseases, and Immune System Diseases are part
of those regulated structures (Additional file 6). The most
common type of 3-node circles combines three pathways
from those three categories, i.e., 3 pathways with one from
each category. The top 100 most common types include
at least one of those 3 pathways (Additional file 6).
As for the cancer type B network (with high gene
correlation), most of the pathways from the categories
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Figure 2 Targeting the MAPK signaling pathway. (A) The MAPK pathway communicates with 90 other pathways from the cancer type A
network, including crosstalk with Focal Adhesion. (B) MAPK and Focal Adhesion crosstalk is basically the outcome of the sub-network of all
correlated genes included in at least one of these two pathways. (C) Although all of these genes function as part of the MAPK pathway, they
may have different effects on MAPK connectivity, since each gene correlates with different genes and pathways. Measuring the impact of each
gene by the number of the resulting significant edges could give us a way to predict the gene’s involvement and intensity related to MAPK
connectivity. For instance, FGFR3 is included in 5 pathways and on average is connected with 15% genes per pathway edge. The deletion of
FGFR3 changes the number of pathways that crosstalk with the MAPK pathway, from the initial 90 crosstalks to 87 crosstalks.

of Amino Acid Metabolism, Carbohydrate Metabolism
and Lipid Metabolism are part of those regulated
structures. The most observed type of 3-node circles
is the combination of [Amino Acid Metabolism, Carbohy-
drate Metabolism, Lipid Metabolism]. The categorized
circles are the third redundancy mechanism, shown as
Figure 1As.

The gap between gene hub and pathway hub

Another important feature of the network is Node degree.
Node degree is the number of nodes/elements in a
network that correlate/crosstalk with a specific node. The
nodes with the highest connectivity values are referred to
as hubs and are crucial to the entire system. We explore
here several hubs from both gene and pathway networks
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Figure 3 Redundant paths between the crosstalk of MAPK and focal adhesion pathways. (A) The sub-network of pathways that engage in
crosstalk with either the MAPK pathway or the Focal Adhesion pathway are shown in yellow. Among them, pathways that are targeted by the
drug sorafenib are red, pathways with the highest node degree (the first 8 hubs, see list in Figure 4A) are blue, and the immune system pathways
(with highest node degree, see list in Figure 4A) are green. The 63 redundant 3-node circles included in this crosstalk highlight the complexity of
targeting this crosstalk with an indirect approach, but on the other hand indicate its importance due to the many regulators, among them being
the hubs, the immune system, and pathways targeted by sorafenib. (B) The redundant 3-node circles can be grouped based on their pathway
categories (category shown in magenta), so a more compact meaningful representation of those circles can be written: instead of 63 pathway
circles, we have 23 category circles. For example, 9 of the 3-node circles are from the Infectious Diseases category, and 6 others are from the
Immune System category. (C) All pathway categories with degree above 1.

(written as hubgene, hubpthway), Of each cancer type and
discuss their HCC clinical and experimental relevance and
mention current progress in the field (see also Discussion
and conclusions section). Gene and pathway hubs of both
cancer types are listed in Additional file 7. In the poor sur-
vival gene network (cancer type A), the 10 top connected
genes are LAPTMb5, ASAH1, IQGAP1, GLIPR1, CD47,
ARHGDIB, SRGN, RAB31, FCGR2a, and CD53. These

10 hubsge,. form a complete graph, i.e., every pair of
genes is correlated by a unique edge (with |Pearson
correlation| > 0.5), which demonstrates the global structure
of this gene network, and may imply the existence of
common regulatory mechanisms.

In the gene network of cancer type B, the 10 top
connected genes are ALAS1, ALDH3A2, CTH, ACSL1,
SRD5A1, HSD17B4, GLYAT, CBR1, HGD, and HADH.
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All of these genes are included in part in the metabolism
pathway category: Amino Acid Metabolism pathways, 5 x
Carbohydrate Metabolism, 5 x Lipid Metabolism, 1 x En-
ergy Metabolism. Some of these genes share pathways. For
example, the genes ALAS] and CTH function in Glycine,
Serine and Threonine Metabolism (Additional files 1 and 7).
Recently, many metabolomics profiling of HCC have been
reported, in which the above-mentioned pathways are
confirmed in part by their independent metabolomics
analysis findings, with additional important information on
their communications [25-27]. In addition, the hubsge,, that
function as part of metabolism pathways, also correlate
with the Endocrine System and Transport and Catabolism
pathways. One example is the hubge,. ACSL1, which is
known to be involved in four pathways: fatty acid metabol-
ism, PPAR signaling pathway, peroxisome, and adipocyto-
kine signaling pathway. The PPAR signaling pathway is also
a hubpway in the cancer type B pathway network. This
hub highly positively crosstalks with 133 other pathways,
among them being ABC Transporters, Adherens, Tight,
and Gap Junctions. It also communicates with many HCC
targeted pathways, such as Wnt, Tgf-beta, Vegf, Jak-Stat,
Insulin signaling pathways, and is negatively correlated with
Lysosome, RNA degradation, and Toll-like receptor signal-
ing pathways. Interestingly, the opposite is true in the
cancer type A pathway network, where positive crosstalk
is observed between the PPAR signaling pathway and the
Lysosome pathway, in addition to other positive crosstalk
with pathways such as Cell cycle, Regulation of actin cyto-
skeleton, and Cytokine-cytokine receptor interaction.
Furthermore we asked, given the connectivity of each
gene in the gene network, and the pathway information
that initially was obtained (e.g., from the KEGG database),
if it would be sufficient to assume that the most connected
pathways (i.e., hubp.hway) in the pathway network are
nothing more than the pathways of hubsg.,. or/and
pathways that initially include many genes? Are there
any hubsp,hway Where this is not true? It appears that
there are several hubs,,hway from the Cancer type A
group that do not have these two characteristics. For
instance, in the case of cancer type A, there are at least 5
pathways that are less connected than expected based on
the two characteristics: Focal Adhesion, Lysosome, Gap
junction, Sphingolipid metabolism, and mTOR pathway.
Also, there are at least 3 pathways that are more connected
than expected: MAPK, Wnt, and Jak-STAT signaling path-
ways. While in the case of cancer type B, most of the hub-
Spathway Nave these two characteristics, except Glycolysis/
Gluconeogenesis, which is less connected than expected.

Current targeted treatments of HCC and key sub-networks
of pathways

There are currently several clinical trials evaluating
targeted therapies for HCC, including Sorafenib, Sunitinib,
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Gefitinib, Lapatinib, Erlotinib, Brivanib, Everolimus,
Rapamycin, Linifanib etc. [28-30]. These drugs mostly tar-
get pathways in the Signal Transduction category, and
few in other categories such as Cell Communication,
Cell Growth and Death, Cancer, Immune system, and Sig-
naling Molecules and Interaction. Here we study how and
to what extent the newest emerging drugs may affect the
connectivity of the targeted pathways. Targeting multiple
nodes is a common way to measure network robustness
and to estimate a drug’s effect on the network connectivity
[31,32]. Although each drug affects its targeted genes
differently, with different degrees of impact on their path-
ways, it is essential to estimate the potential effect on the
global network scale, where each drug is assumed to
equally affect its targeted pathways. Thus, at this point, we
make a simple assumption that drugs with the same tar-
geted pathways have the same effect. From the 18 drugs
that we examined (Additional file 8), Sorafenib targeted
the most pathways (8 pathways). Therefore, we describe
the impact of Sorafenib in detail (and some other drugs in
Figure 4), while the results of all drugs can be found in
Additional file 8.

We first examined the entire pathway network of
cancer type A and modeled the effect of targeting com-
binations of pathways simultaneously, by deleting nodes
from the network (shown in blue, Figure 4). Specifically,
we studied the 8 top hubs (5% of all nodes). Although
they engage in crosstalk with 91% of all pathways in the
network, the connectivity of these 8 top hubs includes
22% of the original network edges. When excluding
these 8 hub edges and examining the remaining path-
ways in the network, we found only a single node that
was excluded (in addition to those 8 hubs). Hence, admin-
istering drugs that affect only the top hubs would not
necessarily cause dramatic changes. Here, we only demon-
strate the connectivity of the network with relation to
pathways that can be completely targeted by administering
different drugs.

Sorafenib

Sorafenib targets 8 pathways including MAPK, ErbB,
Cytokine-cytokine receptor interaction, Chemokine,
mTOR, and Natural killer-cell-mediated cytotoxicity
(KEGG: D08524). These pathways are correlated with
82% of all pathways in our pathway network, consti-
tuting 15% of all interactions (shown in red, Figure 4).
However, when deleting Sorafenib’s pathways from the
original pathway network of cancer A, most top hubs
remain as in the original network, except the following
pathways that dramatically lost their high connectivity:
Regulation of Actin Cytoskeleton, Leukocyte Transen-
dothelial, Adherens Junction Migration, Focal Adhe-
sion, and ECM-Receptor Interaction. The new hubs,
after eliminating Sorafenib’s pathways are Metabolic
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) . Edges of first Nodes after .
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(first sub-network) sub-network (%)

Sorafenib 5.84 82.47 14.76 93.51 22.47
Erlotinib 4.55 79.22 11.91 94.16 18.89
Everolimus 1.30 66.88 4.27 98.70 6.64
Cixutumumab 1.95 80.52 8.07 98.05 13.70
Bevacizumab 2.60 75.32 6.60 98.05 11.40
Gefitinib 3.90 79.22 10.15 94.81 15.94
Lapatinib 3.25 78.57 9.89 95.45 15.90
Sunitinib 3.25 78.57 8.91 96.10 14.82
Linifanib 3.25 82.47 9.31 96.10 15.47
Brivanib 1.95 83.77 8.10 96.75 14.72
Ramuciumab 1.95 73.38 5.07 98.70 9.26
First 8 Hubs 5.19 90.91 22.00 94.81 37.44
First8 Immune 5.19 81.17 17.50 94.81 31.27

System pathways

Figure 4 Targeting strategies for cancer type A. (A) The drug sorafenib targets 8 pathways in our network (red). We compared the network
connectivity of the targeted pathways of each drug with the first 8 hubs (blue), and the highest connected Immune System pathways (green),
with results shown in panel B. The targeted pathways have different node degrees, plotted as spheres, where the blue are the highest. All
pathways that are not part of panel A table are shown in yellow. On average, the immune pathways are more connected than the pathways
targeted by sorafenib. At right, illustration of the pathway network of cancer type A, with |gene correlation| 2 0.5. The compact structure of the
network can be seen clearly by the dense area in the center, where all the immune system pathways are located. (B) The connectivity of the
targeted pathways is measured by the first neighbors, the sub-network of the first neighbors, the number of nodes after deletion of the targeted
pathways, and the number of 2-node circles of at least one of the targeted pathways. A list of each drug and its matching targeted pathways is

given in Additional file 8.
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Pathways, Phagosome, Endocytosis, Axon Guidance,
Long-Term Depression, FC Gamma R-Mediated Phagocyt-
osis, Osteoclast Differentiation, Cell Adhesion Molecules
(CAMS), and Chemokine signaling pathway. Note that the
secondary neighbors of Sorafenib’s pathways (and prac-
tically from all drugs) include approximately the entire
network, which demonstrates the compact structure of
the original network. Still, all the drugs produced limited
changes in global connectivity mainly due to the high
number of low-ordered circles that tightly connect them.
We scanned the 3-node circles that include Sorafenib’s
pathways, and found that the three most observed category
circles are: [Signal Transduction, Infectious Diseases,
Cancers], [Signal Transduction, Immune System, Cancers],
and [Signal Transduction, Signaling Molecules and Inter-
action, Immune System]. Thus, there is a need to under-
stand the crosstalk between Sorafenib’s pathways and the
Immune System, Infectious Diseases, and Signaling Mole-
cules and Interaction pathways.

Immune system

Throughout our analysis of redundancy mechanisms,
the pathways of the immune system were found to play
an important role in the aggressive HCC cancer type
(type A). There are two hubsgep. that function as part of
the immune system pathways. Moreover, current targeted
therapies sometimes target immune system pathways.
For instance, both Sorafenib and Lexatumumab target
the ‘Natural killer cell-mediated cytotoxicity’ pathway.
In addition, all other HCC drugs were shown to crosstalk
with immune system pathways in that pathway network.
Furthermore, we found that most of the pathways that are
included in 3-node circles crosstalk with the pathways of
the Immune System.

We further examined the effect of changes in the
Immune System’s pathways on network connectivity.
We compared the connectivity of 4, 6, or 9 Immune
pathways vs. the connectivity of targeted pathway ther-
apies with the same number of pathways (shown in
green, Figure 4). The Immune pathways that we exam-
ined were Leukocyte Transendothelial Migration, Fc
Gamma R-mMediated Phagocytosis, Chemokine sig-
naling pathway, Hematopoietic Cell Lineage, Antigen
Processing and Presentation, T Cell Receptor signaling
pathway, NOD-Like Receptor signaling pathway, Fc
Epsilon RI signaling pathway, and B Cell Receptor
signaling pathway (in this order, based on their net-
work connectivity). We found that by comparing the
connectivity effects of administering the drugs trastu-
zumab, bevacizumab, and lexatumumab vs. targeting
only the first 4 Immune pathways, trastuzumab and
the Immune pathways showed approximately the same
high level of first neighbor connectivity compared to those
drugs, but the Immune pathways participate in more
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3-node circles (15%, 11% and 9% vs. 19% respectively,
Additional file 8). For drugs that target 6—7 pathways,
we compared the drugs erlotinib, gefitinib, and linifanib
with the first 6 Immune pathways, and found that the first
6 Immune pathways have the highest first neighbor con-
nectivity, and highest number of 3-node circles (14%, and
26% respectively). Lastly, we compared the first 8 hubs,
sorafenib’s pathways, and the first 8 Immune System most
connected pathways. Targeting the hubs produced the
most effective results, following by the Immune pathways
and then sorafenib. For example, the percentage of 3-node
circles included in the 8 hubs, the 8 pathways of Immune
System, and the 8 pathways targeted by sorafenib are 37%,
31% and 22% respectively (Additional file 8).

Discussion and conclusions
The mechanism of redundancy in biology has been stud-
ied for decades [33]. Many reports have shown that cancer
cells can exploit redundancies in pathways, feedback
loops, and crosstalk in order to survive despite the admin-
istration of specific drug treatments [34]. As a result,
many studies have focused on revealing pathway crosstalk
and suggesting methods to estimate the impact of drugs
[35]. Cancer can be described as a disease resulting from
abnormal intra- and inter-cellular communications. It
includes abnormal levels of expression of known pathway
crosstalk, but also initiates new cancer pathway crosstalk
to deal with unfamiliar stressful conditions such as im-
mune response, hypoxia, toxic drugs, and even metastasis.
The resulting network of these abnormal pathway cross-
talks is the outcome of all the communication of cancer
cells with their environment. Thus the expression of these
extracted cancer cells should include evidence of these
prior cellular communications. The ability to predict
cancer pathway crosstalk would contribute to our un-
derstanding of the cellular functions of cancer cells and
help predict the response of those cells to various treat-
ments. We introduce here a computational methodology
to analyze gene expression data from hepatocellular
carcinomas of varying responsiveness and non-tumor
hepatocytes, and offer treatment strategies that are
designed to overcome redundancy and resistance mecha-
nisms. We discuss the impact of three mechanisms of
redundancy, and demonstrate in detail their effect on
the connectivity of the crosstalk between the MAPK sig-
naling pathway and the Focal Adhesion pathway. The
MAPK pathway is one of the pathways most targeted by
current HCC treatments, and Focal Adhesion is one of
the most communicated pathways in the cancer type A
network; thus, the crosstalk between them is a unique
and important communication that should be examined
thoroughly.

First, we estimated the effect of redundant genes by
separately deleting or perturbing genes that participate
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in the MAPK pathway: FGFR3, FGFR4, FLNA, and AKT3.
The first two genes are part of the MAPK pathway, but the
second two genes are also involved in Focal Adhesion. This
crosstalk is still statistically significant (p-value < 0.05)
when excluding FGFR3, FGFR4, and AKTS3, although
there is some variation in their pathway weights. Second,
we explore the redundant short paths between the MAPK
and Focal Adhesion pathways through an intermediate
pathway, by finding all 3-node circles (also termed trian-
gles). We found 63 intermediate pathways that engage in
crosstalk with both pathways. Therefore, targeting one or
more of those 63 pathways would probably not disrupt the
crosstalk between the MAPK and Focal Adhesion path-
ways, which would be considered an undirected approach.
Third, we examined if those 3-node circles are part of the
same biological system. In other words, are they redundant
circles? Intermediate pathways can be grouped together
based on their biological properties (i.e., pathway category).
For instance, the Leukocyte Transendothelial Migration,
Toll-Like Receptor signaling pathway, Hematopoietic Cell
Lineage, and Fc Gamma R-Mediated Phagocytosis path-
ways are all part of the Immune System category. Thus,
the 63 circles can be grouped and the crosstalk frequency
of each biological system with MAPK and Focal Adhesion
pathways can be estimated. We were able to group 9 cir-
cles related to Infectious Diseases, 8 related to the
Immune System, 5 to Signal Transduction, 5 to Cancers,
4 to Translation, etc. (Figure 3).

Network structure reveals weak spots in the cancer network
There are many ways to study the vulnerability and
robustness of a network, but all are dependent on the
network structure. In this work we demonstrate how the
global and local network features can guide us to find
better targets to treat HCC. Among other features, we
discussed the hubs in both networks. We found many
confirmations that the hubsge,. are clinically and experi-
mentally observed to be important to the development
and treatment of HCC, and to solid tumors in general.
For instance, CD47 functions as part of the ECM-receptor
interaction pathway. CD47 is also a ligand for SIRPa, a
protein expressed on the surface of macrophages and
dendritic cells. Recently, Weiskopf et al. [36,37] described
an antibody-mediated tumor immunotherapy that over-
comes resistance. Their analysis of patient tumors and
matched adjacent normal tissues suggests that all human
solid tumor cells require CD47 overexpression to suppress
phagocytic innate immune function, and suggests CD47
as a validated target for cancer therapies. A second ex-
ample is IQGAP1, a member of the IQGAP family of
scaffold proteins, and a key mediator of cell adhesive
and cytoskeletal rearrangements. IQGAP1 binds to
many cancer-related proteins, such as Cdc42, Racl, E-
cadherin, beta-catenin, calmodulin and members of the
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MAPK pathway [38,39]. IQGAP1 overexpression has been
observed in numerous kinds of tumors. It affects the
development of HCC by regulating many important sig-
naling pathways, such as cell proliferation, motility, and
invasion. Future developments related to IQGAPs may
reveal new therapeutic targets [40,41].

Targeted therapies have been developed using several
promising drugs for advanced HCC, including sorafenib,
sunitinib, brivanib, cetuximab, everolimus, erlotinib, and
lapatinib [42-44]. Sorafenib is a small molecule that
inhibits tumor cell proliferation and angiogenesis and
increases the rate of apoptosis in a range of tumor
models. Ongoing studies and trials are evaluating the effi-
cacy and tolerability of combining/sequencing Sorafenib
with other targeted agents that inhibit different/parallel
pathways in HCC (e.g., erlotinib, sunitinib and brivanib
[42]). An open question is whether synergy is more likely
to occur by combining drugs that share the same path-
ways at high doses or those that affect highly connected
pathways at lower doses.

Choosing drugs for therapy is a complex task. Re-
searchers often choose a specific element to target (e.g.,
VEGER?2 tyrosine kinase inhibitor) using statistical analysis
of gene expression, or the target’s ability to affect cell fate
(ie., does the target act as an upstream hub?). However,
many cancer drugs fail or underperform due to redundan-
cies in their target’s pathways or the existence of alternative
pathways. Efficiently targeting pathways is problematic,
because it is unclear whether we should identify pathway
targets by level of expression or by their location in the
pathway (e.g., upstream elements). Determining a pathway
network-based redundancy consisting of genes that are
over-expressed in poor prognosis HCCs could help to iso-
late targets that when inhibited would disrupt or destroy
the cancer network and hopefully increase the probability
of cell death.

We estimated the relationship between the network
connectivity and its hubs, and found that inhibiting the
first 8 hubs had a substantial effect on the remaining sub-
network, mainly due to the compact structure of the net-
work where the hubs are also part of many regulated small
circles. Also, we compared the results from Sorafenib’s 8
targeted pathways, as compared to the 8 highest connec-
ted Immune System pathways. The Immune System path-
ways were found to be part of most of the 3-node circles.
The results clearly showed that the Immune System
pathways closely regulate most pathways, and therefore
dramatically change the network connectivity when they
are targeted, more than all currently employed HCC
targeted drugs. One prediction from these studies is
that sorafenib combined with a drug that inhibits Im-
mune System pathways as compared to combination
with another targeted drug, may lead to better treatment
outcomes. Many of the immune system genes whose
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expression is studied here are likely to be derived from
lymphocytes, neutrophils and macrophages that have
infiltrated the HCC tumors. Although expression of these
genes in the tumors themselves cannot be ruled out, these
results suggest that there is crosstalk among HCC gene
pathways and immune system cell pathways, and that
targeting the immune cell pathways can affect treatment
outcomes for individuals with HCC.

The novelty of this study is not defining new
network features, but creating a multilayered network
that includes genes, pathways, and pathway families
using gene expression data. By comparing the different
networks (for different cancer types and non-tumorous
tissue), and by evaluating the redundancy on different
levels, we can estimate the effect of each element, in a
multilayered network, on the biological phenotype.

Future perspectives

In this initial analysis, we have demonstrated changes
at different network levels by completely excluding
the targeted genes, and have examined the impact on
the network connectivity with relation to different
drug targets. A future approach to improve prediction
of drug effects on the pathway network would involve
changing the initial gene expression after inhibiting
several main pathways (and consequently the two initial
gene and pathway networks) and only then comparing the
changes propagated throughout the network. This process
would require data gathered before and after treatment,
ideally in cancer studies in vivo, or in ex vivo systems
that mimic in vivo physiology. Moreover, our method
could be further expanded to study the pathway net-
work based on data from a single patient, so intratu-
moral heterogeneity and individual variation would be
considered. In addition, the redundant mechanisms of
classical multidrug resistance could be discussed using
our approach.

In this paper we discuss the importance of ‘node
degree’ in our networks, in addition to other features.
But, there is a complementary network feature to ‘hubs,
i.e,, bottlenecks. Bottlenecks can be defined as nodes
with a high “betweenness centrality” [45]. Bottlenecks
are, indeed, key connector nodes with properties that
relate to the function and dynamics in interaction net-
works. However, as Goh and his colleagues reported, in
several interaction networks that they examined, the
betweenness of a node is correlated to its degree [46].
Therefore, it is not clear whether node bottlenecks
are important due to their high betweenness or high
degree values. Determining this would require detailed
information about the differences between the bottle-
necks and hubs in co-expression networks vs. inter-
action networks. These aims will be the subject of
future work.
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Methods

Differentially-expressed genes

In order to specifically address the gene and pathway
communications in HCC, we use the Differentially-
Expressed Genes (DEGs) profile of HCC as our first
step. Hoshida and colleagues defined and validated three
gene expression signatures of common molecular sub-
classes of HCC. They presented a meta-analysis of gene
expression profiles in data sets from 9 independent
patient cohorts on different microarray platforms [7]. A
total of 603 patients from Western and Eastern coun-
tries with HBV and HCV were analyzed. They observed
three robust HCC subclasses (termed S1, S2, and S3)
that were correlated with clinical parameters. The S,
and S,-signatures reflect more aggressive tumors. The
data are available at Gene Expression Omnibus (GEO),
accession nos. GPL1528, GPL2094, GPL80, GPL257,
GPLI1, GPL96, GPL570 and GPL5474. The S;-signature
includes 226 genes, the S,-signature 115 genes, and the
S3-signature 261 genes. For further details about the
datasets used for subclass definition and validation see
Supplementary Table one in Hoshida et al. [7]. For clinical
phenotypes associated with HCC subclasses see Table one
in that paper [7], and for clinical demographics in 9 HCC
datasets see Supplementary Table two, also in Hoshida
et al. [7]). Our initial list of differentially expressed genes
is based on these three signatures, listed in full here in
Additional file 1.

Gene expression profiling data

Our second step was to choose the data to construct the
co-expression network. We used publicly available gene
expression data sets from a study by Thorgeirsson and
colleagues [22]. These data sets were also used by Hoshida
and colleagues to identify differentially-expressed genes.
The data are available at GEO, accession nos. GSE1898
and GPL1528. Ninety-one HCC tissues and 60 matched
non-tumor surrounding liver tissues were obtained from
90 patients undergoing partial hepatectomy as treatment
for HCC. Tumor specimens originated from patients with
HBV and HCV. These samples were classified by Lee et al.
into two groups of cancer based on overall survival, where
group A demonstrated poor overall survival (correlating
with signatures S; and S,) and group B demonstrated
good overall survival (correlating with signatures S3). For
more details about clinical and pathological features of
HCC patients see Table one in Lee et al. [22]. We normal-
ized the data of Thorgeirsson and colleagues using the
quantile-normalization method.

Gene co-expression network

The third step is to define the relationship between every
pair of genes (i.e., edge) and to create a network. The
gene network is structured as the ‘approved’ statistical
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correlations between every pair of genes, where genes
are nodes and correlations are edges. The number of nodes
does not necessarily equal the entire gene expression list
of genes; here it is based on their statistical correlations.
We filtered out genes with absolute expression levels as
within the lowest 10 percent of the data set and with
variance (across samples) in the lowest 10 percent. We
computed pairwise correlations for all possible pairs of
genes from our expression data using Pearson statistical
correlation, and define a significant gene edge by: (1)
any correlation value with (2) False Discovery Rate (FDR)
adjusted-p-values < 0.05. A weighted gene network based
Pearson correlation (with no threshold) and its higher-
correlated sub-network (|correlation| > 0.5) are construc-
ted separately for each HCC type. The correlation value is
known to be dependent on the number of samples. There-
fore, the number of samples for all networks from the
same type was fixed based on each cancer group.

At the end of this process, there is a single gene network
for each data group (cancer type A and cancer type B).
Each cancer network was studied in two forms: every
gene edge satisfies the adjusted-p-values <0.05 with
no thresholds, or adjusted-p-values <0.05 with gene |
correlation| > 0.5.

Randomization, permutation test, and statistical
significance of a network

To address the question of phenotype specificity, we
compared the cancer network to the random networks
from the same cancer type, where the random network
combines expression data from the specific cancer group
and the matched non-tumor group, using the same
initial gene list (signatures S; + S, for comparison with
cancer type A, or signature S; for cancer type B). We used
the permutation re-sampling method [47,48] of the ori-
ginal data to model the null distribution. We combined
the raw gene-expression data from the cancer group and
its matched non-tumor group, so the total numbers of
samples were the same as the original. Then we random-
ized the labels of the samples (cancer and non-cancer)
while fixing the number of samples to ‘m; and calculated
the ‘approved’ network. This procedure was repeated 150
times to create 150 random networks per cancer type in
order to calculate the p-value. Using this method, we
determined the statistical significance of each network
characteristic/feature, and the significance of each path-
way edge. See example listed in Additional file 3.

Network characteristics

The topological features of a network can be described
by several statistical metrics [4,49,50]. These statistical
metrics can help to reveal the biological relevance of the
network. Several network characteristics were used in the
text (also see Additional files 2, 3, 4 and 5): Node degree
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(k) is the number of edges by which a node connects to
other nodes. The fraction of nodes in the network with
degree k is called degree distribution (p(k)). Hubs are
nodes with high degree nodes. The edge density of a net-
work, also called connectivity, is the proportion of edges
that exist relative to the number of potential full con-
nections of a network. The local clustering coefficient of
a node measures how close its neighbors are to being a
complete graph, and gives the proportion of a node’s
neighbors that are connected. The clustering coefficient
for the whole network can be calculated as the aver-
age of the local clustering coefficients of all nodes
[49,50]. A connected component is a set of connected
nodes in the network (sub-network). The largest con-
nected component in a network is called the giant
connected component.

Pathway co-expression network

We generalized the gene network to a pathway network,
with each gene interaction translated to all possible pairs
of pathways, and estimated their likelihood. The pathway
network is composed of pathways as nodes and corre-
lations as edges. Each gene correlation was translated
to a pathway correlation using the final gene co-expres-
sion network and the KEGG pathways database (Kyoto
Encyclopedia of Genes and Genomes, www.genome.jp/
kegg/). To address the question of its specialty to a spe-
cific phenotype, we compared the pathway network to
150 random pathway networks, and using a permuta-
tion test we calculated the p-value of each pathway
edge. All pathway edges with p-value < 0.05 were assumed
to be significant and the resulting pathway network was
reported in the main text of our paper (see Randomization
and Statistical Significance).

Database and computational programs

All data concerning genes and pathways were down-
loaded from the KEGG database (Kyoto Encyclopedia
of Genes and Genomes) [51]. For the network ana-
lysis we used the computing program Matlab, whereas
all network feature procedures can be found in the
Complex Networks Package for MatLab (Version 1.6;
Muchnik, L.) and in [52]. All network visualizations
were performed using the software Cytoscape (www.
cytoscape.org/).

Availability of supporting data

The data sets supporting the results of this article
are available in the Gene Expression Omnibus (GEO)
repository, accession nos. GPL1528, GPL2094, GPLSO0,
GPL257, GPL91, GPL96, GPL570 and GPL5474. These
can be found at http://www.ncbinlm.nih.gov/gds.
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