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Abstract

Background: Toxicogenomics studies often profile gene expression from assays involving multiple doses and time
points. The dose- and time-dependent pattern is of great importance to assess toxicity but computational approaches
are lacking to effectively utilize this characteristic in toxicity assessment. Topic modeling is a text mining approach, but
may be used analogously in toxicogenomics due to the similar data structures between text and gene dysregulation.

Results: Topic modeling was applied to a very large toxicogenomics dataset containing microarray gene expression

data from >15,000 samples associated with 131 drugs tested in three different assay platforms (i.e, in vitro assay, in vivo
repeated dose study and in vivo single dose experiment) with a design including multiple doses and time points. A set
of "topics” which each consist of a set of genes was determined, by which the varying sensitivity of three assay systems

interpret biological information.

was observed. We found that the drug-dependent effect was more pronounced in the two in vivo systems than the
in vitro system, while the time-dependent effect was most strongly reflected in the in vitro system followed by the
single dose study and lastly the repeated dose experiment. The dose-dependent effect was similar across three assay
systems. Although the results indicated a challenge to extrapolate the in vitro results to the in vivo situation, we did
notice that, for some drugs but not for all the drugs, the similarity in gene expression patterns was observed across all
three assay systems, indicating a possibility of using in vitro systems with careful designs (such as the choice of dose
and time point), to replace the in vivo testing strategy. Nonetheless, a potential to replace the repeated dose study by
the single-dose short-term methodology was strongly implied.

Conclusions: The study demonstrated that text mining methodologies such as topic modeling provide an alternative
method compared to traditional means for data reduction in toxicogenomics, enhancing researchers' capabilities to
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Background

Toxicogenomics [1], or the application of genomic tech-
nologies to toxicology, has been recognized as having the
potential to revolutionize toxicology. By measuring expres-
sion changes of tens of thousands of genes, we can identify
mechanistic-relevant genes and pathways, improving our
mechanistic understanding of toxicology. Nonetheless, toxi-
cogenomics has fallen short of its initial promise [2]. While
there is no single reason for this, one issue is that the
current bioinformatics approaches used in toxicogenomics
have not sufficiently dealt with the complexity of the
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toxicology study. For example, the assessment of a chemi-
cal’s toxicity requires data from experiments involving vari-
ous doses and treatment durations and, in some studies,
simultaneously applying several assay platforms. A single
gene could have a dynamic profile across different treat-
ment conditions (a combination of assay, dose and time
point) with a role in multiple pathways which interact in
complex manners to affect physiological changes of toxicity.
Therefore, when analyzing toxicogenomics data, it is essen-
tial to ensure that this complexity is adequately captured.
The sheer scale of the data generated by toxicogenomics
experiments prevents the easy identification of important
genes. Instead, methods that cluster or group genes by
their gene expression response and thereby reduce the di-
mensionality of the data are typically used. These include
common statistical techniques such as hierarchical cluster
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analysis (HCA), principal components analysis (PCA)
and k-means clustering. These tools have been widely ap-
plied to toxicogenomics data and other high-dimensional
genomic data sources. However, a critical drawback to
methods like HCA and k-means is the mutual exclusive-
ness of genes with respect to their involvement in bio-
logical processes (e.g., pathways) responding to exposure
(ie, HCA assigns one gene to one cluster that corre-
sponds to a specific biological process, not to multiple
clusters which actually is more relevant to the true event).
Therefore, these methods often do not reflect the reality
of the genomic response which limits our understanding
of the complex interplay between genes and pathways. Ex-
ploring methods that are capable of holistically analyzing
toxicogenomics data will improve the quality of the results
and greatly contribute to mechanistic understandings of
toxic response.

The genome is often referred to as a book of life: the
genome has 30 billion letters (bases), ~25,000 words
(genes) comprised by these letters, and many sentences/
paragraphs (biological processes) that can be con-
structed with these words to associate with diseases that
are repeated and spread across 23 chapters (chromo-
somes). Thus, one can conceptualize a relationship be-
tween genes and text, which share many commonalities
and characteristics. For example, the same word can ap-
pear in different sentences while the same gene can be
involved in different pathways. Such a commonality
suggests that text mining tools could be useful alterna-
tive methods to analyze genomic data.

Topic modeling has been widely applied in the field of
text mining, such as the mining of the enormous corpus
of biomedical literature [3]. We applied this method-
ology to analyze FDA-approved drug labels for drug
safety [4] and to explore drug repositioning opportun-
ities [5]. Topic modeling considers a document to be a
mixture of topics, and a topic to be a probability distri-
bution over words. In many ways, a gene expression
dataset resembles a set of documents; the dataset con-
sists of mixtures of biological processes, which can be
thought of as topics, and a biological process consists of
a set of genes, which can be thought of as the words
used to present a topic. In fact, topic modeling has
already been successfully applied to the analysis of
genome-wide biological profiling datasets. For example,
Manuele et al. applied two different topic modeling ap-
proaches, PLSA (Probabilistic Latent Semantic Ana-
lysis) and LDA (Latent Dirichlet Allocation), for cancer
classification using gene expression profiles [6]. Patrick
et al. used a modified LDA technique to cluster drugs
and genes [7]. Bing et al. applied a correspondence LDA
model to discover microRNA regulated modules by
identifying the microRNA and mRNA co-occurring fre-
quently within the same latent variable [8].
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While several examples mentioned above have success-
fully applied topic modeling to genomic datasets, the sizes
of the studied datasets were small (less than 100). In
addition, the utility of this method has not been explored
in toxicogenomics in which the experiment design is usu-
ally complex (i.e., involving treatment at multiple-dose
levels and different time points). In this study, topic mod-
eling was applied to a large toxicogenomics dataset that
contains gene expression data from over 15,000 samples
[9]. The nature of the studied samples are heterogeneous
and are generated from three different assay platforms but
use the same set of 131 compounds, most of which are
drugs. These contain data from an in vitro assay using rat
primary hepatocytes, an in vivo assay in rats that employed
a single dose treatment and an in vivo assay in rats that ex-
posed them to repeated doses. The data were examined to
determine how compounds and genes were grouped inde-
pendently in terms of topics, or in this case, biological pro-
cesses. These groupings were also extensively studied using
network modeling and pathway analysis. In many places,
“word” and “gene” as well as “document” and “treatment/
experiment condition” were used interchangeably.

Methods

Dataset

The Japanese Toxicogenomics Project (TGP) is one of the
most comprehensive efforts in the field of toxicogenomics,
yielding a large dataset of gene expression profiles for 131
compounds, most of which are are drugs [9]. Specifically,
its phase-I effort produced large-scale gene expression pro-
files for the effect of 131 compounds on rat livers using a
short-term single-dose in vivo study (3, 6, 9 and 24 hours),
a longer term study with multiple doses used repeatedly in
in vivo experiments (4, 8, 15 and 29 days) and a study using
multiple dose level in vitro experiments on rat primary he-
patocytes (2, 8 and 24 hours). In total, 24 time/dose combi-
nations for each of the 131 compounds were profiled for
the in vivo samples while 9 time/dose combinations for
each of the 131 compounds were profiled for the in vitro
samples. Besides gene expression profiles, histopathological
examination of the liver along with clinical chemistry and
hematology data are also included in this dataset. Further
information about this dataset, also known as TG-GATEs,
can be found in Uehara et al. [9]. The dataset we used in
this study was downloaded from CAMDA 2013 (http://
dokuwiki.bioinf,jku.at/doku.php/start).

Data processing

For each compound, gene expression profiles were gener-
ated for two control samples and three treated samples.
As a preprocessing step, the probe-level data of the micro-
arrays were quantile normalized followed with mapping of
a probe set into corresponding genes [10], then multiple
probes were summarized into one corresponding gene’s
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intensity ratio by using FARMS [11]. Next, we generated a
“document” for each compound-assay-dose-time treat-
ment condition, which contained “words” differentially
expressed when compared with the matched control. A
total of 12,088 genes were contained in the three assay
systems (i.e. in vitro, in vivo single dose and in vivo repeat
dose). We considered the same gene with a different tran-
scriptional direction (i.e., up and down) as two different
genes (just like a word and the same word with a prefix
are two different words, such as boarding and pre-
boarding), which led to a corpus of 24,176 words. The fre-
quency of a word appearing in each document was deter-
mined by multiplying the fold change of the treated
samples compared to the time-matched controls by 100
times. A total of 1,177, 1,564 and 1,563 documents repre-
senting a compound-dose-time combination were gener-
ated for the in vitro, in vivo single dose and in vivo repeat
dose experiments, respectively.

Topic modeling

LDA was applied to process the documents mentioned
above [12]. LDA uses the Dirichlet prior probability to
obtain topic distributions. The basic idea is that a docu-
ment is represented as a mixture of several topics, where
each topic is characterized by a word distribution. Thus,
two Dirichlet distributions are employed, one for topic
distribution over the documents and the other for word
probabilities within a topic. These distributions are ob-
tained by maximizing the posterior probability of observed
documents. In this study, the open-source Mallet software
package from the University of Massachusetts was applied.
To determine the optimal number of topics to represent
the dataset, we utilized the information loss and max-
imum likelihood approach to evaluate varying the number
of topics ranging from 10 to 50. The modeling results in-
clude two different distribution files: topic distribution
over document and word distribution over topic. The
former includes the conditional probability of each topic
given a document which, in this study, is a compound-
assay-dose-time treatment condition, P(7|D). This prob-
ability is a signature of the treatment, which will be used
to assess similarity between samples assayed in different
conditions. The latter represents the conditional probabil-
ity of each gene (word) given a topic, P(G|T), indicating
which genes are important to a given topic.

Clustering assays and compounds

After the LDA analysis, the conditional probability of
each topic given a treatment condition, P(T|D), was ob-
tained. For all possible sample (i.e., document) pairs from
different treatment conditions, the Kullback-Leibler (K-L)
divergence method, which is a measure of the difference
between two probability distributions (P and Q, see the
equation below), was applied to calculate similarities
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between any two samples based on conditional probabil-
ities P(T|D) [13]:

Dy (A||B) + D (BJ|A)
2

D(A,B) = (1)

Pa(PIQ) = 3P0 Q() 2)

where i, P({) and Q(i) denotes the ith topic’s conditional
probability given a document P and Q, respectively.
Using the pairwise symmetrized K-L divergence defined
in the equations (1,2), we identified the top 1% nearest
document pairs. Then, those highly ranked document
pairs were connected to each other in a network. In
order to extract sub-networks, the MCODE plug-in for
Cytoscape was applied to the constructed network which
is designed to expand the cluster from highly intercon-
nected seed nodes by setting a certain threshold [14].

Functional analysis

The second result of LDA is the probability distribution of
words within a given particular topic, P(W|T). Specifically,
P(w|t; =) is the probability of gene w; occurring in the jth
topic, giving a measure of the importance of gene w; to
the j topic. Since topic modeling is designed to cluster
words co-occurring frequently across whole documents,
genes with a high rank in a topic are presumably involved
in the biological processes determined by that topic. To
determine the overrepresentation of biological processes
for individual topics, functional analysis was applied with
KEGG, and the significance test was based on Fisher’s
exact test.

Results

Topic model development

The first step of applying topic modeling in toxicoge-
nomics is to transform the gene expression measurements
into a document-based format while retaining the informa-
tion in the original dataset. A fold-change based transform-
ation method was applied to convert the gene expression
profiles of each compound-assay-dose-time treatment con-
dition to a set of documents. Each document contained
the genes that were dysregulated when comparing treated
samples with the matched controls. The fold change value
of a gene in a given treatment condition resembles a fre-
quency of a word in a given document. Next, the number
of topics optimally representing the information across all
of the treatment conditions was determined using the in-
formation loss and maximum likelihood approach in a
space of the number of topics between 10 and 50. After
selecting 40 as the optimal number of topics representing
this dataset, the topic model generated two probabilistic
distributions. P(T|D) quantified the relevance of each topic
(ie., a conditional probability value) to a given treatment
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condition, thus a treatment condition can be characterized
by the profile of 40 topics (the signature of a treatment
condition). P(W|T) determined the importance of each
gene (ie., a conditional probability value) to a given topic.
In this analysis, we used the top 300 genes with the largest
P(W|T) value to represent each topic (Additional file 1:
Table S1), resembling the meta-gene concept [15].

Analysis of topics

Each of the 40 topics derived from the topic model was
unique, as evident by a pairwise similarity assessment of
topics using the Tanimoto method (Figure 1A) where the
largest Tanimoto coefficient was only 0.2 for topics 22 and
30. The results implied that each topic represented a unique
aspect of biology. Subsequently, the same genes presented
in multiple topics could perform diverse roles leading to
drug-induced toxicity in rat livers. As depicted in Figure 1B,
the majority of genes only appear once amongst the 40
topics, while very few genes were presented in multiple
topics. LOC100362121, also known as ddb2, appears in 11
topics. It is a damage-specific DNA binding protein, which
involves various biological functions including protein auto-
ubiquitination, protein polyubiquitination, pyrimidine dimer
repair and participates in the nucleotide excision repair
pathway. It interacts with 17(-estradiol [16], an endogenous
estrogen that usually undergoes a substantial metabolic
process in rat livers regulated by cychrome P450. It also in-
teracts with TCDD (2,3,7,8-tetrachlorodibenzodioxine) and
2,4-D (2,4-Dichlorophenoxyacetic acid), two well-known en-
vironmental toxicants [17]. Additional file 2: Table S2 lists
the genes appearing in more than 3 topics along with their
annotation by MetaCore (https://portal.genego.com).

We also examined the over-represented pathways
(P-value < 0.05 using Fisher’s exact tests) in each topic with
KEGG and the results were summarized in Additional
file 3: Table S3. A total of 199 pathways were identified, of
which 70 pathways were uniquely represented. As shown in
Figure 2, some topics had few over-represented pathways
while others had many. We assigned each treatment condi-
tion to a topic with the largest conditional probability value
of P(T|D) (Additional file 4: Table S4). We then examined
how the choice of assay platform as well as dose level and
treatment duration relates to the number of pathways over-
expressed in different experiment conditions. As shown in
the pie chart above each bar in Figure 2, the number of
pathways elicited by three different assay systems followed
a general order of in vivo repeated treatment > in vivo single
dose test > in vitro assay. However, the trend is less clear at
both dose and treatment time level.

Assay’s sensitivity to the treatment effect by drug, dose
or treatment duration

The most challenging aspect of this toxicogenomics
dataset is that a single compound was often exposed to
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different doses and treated with different time durations in
three experiment settings. These variables needed to be
analyzed in an integrated fashion to determine the toxic
potential of a compound. For that reason, we calculated
the distance between any two treatment condition based
on the probabilistic distribution of topics over the treat-
ment condition (P(T|D)) using the K-L divergence, and a
total of 9,257,900 pairs were generated. We selected 1% of
the pairs (92,000 pairs) for analysis which had the highest
pairwise similarity between two treatment conditions. A
number of interesting observations were made (Figure 3).

Specifically, among the top 1% nearest pairs, 42% were
from the in vitro method, followed by 30% from the
in vivo repeated treatment and 19% from the in vivo
single-dose experiment (bar chart of Figure 3). Similarly,
the percentage of the pairs from each assay system within
the top 1% nearest pairs also followed the same order of
in vitro assay > in vivo repeated treatment > in vivo single-
dose experiment (data not shown). Both findings strongly
suggested that different assay systems have varying abil-
ities to differentiate treatment conditions (compound-
dose-time). Therefore, we investigated which assay sys-
tems are more sensitive to each treatment effect related to
drug, dose or time. To assess the drug effect, we calculated
the number of pairs for each bar (the pairs within the top
1% for each assay) in Figure 3 which had the same drug in
a pair without considering dose and time. The same
principle was used to estimate the dose and time effects.
The results indicated that the drug effect was more pro-
nounced in the two in vivo systems than the in vitro
method (the bottom line in Figure 3). While the three test-
ing methods had relatively similar sensitivity to the dose
effect (middle line in Figure 3), the in vitro system clearly
had a better sensitivity to the time effect followed by the
in vivo single-dose method and the in vivo repeated dose
approach (top line in Figure 3).

Cross-assay extrapolation

Assessing whether the expensive in vivo repeated dose ap-
proach can be replaced by the short-term in vivo method
or even an in vitro assay is of great interest to pharmaceut-
ical industries and regulatory application. Therefore, in
the top 1% nearest pairs, we also examined how many of
them paired two different assays (the analysis did not con-
sider the effect of compound, dose or time), an implication
of a potential cross-assay extrapolation. As shown in the
last bar of Figure 3, 9% in the top 1% pool paired two
in vivo systems while none paired in vitro with any one of
in vivo systems. The result suggested the potential use of a
short-term assay with a single-dose treatment to supple-
ment or replace the repeated dose study. This finding was
further confirmed in a network analysis by connecting the
top 1% nearest pairs followed with a clustering analysis
using MCODE [14]. As depicted in Additional file 5:
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Figure S1, two large network clusters were formed
along with many small ones, one associated with the
in vitro assay alone and the other mixed both types of
in vivo studies, implying that the in vitro system is suf-
ficiently different from in vivo but two different types
of in vivo assays share many commonalities at the tran-
scriptional level.

Cross-assay extrapolation could be drug-dependent;
some drugs may show a better consistency across assays
than others. For that, we also examined the cross-assay ex-
trapolation in the context of drugs. Specifically, in the top
1% nearest pairs, if we observed two pairs where pair 1
was between [in vitro, drug A, high dose, longest duration]
and [in vitro, drug B, low dose, short duration] and pair 2
was between [in vivo repeated dose, drug A, medium dose,
longest duration] and [in vivo repeated dose, drug B, high
dose, longest duration], we considered that both the
in vitro assay and in vivo repeated dose method had an
equivalent ability to recognize the similarity between drug
A and drug B. As shown in Figure 4A, more than half
of these pairs were detected by all three assays without
considering the effect of dose and treatment duration,
followed with an additional 25% that were consistent in any
two of three assay systems. The similar analysis was also
conducted by using only high dose or longest treatment
duration. As shown in Figure 4B, the drug pairs recognized
by all three assay systems were significantly decreased, but
a substantial number of drug pairs consistent across any
two assays was observed. The results indicated that some
drugs have a better extrapolation across assays than others.
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Network analysis

The network analysis mentioned in the previous section
generated 108 subnetworks, ranging in size from 238
nodes to 3 nodes, with 25 nodes as the average network
size (Additional file 6: Table S5). None of the subnetworks
consisted of both in vitro and in vivo assays. A total of 28
subnetworks comprised of both in vivo single and re-
peated dose studies. Eight of the subnetworks contained
nodes associated with a single compound, such as ethiny-
lestradiol, ethionine, tamoxifen, colchicine and ethambutol
with three of them in more than one assay system. For ex-
ample, subnetwork 18 consisted of ten samples all treated
with ethinylestradiol in the in vivo repeat dose study with
different treatment conditions (ie., 4-day medium and
high dose, 8-day low, medium and high dose, 15-day
medium and high dose, and 29-day low, medium and high
dose treatment). Subnetwork 101 included three samples
treated with ethinylestradiol in the in vivo single dose
treatment. (i.e., 6-hour low dose and 9-hour low and
medium dose). The findings are consistent with the histo-
pathological changes seen with ethinylestradiol treatment
(http://toxico.nibio.go.jp/); eosinophilic change is observed
in almost all the time/dose points of the in vivo repeat
dose assay. Tamoxifen, a synthetic estrogen sharing the
similar mode of action with ethinylestradiol, has two sub-
networks. One of them (subnetwork 40) includes six sam-
ples conditioned in the in vivo single dose study, and the
other (subnetwork 79) includes four samples conditioned
the in vivo repeated treatment. While some subnetworks
mentioned above are enriched with a single drug using
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different time and dose conditions, some subnetworks
(subnetwork 60, 83, 89) contained nodes associated with
similar treatment conditions and assay types. For ex-
ample, subnetwork 60 was composed of in vitro studies
on four compounds (i.e., cyclophosphamide, simva-
statin, tolbutamide, phenylanthranilic acid) that were
each treated for 24 hours at the high dose level. It was
found that three of these four drugs, all except pheny-
lanthranilic acid (a chemical), are considered less likely
to cause drug-induced liver injury (DILI) in humans as
defined by NCTR's Liver Toxicity Knowledge Base
(LTKB) [18] and two drugs, cyclophosphamide and simva-
statin, belong to a same anatomical therapeutic category
of cardiovascular system. Additionally, subnetwork 57 in-
cludes four drugs, clomipramine, danazol, nitrofurantoin
and nitrofurantoin with 8 hours, medium or high dose
condition in in vitro model, and all of them are most-
DILI-concern defined by LTKB.

We found that topic distributions can also be discrim-
inative features for clustering of drugs by therapeutic
category. Some drugs belonging to a certain anatomical
therapeutic categories were clustered together such as
cardiovascular system, Genito-urinary system and sex
hormones, Musculo-skeletal system and Nervous sys-
tem. Subnetwork 24 is composed of four distinct drugs
in in vivo repeated treatment, clofibrate, gemfibrozil,
simvastatin and benziodarone, all of which belong to the
cardiovascular system. Subnetwork 16 is enriched with a
therapeutic category of Musculo-skeletal system by in-
cluding seven drugs, most of them are non-selective
COX inhibitor. Interestingly, among a total of 12 sam-
ples, three of them (i.e., 4-day and 15-day on high dose
treated with indomethacin, and 4-day on high dose
treated with meloxicam) were conditioned on the in vivo
repeated treatment while the rest of them (i.e., 24-hour on
high dose treated with sulindac, 24-hour on high dose
treated with diclofenac, 24-hour on medium and high
dose treated with indomethacin, 24-hour on medium and
high dose treated with lornoxicam, 24-hour on high
treated with mefenamic acid and 24-hour on medium and
high dose treated with naproxen) are from the in vivo sin-
gle treatment, suggesting a potential replacement of the
long-term assay with a short-term one. Intriguingly,
PPARa agonists are clustered together in each assay sys-
tem, as depicted in Figure 5. Subnetwork 6 includes 23
samples treated with three PPARa agonists (i.e., fenofi-
brate, clofibrate and WY-14643) in the in vivo repeated
treatment while subnetwork 26 and 71 includes 8 and 10
samples in the in vivo single treatment with the same
PPARa agonists along with the inclusion of two non
PPARa agonists, ibuprofen and benziodarone. Both sub-
network 26 and 71 are enriched with the in vivo single
study, although their treatment condition is different; sub-
network 26 is conditioned on longest duration (24 hour
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treatment) while subnetwork 71 is conditioned on 3, 6
and 9 hour. Benzbromarone (included in the subnetwork
6) is not a PPAR« agonist, however it is known to have a
high binding affinity for PPARa, showing potential as a
PPAR« agonist [19]. Ibuprofen (included in the subnet-
work 71) is also known to be potential PPARa agonist
[20]. Subnetwork 61 has four samples treated with three
PPAR« agonists, fenofibrate, clofibrate and WY-14643 in
the in vitro assay. Subnetwork 43 is composed of three
anti-cancer drugs, cisplatin, carboplatin and puromycin
aminonucleoside. Both Cisplatin and carboplatin are
platinum-containing anti-cancer drugs, cisplatin is a par-
ent drug of carboplatin. Puromycin aminonucleoside is
also an anti-cancer drug, inhibiting protein synthesis [21].
Subnetwork 63, enriched with a therapeutic category of
Genito-urinary system and sex hormones, is composed of
two drugs, danazol and methyltestosterone which act as
androgen receptor agonist. Subnetwork 20 is composed of
phenobarbital and acetaminophen in in vitro study which
belongs to a nervous system. It is clear that topic modeling
is capable of identifying biologically relevant topics in an
unsupervised manner. It groups the drugs under the same
therapeutic categories based on their associated topics,
which may provide a new avenue for target identification
and/or drug repositioning [5].

Discussion
Two large toxicogenomics datasets were made publicly
available recently: TG-GATEs and DrugMatrix [2]. While
the availability of such large datasets generates tremen-
dous opportunity, it creates challenges as well in the field
of toxicogenomics. Both datasets apply a study design that
includes multiple doses and treatment durations across dif-
ferent assay systems. The complexity of these datasets re-
quires advanced data analysis methods to take advantage of
dose- and time-dependent features in toxicity assessment.
We explored the utility of topic modeling in toxicoge-
nomics by analyzing the phase 1 of TG-GATEs dataset
which includes data from >15,000 arrays derived from three
different assay types (i.e., rat in vitro assay, rat in vivo single
dose treatment and rat in vivo repeat treatment studies). By
applying network analysis to the topic modeling results, we
made several interesting observations about the impact of
assay difference, dose and treatment duration.

Classifying samples based on gene expression profiling is
a major focus in genomics research, including toxicoge-
nomics. Most traditional clustering approaches (e.g., PCA,
k-means and HCA) classify samples based on the gene-
gene correlation principle. However, topic modeling con-
siders samples as a mixture of latent topics and each topic
is characterized by the probabilistic distribution of genes.
This formula permits samples to be associated with mul-
tiple topics and genes to be associated with multiple topics.
In doing so, each gene in topic modeling can be assigned
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to multiple topics, which is a key difference to the trad-
itional unsupervised clustering methods where each gene
is assigned to a single cluster. In this study, we focused our
analysis on the top 1% similar pairs of treatment conditions
based on topics. Subsequently, we generated the top 1% of
similar pairs using the gene expression correlation matrix
and compared it with the topic modeling results. The over-
lap between two approaches was only 21%, indicating that
both methods capture different aspects of the biological
process and could be complimentary each other to gain in-
depth understanding of underlying mechanisms of toxicity.

Toxicogenomics usually applies an experimental design
involving multiple time and dose points and different
assay conditions. Such a design offers an opportunity to
comprehensively address a number of key questions in
toxicogenomics [2]. For instance, whether in vitro assays
or short-term assays can supplement or even replace long-
term in vivo assays, since the latter are much more time
consuming and resource intensive. In this study, we ob-
served similarities identified by the latent topic variable be-
tween two in vivo experiment designs (ie., in vivo single

dose vs. in vivo repeat dose treatment), indicating that the
short-term in vivo assay with single dose treatment shares
similar gene expression responses with the traditional re-
peated dose assay protocol. In contrast, distinct differences
were observed between iz vitro and in vivo responses.

The network analysis of the topic modeling results aims
to cluster compounds in different treatment conditions
with similar biological effects. Here, the pair-wise similarity
between different treatment conditions (compound-assay-
dose-time combinations) was generated based on topic dis-
tribution. This approach offers an alternative solution to
study underlying toxic response. A network was developed
using the top 1% most similar pairs of treatment condi-
tions. The resulting network showed two distinct groups,
one associated with the in vitro assay and the other for the
in vivo assays. The network considers that two different
in vivo assays (i.e., single-dose and repeated-dose) are simi-
lar, which is consistent with previous observations that a
short-term in vivo experiment can offer comparable insight
to long-term in vivo experiments [22]. The nodes were
clustered according to similarity, generating a total of 108
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subnetworks. Some subnetworks contained settings treated
with varying amounts of the same compound. This sug-
gests a response that is less sensitive to dosage. Some sub-
networks, however, contained samples treated at similar
dosage levels (e.g., high level) but with different com-
pounds. These subnetworks are suggestive of compounds
sharing similar mechanisms of action. A number of sub-
networks were over-represented with a certain therapeutic
category, non-steroidal anti-inflammatory drug, anti-
cancer drug and PPARa agonist.

Together, our approach demonstrates that topic model-
ing offers several distinct benefits, particularly when ap-
plied to toxicogenomic expression profiling data. First, for
high-throughput gene expression profiling, dimensionality
reduction and visualization are key aspects in effectively
analyzing and interpreting data. Topic modeling was able
to reduce data dimension very effectively in terms of the
latent variable, topic. Second, topic modeling is a soft clus-
tering technique which does not assume mutual exclusiv-
ity and permits multiple topic assignment to the same
sample and gene, reflecting true biological complexity.
Third, the biological context associated with the topics
can be easily interpreted by using functional analysis ap-
proaches such as GSEA [23].

Conclusion

This study investigates the applicability of topic model-
ing for the clustering of gene expression profiles. Our
results demonstrate that topic modeling offers an op-
portunity for use in the identification of hidden vari-
ables (topics) embedded in gene expression profiles.
These topics can be discriminative features for cluster-
ing gene expression profiles. Additionally, the probabil-
istic representation of the topic model provides more
flexibility for data interpretation. While the application
of topic modeling methods to toxicogenomic data was the
focus of this study, topic modeling can also be extended
for analysis of similar data types such as data generated
with next generation sequencing (NGS) methods.
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