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Abstract

Background: Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models
or their components, in part because they are not modular. Modular components allow the modeler to think more
deeply about the role of the model and to more completely address a modeling project’s requirements. In
particular, modularity facilitates component reuse and model integration for models with different use cases,
including the ability to exchange modules during or between simulations. The heterogeneous nature of biology
and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases.
We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic
software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially
important to multi-scale, biomedical modeling and simulation.

Results: We present a general, scientific method of modularizing mechanisms into reusable software components
that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and
expose state information into physiologically meaningful groupings. To demonstrate, we modularize four
pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization
process by showing that drug clearance results from in silico experiments are identical before and after
modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In
addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no
refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting
considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to
in vivo experiments exhibiting large fold differences in time scale.

Conclusions: This report demonstrates the feasibility of PMMs and their usefulness across multiple model use
cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible
in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the
modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating
the pace of biomedical research.
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Background

Biomedical science can be characterized as the pursuit
of deeper, more useful mechanistic insight into biological
phenomena to facilitate advancing health. In silico mod-
eling and simulation (M&S) can accelerate this process
when models are designed for particular use cases. We
define use case as a detailed, very particular description
of the way a model will be used, including specifications
for input, output, parameters, execution protocols, the
interpretation of data, and qualitative and quantitative
comparisons to other models. We follow software engin-
eering terminology in referring to similarities between
use cases as usage patterns. For a scientifically useful
model, use cases must be highly specific and explicit,
which enables clear specification of requirements. Such
models are perpetual works in progress, satisfying vari-
ous use cases throughout model development. In silico
M&S methods are also viewed broadly as a promising
countermeasure to the recent decline in pharmaceutical
R&D productivity [1].

What M&S requirements must be satisfied to advance
biomedical science and help reverse this productivity de-
cline? There are many, including modularity, semi-
autonomy of model components, and semi-automation
of in silico experimentation and parameter searching.
Further, biological software analogs must exhibit increas-
ingly explanatory mechanisms and become increasingly
biomimetic during execution. This work focuses on one
requirement: modularity. Modularity is an important re-
quirement in itself and also facilitates the satisfaction of
other requirements. Namely, modularity is required to
ease the reuse and integration of software analogs for
the many particular, diverse use cases of individualized
medicine and virtualized patients.

The heterogeneous nature of the objects of biomedical
research and vast range of wet-lab experimental plat-
forms make modularity especially desirable yet challen-
ging. Biology is modular in its own sense, in that many
phenomena are functionally separable [2]. Efforts to
identify functional modules in biology entail identifying
common causal event cascades or reaction networks [3].
On the other hand, biological components (e.g. cells) are
not standardized; even individual cells within the same
cell population can vary in phenotype [4]. Furthermore,
wet-lab measurements in biology are complicated by the
fact that many attributes are experimentally inaccessible,
necessitating vastly different experimental platforms (e.g.
in vivo, in vitro). The nature of biology and the chal-
lenge presented call for modular biological models de-
signed to satisfy a variety of use cases.

But currently, most biomedical models exist in isolation.
It is difficult to reuse or integrate models or their compo-
nents for many reasons. An important reason is the lack
of modularity or, if modular, a modularity method that
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fails to facilitate reuse and integration. Even in object-
oriented models, in which model components are encap-
sulated into discrete software objects, components are
usually tightly coupled yet not cohesive, rendering them
difficult to be reused. Tightly coupled, non-cohesive
models are those in which distantly related model compo-
nents are highly interdependent. That is, they heavily rely
upon each other via references, shared memory, or other
a priori knowledge. Components of these models cannot
be used in another model context without significant code
refactoring. Modularization strives to circumvent these
challenges, resulting in loosely coupled components that
can function both in isolation and within the broader
model context.

Modularity has established methods and demonstrated
importance to M&S in many domains outside biology,
including ecological modeling [5], agricultural modeling
[6], and virtual manufacturing [7]. Established modular-
ity methods also exist for particular modeling formal-
isms like discrete event systems specification (DEVYS)
[8,9]. The term modularity is closely related to terms like
model reuse [10], integration [6], and composability [11];
we focus here on reuse. Michael Pidd defines a reuse
spectrum of modularity methods, within which we set
the context for our modularization methods [10,12]. At
the right end of the spectrum is code scavenging,
followed by function reuse, component reuse, and ultim-
ately full model reuse at the left end. He notes that com-
plexity of the required modularization methods
increases from right to left, but the frequency in which
model reuse is employed increases from left to right.
Under Pidd’s spectrum, our modularization methods
below focus on component reuse. Modular components
(modules) allow the modeler to think more deeply about
the role of the model and to more completely address a
modeling project’s requirements. In particular, modular-
ity facilitates component reuse and model integration for
models with different use cases, including the ability to
exchange modules during or between simulations. Hav-
ing modules that have achieved degrees of validation
separately and can be easily altered, both alone and
when composed, will increase the pace toward better
mechanistic explanations.

What is an appropriate target for component modular-
ization in biological models? At specified levels of ab-
straction, many biological mechanisms are common to a
variety of cell and tissue types. Paraphrasing Darden, we
refer to mechanisms as entities and activities orches-
trated such that they generate the changes characterizing
a phenomenon from initiation to termination [13]. It is
often at the mechanism level in which changes occur be-
tween normal and diseased states. Thus, software ana-
logs of biological mechanisms are reasonable candidates
for modularization. As an example, hepatocytes often
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respond to xenobiotic (e.g. drug) exposure by up-regulating
(or down-regulating) xenobiotic metabolizing enzymes—a
process called enzyme induction (or elimination) [14]. The
cytochrome P450 family of enzymes metabolize xenobi-
otics according to specific metabolic pathways [15]. The
intracellular event types are common to many pharmaco-
dynamic responses [14,15]. Thus, a generic pharmacody-
namic response module that can be easily reused is
expected to be useful within a broad range of biomedical
models. Such physiomimetic mechanism modules (PMMs)
are expected to broadly improve model usefulness without
requiring significant refactoring of implementations.

Existing efforts toward modularity

The need for modularity in biomedical M&S is broadly
recognized, but existing efforts toward modularity are
largely limited to equation-based modeling in the con-
text of biochemical reaction networks. There are tools
and frameworks for developing modular equation-based
models of biochemical reaction networks, including meta-
bolic, signaling, and regulatory pathways [16-20]. Typic-
ally, these modularization approaches involve breaking
down a larger hypothesized network into smaller compo-
nents or “modules” that are then recomposed to form a
coherent whole [16]. The unit of modularization is a set of
equations that usually maps to one part of a hypothesized
biochemical reaction network. We refer to these modular-
ity methods collectively as “network-based” modularity.
The following examples illustrate the state-of-the-art.
Note that, while most of the examples below are devel-
oped within the context of biochemical reaction networks,
some of them can be applied more broadly.

e Mallavarapu et al. provide a framework for
developing and reusing equation-based models,
confined to ordinary differential equation models
following the chemical master equation [17]. The
framework facilitates abstraction, which allows
generic properties of components or sub-systems
to be specified independently of specific instances.
Their methods also focus on hiding internal
complexity of each module and allowing user-
defined rate functions.

e ProMot is a tool that facilitates modular setup and
editing of network models, including biochemical
reaction networks [18]. It is unique in its support of
both differential algebraic equation systems and
Boolean network models.

e In the context of synthetic biology, TinkerCell
allows for the modular construction of ordinary
differential equation models describing genetic
circuits or regulatory networks [19]. A user creates
models from a list of “parts”, and the program
assigns rate equations describing dynamics of
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transcription and translation reactions. The unit of
modularization is an equation that maps to a
“biological part”, defined as “a functional unit of
DNA that encodes for a specific biological function”
(http://parts.igem.org/Help:Parts).

e Snoep et al. demonstrate integration of many sub-
network modules, aimed at modeling the entirety of
biochemical processes in a living cell [20].

e Blinov et al. semi-automate modularization by first
extracting sub-systems (modules) of biochemical
reaction networks and then specifying the rules of
module interaction [16].

While network-based modularity may be an essential
requirement for its specific model type(s) and use cases
within its specific domain, accelerated generation of
increasingly explanatory mechanisms requires more
generalized modularization methods. A future research
question, which is beyond the scope of our current work,
is when and how network-based modularity methods
might be employed productively within more generalized
modularization methods. The efforts described above have
limitations. Namely, they are inextensible to model types
other than equation-based models. Each method above is
limited to one or a few model types—usually a combin-
ation of ordinary differential equations (deterministic or
stochastic), differential algebraic equations, and Boolean
logic. Many of the supported equations are further limited
to a specific functional form, e.g. ordinary differential
equations following the chemical master equation [17].
These methods are inextensible to other model types,
which is significant given that other model types, includ-
ing agent-based, actor-oriented, discrete-event, and hy-
brid, are proving increasingly useful [1,21]. Further, most
of the methods above rely on using standardized markup
languages and/or ontologies. Models or modules that can-
not be described using supported markup languages and/
or ontologies cannot be modularized or integrated using
the above methods, absent considerable reengineering. As
examples, the modularity methods of Blinov et al. require
interchangeable modules to be described using either the
Systems Biology Markup Language (SBML) or their pro-
prietary markup language [16]; TinkerCell uses strict on-
tologies for model components like parts, promoters, and
transcription factors, without the capability of editing or
defining new ontologies [19]. The exception is Mallavarapu
et al., whose platform circumvents this limitation by allow-
ing user-defined ontologies. They note that ontologies,
like those available in SBML, are agreed upon by the com-
munity and cannot be altered by any one user [17].
The greater flexibility of user-definable ontologies is essen-
tial when a goal is improved mechanistic explanatory
power. Often, non-equation-based models cannot be feas-
ibly described using standard markup languages and/or
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ontologies, especially when those models are upstream in
the development process. Thus, modularity methods must
be applicable even to those models that are difficult or not
possible to describe using those languages.

From the perspective of multi-scale, multi-attribute
modeling, existing methods are not without additional
practical problems. Even when restricted to the appropri-
ate model type and domain context, current reuse and in-
tegration efforts often require significant model-specific
refactoring. For example, Palsson et al. integrate three dis-
tinct models of immune cell interaction using a modular
framework; included is a three-page table summarizing
the model-specific integration issues they overcame [22].
Thus, accelerated progress requires more generalized
modularization and integration methods that facilitate
limiting, if not eliminating, model-specific refactoring.

The limitations above inform us of the challenges to
address in a more generalized modularization method.
Namely, the methods should not be limited to a single
model type (i.e. equation-based models), domain context
(i.e. biochemical reaction networks), or markup language
(e.g. SBML). Drawing on many of the advantages from
the above examples, herein we favor a “physiologically-
based” modularization method (as distinct from “net-
work-based” modularity) aimed at overcoming these
challenges. While the methods here are extensible to
strictly equation-based models, our drive to achieve new,
demanding requirements [1] forces us to focus on other
model types (including hybrid models that include
equation-based models) that do not yet have established
modularization methods.

It is worth noting that methods will or should always
be driven by requirements, whether or not the require-
ments are explicitly stated. For most existing methods,
the modularity goal is to reuse or curate biochemical re-
action network models (whole models or sub-models)
expressed as systems of mathematical equations. Achiev-
ing this goal entails the following requirements:

e Methods are applicable to a subset of equation
types.

e Methods can be described using standardized
markup languages and/or ontologies.

e Methods are independent of modeling framework or
programming language.

The generalized modularity goal is different. It is to
reuse, repurpose, or integrate model mechanisms
within different model use cases of potentially different
model types. Achieving this goal entails the following
requirements:

e Methods are applicable to a variety of model types
and methods, beyond equation-based models.
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e Methods need not be restricted to models
describable using standardized markup languages
and/or ontologies. Allow user-defined (or redefined)
ontologies that may be needed as mechanistic
insight improves.

e Methods are independent of modeling framework or
programming language.

A final example of a modularity approach, with re-
quirements more closely aligned to the generalized
modularity goal, is exemplified by Liu et al. [23]. They
employ an object-oriented strategy to integrate four
models of angiogenesis in skeletal muscle, focused on
exchanging data among modules written in different
programming languages. A comparison to our approach
is given in Methods.

Our contributions

In this work, we present a generalized method of modu-
larizing mechanisms into software objects that we call
PMMs. We then demonstrate the approach by applying
these methods to develop a generic pharmacodynamic
response module. Since most existing models were not
initially constructed with modularity in mind [17,22], we
developed the methods to be either applied to existing,
non-modular models or applied at the start of model de-
velopment. PMMs are designed to be reusable, biomim-
etic analogs reflecting current understanding of the
underlying biology. They are designed to be flexible in
their ability to produce results that are indistinguishable
from wet-lab experiments embedded in considerable un-
certainty. Their design enables mechanisms to be as ro-
bust as feasible to changes in model context, including
model-to-time mappings. We exemplify these capabil-
ities by achieving validation targets from two different
experimental platforms. To do so, we modularize four
intracellular mechanisms adapted from an in silico liver
(ISL). The four analog mechanisms map to enzyme in-
duction, enzyme elimination, drug metabolism, and
enzyme-substrate binding. We first verify that the modu-
larization process itself did not alter simulation results.
The modularized ISL then achieves validation targets
drawn from in vivo propranolol outflow profile data.

In addition, we create a modularized in silico hepato-
cyte culture (ISHC-modular, hereafter referred to as
ISHC). It uses the same PMMs as the ISL and required
no refactoring. Though the PMMs are identical, ground-
ings are relational and thus free to differ between the
ISL and ISHC, and we demonstrate the value of enabling
that freedom. We describe ISHC validation against
in vitro propranolol intrinsic clearance data from mul-
tiple sources. The feasibility of this task has been dem-
onstrated in an earlier model in Sheikh-Bahaei and Hunt
[24], and we present several extensions of that model. In
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this work, the ISHC demonstrates exchangeability and
reusability of PMMs and the ability to separately validate
software mechanisms against validation data spanning
multiple wet-lab platforms.

Model use cases

The ISL and ISHC are biomimetic analogs. A biomim-
etic analog is a software model that, when executed, pro-
duces phenomena that mimic attributes measured or
observed during referent wet-lab experiments [1]. Unlike
traditional inductive models, biomimetic analogs also
rely on abductive [25] and analogical [26] reasoning.
Most mathematical (e.g. equation-based) models are in-
ductive: they start with data and then infer computa-
tional mechanisms that might produce that data; for
example, fitting an equation to a pattern observed in
data [21]. In contrast, analogs rely on abductive reason-
ing: they start by focusing on a phenomena of interest,
hypothesizing model mechanisms, synthesizing an ex-
planatory composition of those mechanisms, and then
testing that composite model against data. Whereas in-
ductive models are useful for positing explanations of
patterns observed in large amounts of data and when
precise prediction is required, abductive models are use-
ful for exploring mechanistic hypotheses and when un-
certainty is pervasive [21,27]. Thus, analogs are suitable
for experimentation and mechanistic hypothesis testing.
An experiment on an analog is called an in silico experi-
ment. It is precisely analogous to a wet-lab experiment.

The ISL simulates drug clearance experiments in an
in vivo setting. One use case configuration maps to a
portion of an in situ isolated, perfused rat liver. An im-
portant use case is the multi-indicator dilution tech-
nique to measure the hepatic outflow profile in response
to a bolus of drug [28-32]. At the start of this experi-
ment, the bolus is administered to the portal vein. As
blood flow carries drug through the sinusoid tract to the
central vein, a fraction of drug is taken up by hepato-
cytes, where it may be metabolized. Central venous out-
flow is collected at distinct time intervals and the
amount of drug in each elution is measured, resulting in
an outflow profile curve. Because a fraction of drug
reaches the central vein without being metabolized or
taken up by hepatocytes, the outflow profile yields a
characteristic peak anywhere from a few seconds to sev-
eral minutes after the initial drug administration [32].
Features of the outflow profile curve depend on factors
including liver disease state [29], drug lipophilicity
[30,32], and sinusoid volume [31].

The ISHC simulates drug clearance experiments in an
in vitro setting. It maps to a portion of a monolayer cul-
ture of isolated rat hepatocytes. Its use case is measuring
hepatocytes’ intrinsic clearance—a measure of the intrin-
sic ability for hepatic enzymes to metabolize drug
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[33,34]. At the start of this experiment, a bolus of drug
is administered into the surrounding media, and hepatic
enzymes metabolize drug as it is exchanged between cell
and media. The amount of remaining drug is measured
over time, and the resulting curve is used to calculate
the hepatocytes’ intrinsic clearance. Intrinsic clearance is
often used as a predictor of various in vivo clearance
measures, including hepatic clearance [35], in vivo in-
trinsic clearance [34,35], and extraction ratio [36].

Methods

To avoid ambiguity between in silico components and
their referent biological counterpart, capitalization is
used when referring to the former, e.g. Hepatocyte.
PMMs are named using the suffix Handler, e.g. Metabo-
lismHandler. Java Interfaces are named using the suffix
Info, e.g. Celllnfo. Parameter names are italicized. For a
full list of ISL and ISHC parameters and their explana-
tions, see Table 1.

In the ISL and ISHC, Solutes are mobile objects that
map to a group of small molecules. Solutes can have any
number of properties that map to pharmacodynamic
properties. Each Solute is assigned a type: one of various
Drugs or Metabolites. Binders are objects that bind (as-
sociate with) Solutes. Enzymes are a subtype of Binders
that can metabolize bound Solutes. Solutes can either
exist inside or outside Cells; herein Binders exist only
within Cells. Cells are objects that map to groups of
cells, and can be further delineated into Hepatocytes
and Epithelial Cells. All Cells can undergo binding
between Solute and Binder; however, metabolism, in-
duction, and elimination events occur exclusively in He-
patocytes. Analog time advances in simulation cycles.
The above capitalized entities establish an implicit
ontology, inherently semantic with respect to the model
and components.

We describe two sets of modularization methods. The
first is general and scientific, applicable to any multi-
scale biological model; the methods can be applied using
almost any programming language and modeling envir-
onment. The second is specific and engineering-focused;
it describes how we specifically applied the general
methods to the ISL and ISHC.

General modularization methods

The following list describes the general modularization
methods. We set these methods within a broader bio-
logical M&S approach called the iterative refinement
protocol (IR Protocol) [27]. The IR Protocol provides a
scientific method for developing and validating multi-
scale biological models that are increasingly biomimetic.
It focuses on iterative model refinement following a
strict parsimony guideline. In Figure 1, we present the
methods below as an extension of the IR Protocol.
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Table 1 ISHC parameters details and descriptions, including whether that parameter also exists in the ISL

Parameter name

Type/Range Example

In ISL? Description

Simulation control parameters

Random number generator seed.
Cycles after which to stop the simulation.

Number of Monte Carlo trials to execute.

Number of Solutes to administer at the start of the simulation.

Random draw from U(0,1) < this value determines whether a Solute can move from

MediaSpace to CellSpace.

Random draw from U(0,1) < this value determines whether a Solute can move from

CellSpace to MediaSpace.

seed natural 12345 Yes
cycleLimit natural 120 Yes
monteCarloTrials natural 16 Yes
Whole model parameters

dosage natural 10000 No
pExitMedia [0.0,1.0] 0.15 No
pExitCell [0.0,1.0] 1.0 No
scale integer 50 No
hepDensity [0.0,1.0] 0.9 Yes

Hepatocyte parameters

pBind [0.0,1.0] 0.1 Yes
bindersPerCellMin integer 4 Yes
bindersPerCellMax ~ natural 8 Yes
bindCycles natural 2 Yes

Number of Solutes that can fit in one grid point in CellSpace.

Fraction of grid points in CellSpace that contain a Hepatocyte.

Random draw from U(0,1) < this value causes a Binder to bind a Solute.
Minimum for a uniform random draw setting initial number of Binders in a particular Cell.
Maximum for a uniform random draw setting initial number of Binders in a particular Cell.

Number of simulation cycles a Solute stays bound to a Binder.

Solute-specific parameters

Indicates whether this Solute type can partition into Cells.

Random draw from U(0,1) < this value causes an Enzyme to metabolize the Solute to

Name for this type of Solute (e.g. Drug, Metabolite).

Fraction of this type of Solute to create.

membraneCrossing  boolean TRUE Yes
pMetabolize [0.0,1.0] 0.1 Yes
which it is bound.

tag string Metabolite  Yes
ratio [0.0,1.0] 0.5 Yes
Induction/elimination parameters

eiThresh natural 1 Yes
eiRate 200 0.05 Yes
eiResponse 200 0.25 Yes
elThresh natural 1 Yes
elRate 200 0.05 Yes
elResponse 200 0.25 Yes

Threshold above which the induction accumulator triggers an induction event.
Rate at which Enzymes can be created.

Number of Enzymes to induce when an induction event is triggered.

Threshold above which the elimination accumulator triggers an elimination event.
Rate at which Enzymes can be destroyed.

Number of Enzymes to eliminate when an elimination response is triggered.

(1) Mechanisms — Identify the software mechanisms to

be modularized. These mechanisms may be
algorithms, rules or governing logic, sets of
equations, or other computations. Mechanisms
need not map to specific biological or physiological
functions, but should do so if they are to maximize
the benefits of modularization listed in Discussion.
Examples of common mechanism types in biology
include: movement and transport (e.g. cell
movement; diffusion; endocytosis; ligand-receptor
trafficking); biochemical reaction networks (i.e.
metabolic, signaling, and regulatory pathways); bio-
physical phenomena (e.g. force transduction; action
potential firing); changing activity state (e.g. T cell
activation in response to antigen presentation);
damage, injury, and repair (e.g. in response to
reactive oxygen species); disease progression;

therapeutic intervention; cell growth, division, and
morphogenesis; and induced environmental changes
(e.g. cell culture incubation, shaking).

(2) Users — Identify the objects intended to use the

PMMs. A mechanism user may be an entire model
or a component. Again, each mechanism user need
not map to a specific biological or physiological
entity, but should do so if it is to maximize the
benefits of modularization listed in Discussion.

(3) State information — Identify the state information

used and/or altered by the mechanisms; that is, all
parameters and input/output variables, including
any units associated with these quantities. State
information can be of any data type, specific or not
to the modeler’s framework.

(4) Partition — Partition the state information into

physiologically meaningful or similar groupings.



Petersen et al. BMC Systems Biology 2014, 8:95
http://www.biomedcentral.com/1752-0509/8/95

1 Assemble & prioritize a diverse setof ——

experimental observations—Targeted Attributes

(TAs)—that characterize multiple key aspects of
interest at different scales.

2 | Select a subset, initially small, they are the
validation targets for the current cycle. ]|

3 N4
(Re)Specify measurements
[’ & granularity

4 (Re)Specify mechanisms to be
modularized, mechanism users, and
relevant mechanism state information.

v

5 | Partition state information and expose
each partition as a physiomimetic
parametric container.

v

6 Encapsulate the behavior of the
mechanism as a physiomimetic
mechanism module.

14

(Re)Specify Similarity Criteria (SC)
& their target values.

¥

8 [ Revise physiomimetic mechanism modules (&/or
implement analog counterparts to published
(> mechanistic scenario); select competing analogs;
follow parsimony guideline.

¥

9 (Re)Specify modules, components, model use case(s),
> parameters, rules, & parameterization ranges.

N4

h0 Conduct and measure many simulation experi-
ments that predict TAs & achieve SC.

v

Effort fails: mechanism falsified (new knowledge):
= return to Step 8 or 9. Effort successful: achieved a
degree of validation; study sensitivity analysis results;
retumn to step 7 & increase SC stringency.
SC targets achieved: go to Step 12.

12 Y

Specify next validation milestone by expanding
— the set of TAs &/or increasing SC stringency. —

Modularization

~

DR

Figure 1 An iterative protocol for refining and modularizing
biomimetic analogs. Steps 4 — 6 encompass the general
modularization methods.

For example, variables mapping to concentrations
of different mobile objects may be partitioned into
one group, and variables mapping to rate constants
in another. Partitioning decisions will be influenced
by many factors, including model use case and
mechanism granularity.

(5) Exposure — Create parametric containers, named
according to the physiological information they
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contain. Parametric containers must be able to find
and expose individual sub-elements within the state
information at runtime. So doing allows the
mechanism user to ask for specific data deemed useful
while ignoring unknown or unused information. The
mechanism user provides the correct data types and/
or units required by the parametric container; data
type and/or unit conversion may be necessary. Placing
this responsibility on the mechanism user allows new
or different mechanism users to execute PMMs
without altering or refactoring PMM code. The
implementation will depend on the programming
language and modeling environment. Examples
include using: Java, C++, or NET Interfaces;
Objective-C protocols; Scala traits; XML schemas in
XML-based languages;or JSON, for use in web-based
applications.

(6) Encapsulation — Implement and encapsulate the
behavior of each mechanism in the appropriate
language of the environment. In the implementation,
use the parametric containers to hold, access, and/or
manipulate state information. The encapsulated
mechanism is a PMM. Again, the implementation
will depend on the programming language and
modeling environment. Examples include using: Java,
C++, .NET, Objective-C, or Scala Classes; threads or
processes; Promises/Futures or Actors, for use in the
actor model of computation; or XSLT or XPath, for
use in XML-based languages.

To summarize, there are three key software aspects
comprising the above mechanism modularization process:
physiomimetic parametric containers, the PMM, and the
mechanism user. Parametric containers facilitate commu-
nication of state information between PMM and mechan-
ism user: they identify which state information is required
by the mechanism user to use a particular PMM. The
PMM executes the mechanism logic: it uses the paramet-
ric containers to access and manipulate the contained
state information. The mechanism user is the entity using
the PMM: it exposes the required state information as
parametric containers and executes the PMM.

ISL and ISHC modularization

The following list of method descriptions, illustrated in
Figure 2, provides details for our application of the
above methods to the ISL and ISHC. Furthermore, it
generalizes our implementation to biological models
written in Java. Steps 1 — 4 above are independent of
modeling environment; thus, steps 1 — 4 below simply
describe how we applied them to the ISL/ISHC. Steps 5
and 6 above depend on the modeling environment; thus,
steps 5 and 6 below first describe our implementation
generalized to models written in Java, and then describe
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how we applied this approach specifically to the ISL/
ISHC. Though the details in steps 5 and 6 below are Java-
specific, the implementation easily translates to other pro-
gramming languages supporting software interfaces.

(1) Mechanisms — The mechanisms are four
intracellular mechanisms of the ISL [37]: enzyme
induction, enzyme elimination, metabolism, and
binding. Prior to modularization, the logic
governing enzyme induction, enzyme elimination,
and metabolism were handled together within the
Hepatocyte object. Binding events were handled
within the Cell object, from which Hepatocyte
derives. The remainder of this description focuses
on the metabolism mechanism.

(2) Users — The users of the metabolism mechanism
are Hepatocytes.

(3) State information — The state information used by
the metabolism mechanism includes (A) drug

objects, (B) enzyme objects, (C) bound drug-enzyme
pairs, (D) metabolism probabilities, (E) metabolite
production probabilities, and (F) the types of Solutes
included in the simulation. The ISHC is grounded
relationally (see Relational Grounding below), so
analog-to-referent mappings to real-world units
depends on use case and is handled post-simulation.

(4) Partition — We partitioned the state information into
two groups: (A)-(C) above are related to drug and
enzyme binding, whereas (D)-(F) are specifically
related to metabolism.

(5) Exposure — Generalized Java implementation: we
exposed each partition using Java Interfaces that
contain methods to access and manipulate the state
information. A Java Interface defines a behavior
protocol to which unrelated classes of objects can
adhere using potentially very different
implementations. Here, each Java Interface contains
methods to access or manipulate the physiological
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state information in its group. Applied to the ISL
and ISHC: the first partition is exposed as a Java
Interface called BindingInfo. It contains methods to
access (A)-(C) above. The second partition is
exposed as a Java Interface called MetabolismInfo.
It contains methods to access (D)-(F) above. Since
the addition or removal of Solute may be defined
differently in different modeling frameworks,
MetabolismlInfo also includes methods to add or
remove Solute.

(6) Encapsulation — Generalized Java implementation:
for each PMM, we defined a new Java Class, each with
a single function called “run” that takes Java Interfaces
as parameters. We copied the pre-existing governing
logic into the “run” function and replaced references
to state information with corresponding methods from
the Java Interfaces, thereby encapsulating the
mechanism. Mechanism users then implement the
Java Interfaces. To use a PMM, a mechanism user
instantiates it and calls its “run” function when desired.
Applied to the ISL and ISHC: we created the Java Class
MetabolismHandler, whose “run” function takes
BindingInfo and MetabolismInfo as parameters.
Hepatocyte implements BindingInfo and
MetabolismInfo as follows. Java Interface methods to
access (A)-(F) above simply return the corresponding
state information. MetabolismInfo methods to add (or
remove) Solute do so by adding (or removing) a Solute
object to (or from) three locations: a master list of all
Solutes, a Hepatocyte-specific list of Solutes, and the
grid space at the location of the Hepatocyte. To use
MetabolismHandler, a Hepatocyte instantiates it and
calls its “run” function once per simulation cycle.

We summarize the Java-specific modularization methods
applied to the ISL and ISHC by describing the same
three key software aspects. The physiomimetic param-
etric containers are Java Interfaces, e.g. BindingInfo and
MetabolismInfo. They contain methods to access and ma-
nipulate state information. The PMMs are Java Classes, e.g.
MetabolismHandler. They take Java Interfaces as parame-
ters and use the contained information to execute the
mechanism logic. The mechanism users are Hepatocyte
and Cell. They implement the Java Interfaces and execute
the PMM once per simulation cycle. Java Interface imple-
mentation may require unit conversion when the mechan-
ism user provides data in different units than required by
the PMM. Once each Java Interface is implemented, the
mechanism user is free to use any PMMs requiring any
combination of these Java Interfaces. Abridged Java code
for representative examples of each of the three key soft-
ware aspects is available in Additional file 1.

The following example demonstrates the three software
aspects in the ISL and ISHC. Celllnfo (the physiomimetic
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parametric container) contains an accessor for a variable
that maps to the resources (e.g. O,) made available to the
cell. InductionHandler (a PMM) uses this information to
determine the capacity to up-regulate Enzymes. Hepato-
cytes (the mechanism users) implement the Java Interface
differently in the ISL and ISHC. In the ISL, a Hepatocyte
implements the resources accessor by applying a gradient
function related to its distance from the portal vein, which
maps to the decrease in available resources deeper into
the tissue. In the ISHC, a Hepatocyte implements the
accessor as a constant value because the monolayer of
cells directly contacts well-mixed culture media. Thus, the
two different models utilize the same PMMs but with dif-
ferent Java Interface implementations.

The parametric containers required by a particular
PMM are based on available wet-lab experimental data
related to the referent mechanism. Continuing the above
example, enzyme induction has been found to be influ-
enced by drug and enzyme identity and cell type [38].
To represent this knowledge, the PMM InductionHand-
ler requires the Java Interfaces BindingInfo (containing
lists of drugs and enzymes), Celllnfo (containing infor-
mation regarding cell type), and InductionInfo (contain-
ing additional parameters specific to enzyme induction).
Thus, the mechanisms are based on referent physiology.
However, we prefer the qualifier “physiomimetic” over
“physiologically-based” to emphasize distinctions be-
tween model and referent that cannot be ignored. That
emphasis (like using capitalization) helps avoid model
reification. Reification is ignoring or failing to recognize
this distinction; it is a logical fallacy in which model and
referent are confused or conflated [39].

Since PMMs are packaged into distinct software entities,
they can easily be exchanged for alternative mechanisms,
different versions, or new mechanistic hypotheses within
the same analog (Figure 2A). These different versions may
exhibit different mechanistic granularities and/or repre-
sent different cell states (e.g. normal vs. diseased). PMMs
can even be exchanged “on the fly”—at any time within a
simulation. Note that such dynamic module replacement
may incur technical challenges, and we point the reader to
established guidelines and technical conditions to facilitate
successful on the fly PMM exchange [40,41].

By design, a particular PMM is not aware of the exist-
ence of its mechanism user; that is, it requires no a
priori knowledge of the mechanism user. Rather, PMMs
communicate with the mechanism user via parametric
containers, which are not specific to the mechanism
user. Thus, completely different models can reuse and/
or repurpose PMMs simply by exposing the appropriate
state information in parametric containers (Figure 2B).
For example, rather than requiring Hepatocyte-specific
parameters, PMMs developed here only require generic
parameters like BindingInfo. Thus, a hypothetical Heart
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Cell can use the pharmacodynamic response PMMs ori-
ginally used within Hepatocyte. Additional mechanisms
used by Heart Cell—whether or not they have been
modularized—will not be disrupted by the use of phar-
macodynamic response PMMs.

The general method we outline and exemplify using
Java Interfaces is also exemplified by the specifics of Liu
et al. [23]. They encapsulate mechanisms (flow, regula-
tion, and capillary formation) as modules, use shared
memory for information exchange between modules,
provide for dynamic loading and parameterization of
interface implementation, and explicitly design inter-
module mapping interfaces. Because their integration is
driven in a fundamental way by the high computational
expense of the mechanisms, it is a low-level integration,
thereby requiring a very technology-oriented description.
Although the methods used may seem different than
those presented herein, there are similarities. An import-
ant distinction, however, is that, for this work’s use cases,
our strict parsimony guideline allows us to operate
largely within the high-level Java environment, far above
the virtual machine, whereas computational require-
ments of Liu et al. demand that they puncture the virtual
machine layer and implement their modularity at and
below the interface between the virtual machine and the
underlying language runtimes. To engineer a fully gen-
eral software infrastructure facilitating either their or
our methods would require “lifting” the model-specific
modularizations into a standardized architecture for plu-
gins. The general method we outline is intended to help
guide that engineering effort.

Logic governing the pharmacodynamic response PMMs
Induction and elimination mechanisms are detailed in
Ropella et al. [42]. The mechanisms function by creating
(induction) or removing (elimination) Enzymes as a
function of the number of Drugs present in the entity
using the mechanism (i.e. Hepatocyte). An important
parameter is resources (see previous section). For induc-
tion, the number of Enzymes to be created varies in-
versely with resources. For elimination, the number of
Enzymes to be removed varies directly with resources.
This is consistent with the findings that oxygen-rich en-
vironments result in increased elimination and de-
creased induction of drug-metabolizing enzymes both
in vivo [43,44] and in vitro [45].

The metabolism mechanism samples each Solute in
the map of bound Solute-Binder pairs. For each Solute,
a pseudo-random (hereafter, random) draw from the
uniform distribution, (0,1), determines whether the
Solute is metabolized. The probability of metabolism is
based on a Solute-specific parameter, allowing different
types of Solutes to have different metabolism probabil-
ities. A metabolized Solute is replaced with a Metabolite.
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If the Solute can produce multiple types of Metabolites,
one is randomly selected using a probability map. Other-
wise, the metabolized Solute is simply removed from the
system. This mechanism is kept sufficiently general so
that additional users of MetabolismHandler can imple-
ment their own model-specific metabolic pathways by
changing Solute-specific parameters rather than refac-
toring the entire mechanism.

The binding mechanism samples each unbound Solute
inside a Cell. For each Solute, a random draw from U
(0,1) determines whether the Solute binds (with prob-
ability pBind) to one unbound Binder in that Cell, form-
ing a bound Solute-Binder pair. Upon binding, the
Solute is scheduled to be released from the Binder after
bindCycles simulation cycles. Scheduling events (like
Solute release) depends on the specific modeling frame-
work being used. Since we expect others using PMMs to
utilize different modeling frameworks, the user of Bin-
dingHandler must implement scheduling Solute release
as part of implementing the BindingInfo Java Interface.

Model development

The ISL and ISHC are both implemented in Java, utiliz-
ing the MASON multi-agent simulation toolkit [46].
They are object-oriented, multi-scale, agent-based, discrete-
event simulation systems. They are used to falsify (or
achieve validation targets for) software mechanisms that
serve as mechanistic hypotheses about, for example,
acetaminophen-induced hepatotoxicity in an in vivo (ISL)
or in vitro (ISHC) setting. Both analogs use the same
PMMs but have different model structure and operating
principles. As we discuss ISL and ISHC specifics, refer
to Table 2 for important similarities and differences
between them.

ISL development

Full details of the ISL structure and operating principles
are provided elsewhere [37,42,47-50]. Briefly, the ISL
consists of a directed graph—or sinusoid network—of
interconnected nodes and edges. Each node is a Sinusoid
Segment. Edges map to direction of blood flow, from the
portal vein to the central vein. The Sinusoid Segment is
the functional unit of the ISL. Each Sinusoid Segment
contains hundreds of Cells contained within distinct
spaces (Figure 3A). The innermost space is the Core,
which maps to blood carrying referent compounds
through sinusoid networks from portal vein to central
vein. The outermost space is the Bile Canal, which con-
tains Solutes excreted from Cells. Between the Core and
Bile Canal are concentric cylindrical grids that can con-
tain hundreds of Cells. Immediately surrounding the
Core is an empty grid, followed by a grid containing
Endothelial Cells; the next grid contains Hepatocytes.
Each simulation cycle, the ISL reports the fraction of
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Table 2 Similarities and differences between ISL and ISHC
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ISL

ISHC

Referent system In situ isolated, perfused rat liver

Targeted attribute Outflow profile

Similarity criteria
wet-lab value

Structure Concentric, cylindrical grids within sinusoidal network
Time scale ~Seconds/minutes
Test drug Propranolol

Physiomimetic mechanism

modules used BindingHandler

80% of points fall within band of +1 standard deviation of

InductionHandler, EliminationHandler, MetabolismHandler,

In vitro rat hepatocyte culture
Intrinsic clearance

Value falls within +1 standard deviation of wet-lab
value; ¥ > 095

Stacked, two-dimensional, rectangular grid system
~Minutes/hours

Propranolol

InductionHandler, EliminationHandler

MetabolismHandler, BindingHandler

Drug objects contained in the Central Vein. The result-
ing plot is an ISL outflow profile (see Additional file 2).

ISHC development

ISHC components and scales are illustrated in Figure 3B-
C. The ISHC structure is composed of two stacked, rect-
angular grids, each mapping to different in vitro spaces.
CellSpace maps to the monolayer of hepatocytes, and each
grid point contains at most one Hepatocyte. MediaSpace
maps to culture media. Both grids may contain Solutes.
Solutes can move between grids or laterally within a grid.
We recognize that there are many alternatives to using
two-dimensional grids to map to referent spaces. For ex-
ample, we could implement continuous space in which
Hepatocytes have distinct area or volume. Alternatively,
MediaSpace could be a three-dimensional grid in which
height is explicit. We chose stacked, two-dimensional
grids because doing so is both parsimonious and compu-
tationally inexpensive. However, when future use cases or

the addition of new targeted attributes require alternative
representations of space, the current ISHC structure will
be falsified and iterative model refinement will lead to a
new structure.

At the start of a simulation, Hepatocytes are randomly
assigned to grid points on CellSpace. Each Hepatocyte
contains Enzymes. The number of Enzymes in each
Hepatocyte is subject to a uniform random draw be-
tween the parameters bindersPerCellMin and binder-
sPerCellMax. Drugs are then randomly assigned to
MediaSpace grid points. Total Drugs equal the value of
the parameter dosage. Hepatocytes are randomly se-
lected for execution each simulation cycle. During exe-
cution, a Hepatocyte executes its four mechanisms
modules—MetabolismHandler, BindingHandler, Induc-
tionHandler, and EliminationHandler—in random order.
The analog’s state information, for example the number
or locations of Solute objects, changes as a consequence
of mechanism execution.
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Figure 3 Structures of the ISL and ISHC. A) An ISL Sinusoid Segment. The Sinusoid Segment is the functional unit of the ISL. It contains
thousands of Hepatocytes and Endothelial Cells contained within distinct spaces. B) Simplified component diagram of a Hepatocyte. Only PMMs
are shown, highlighting the fact that the ISL and ISHC share the same PMMs. BindingHandler is grayed to emphasize that it belongs to the Cell
class, from which Hepatocyte derives. C) ISHC structure. The ISHC contains two grids: CellSpace and MediaSpace (only portions of each grid are
shown). Drugs can move laterally within a grid, or between CellSpace and MediaSpace, subject to the parameters pExitMedia and pExitCell.
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During each simulation cycle, each Drug has a chance
to move one grid point: laterally (within the same space),
downward (from MediaSpace to CellSpace), or upward
(from CellSpace to MediaSpace). For a Drug to move
into or out of a Hepatocyte, the Solute-specific Boolean
parameter membraneCrossing must be true. A Drug
attempting to move downward or upward is further sub-
ject to a random draw from U(0,1) using the parameters
pExitMedia and pExitCell, respectively. These parame-
ters map to an encapsulation of the ability for drugs
to enter or exit hepatocytes via cell-surface transporters
or simple diffusion [51]. We invoked the following
constraints on parameterization choices to facilitate bio-
mimesis. To bypass the need to explicitly model diffu-
sion and track each Drug’s height in MediaSpace, values
chosen for pExitMedia are much smaller than pExitCell.
To simulate a coarse-grained mechanism for a well-
mixed environment, each Drug contained in MediaSpace
is reassigned to a random grid point in MediaSpace at
the end of each simulation cycle. To simulate the rela-
tively large volume of media compared to cells, each grid
point in CellSpace and MediaSpace has a capacity that
controls the number of Solutes allowed within. The par-
ameter scale controls the capacity of CellSpace: a grid
point in CellSpace can contain a number of Solutes
equal to the value of scale. A grid point in MediaSpace
can contain any number of Solutes.

The ISHC takes measurements at the beginning of
each simulation cycle, which maps to removing aliquots
of media at pre-specified times. Specifically, it reports
the combined number of Drug objects contained in Cell-
Space and MediaSpace. Intrinsic clearance is calculated
at the end of each simulation using the equations below,
and values are averaged over 16 simulations.

One simulation cycle maps to 1 minute of wet-lab
(clock) time. (Contrast this with the ISL time scale, in
which 1 simulation cycle maps to 0.25 seconds.) Quanti-
tative similarity criteria were established (see Results) to
ensure that in silico results fell within acceptable similar-
ity of wet-lab values. The ISHC achieved validation tar-
gets drawn from propranolol intrinsic clearance data
from Griffin and Houston and Lavé et al. [33,52].

Calculating intrinsic clearance

Intrinsic clearance was calculated assuming mono-
exponential depletion of substrate. This assumption is
reasonable when drug concentrations are much less than
the Michaelis constant, K. Under this assumption, in-
trinsic clearance can be calculated in two ways. It can be
found using exponential regression fit to the following
curve [34]:
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where c is the concentration of drug, CL is the intrin-
sic clearance (in pL/min/10° cells), D is the cell density
(in 10° cells/uL), and ¢ is the model time (in min). Alter-
natively, it can be found using the dose to AUC ratio,
where AUC is the area under the concentration-time
curve:

dose

T—
¢ AUC

The dose is equal to the initial concentration normal-
ized by the cell density. Thus, when the AUC is normal-
ized by the initial concentration, the dose to AUC ratio
simplifies to:

1

CL=————
D ‘AUCnormalized

The AUC is theoretically calculated from time zero to
infinity or until the concentration reaches zero. Since
the validation data take time points until 120 min, the
formula for intrinsic clearance can be adjusted using the
normalized AUC from zero to 120 min. Assuming a
mono-exponential depletion:

CL = l_f 120 min
- )
D‘AUCnormalized, 0 to 120 min

where fio0 min is the fraction of drug remaining at
120 min [53].

Both sets of validation data used the dose to AUC ra-
tio to calculate intrinsic clearance. In designing analogs,
in silico methods should mimic the wet-lab methods
where possible, including measurements and calculation
of derived measures. Thus, for these validation data, it is
appropriate to determine in silico intrinsic clearance
using the dose to AUC ratio. AUC was calculated using
the linear trapezoid rule.

In silico experiments

In silico experiments were run for 200 to 400 simulation
cycles, depending on the analog (ISL vs. ISHC) and use
case. In silico results reported are averages + standard
deviation of 16 Monte Carlo trials. Results analysis, in-
cluding averaging among Monte Carlo trials, time-
course plots, calculation of intrinsic clearance (ISHC
only), and comparison of in silico results to validation
data was performed using scripts written in R [54].

Relational grounding

The units, dimensions, and/or objects to which a vari-
able or model constituent refers establish groundings.
During development, grounding decisions impact model
flexibility, adaptability, and reusability [55]. Guidelines
about groundings are typically built into use case state-
ments and requirements. Because PMMs are designed
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for straightforward reuse within a broad range of model
contexts, it is especially important that grounding deci-
sions in PMMs be carefully considered. Most equation-
based models, including pharmacokinetic compartment
models, rely upon absolute grounding: model variables,
parameters, and input-out are expressed in real-world
units. So doing complicates expanding the model to in-
clude additional phenomena, changing the model con-
text, integrating multiple models, or reusing model
components—all desirable goals of PMMs. In contrast,
ISL and ISHC components are grounded relationally:
variables, parameters, and input—output are represented
in terms of other system components. So doing facilitates
exchanging or recombining components and switching
model contexts [1,55]. Relationally grounded models re-
quire a separate analog-to-referent mapping protocol. For
example, in ISHC experiments here, 1 simulation cycle
maps to 1 minute of wet-lab (clock) time. Our require-
ments include the ability to use simulation measurements
of the same analog to achieve validation targets from dif-
ferent wet-lab experiments. So doing requires different
analog-to-referent mapping protocols, which is facilitated
by employing relational grounding.

Results and discussion

Verification of modularization process

Modularization is part of the analog mechanism engineer-
ing process, unrelated to referent biological mechanisms;
from a software perspective, it is an organizational feature.
Thus, the modularization process should not significantly
affect analog behavior; it affects the phenomenal analogy
but not the structural analogy. To verify that the modular-
ization process did not interfere with simulation results,
ISL in silico experiments were run before and after modu-
larization using the same parameters, including random
number seed. Experiments were run over a wide range of
parameterizations. In all cases, the two outputs are identi-
cal (see Additional file 2). Though the ISL is largely sto-
chastic, MASON’s random number generator produces
duplicable simulations; thus, our modularization imple-
mentation resulted in not only statistically indistinguish-
able but also identical simulation results.

ISL validation experiments

ISL in silico experiments were run for 400 simulation cy-
cles, which maps to 100 seconds of wet-lab time. This time
range is consistent with wet-lab measurements of outflow
profile for a single-pass, in situ perfused rat liver. The ISL
validation target is that at least 80% of outflow values fall
within +1 standard deviation of corresponding wet-lab
values. The modularized ISL successfully achieved that val-
idation target for propranolol [30]. A representative out-
flow profile is provided in Additional file 2. Note that the
outputs before and after modularization are identical.
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ISHC validation experiments

ISHC experiments ran for 120 simulation cycles, which
maps to 120 minutes of wet-lab time. That duration is
similar to those used in vitro to measure intrinsic clear-
ance. There are two quantitative measures of similarity
for the ISHC. First, intrinsic clearance must fall within +1
standard deviation (or +10%, when no standard devi-
ation is reported) of the wet-lab value. Second, to verify
the shape of the concentration-time curve, an accept-
able exponential regression fit required an 7* value of at
least 0.95. Wet-lab values for propranolol intrinsic
clearance exhibit considerable variability, ranging from
8.9 to 51.0 pL/min/lO6 cells [33,52]. The ISHC success-
fully achieved validation targets for both values, dem-
onstrating its flexibility in covering a large range of
measured values.

Various parameterizations were found that satisfy the
similarity criteria. Time-course plots of several success-
fully validating experiments are shown in Figure 4. The
relevant parameters among runs and corresponding in-
trinsic clearance values are shown in Table 3. For all val-
idating runs, * values of the exponential regression fit
were greater than 0.98. Although various parameteriza-
tions satisfied the similarity criteria, there are differences
in the microstructure of the time-course plots. We an-
ticipate that some or all of these parameterized ISHCs
will be falsified when additional targeted attributes are
included.

One can posit a variety of plausible explanations for
the large variability in these and other reported wet-lab
intrinsic clearance measurements. For example, differ-
ences in hepatocyte heterogeneity among experiments
are expected to affect intrinsic clearance measures. In
this case, a contributing factor may be the difference in
culture geometry. While the calculation for intrinsic
clearance is normalized by cell density (cells per volume)
and initial substrate concentration, it does not account
for the experiment geometry, i.e. the ratio between
height of the culture medium (in mm) and area of the
well or dish bottom (in cm?). The following is a parsi-
monious theory limited to culture geometry. When this
ratio is small (ie. thin layer of culture medium), drug
must travel a relatively short distance to reach cells,
resulting in a larger measured value of intrinsic clear-
ance. When this ratio is large, cells are closer together
but drug must travel much farther, resulting in a smaller
measured value of intrinsic clearance. For Griffin and
Houston, who used 400 pL of medium and a 48-well
plate, the ratio is approximately 9.64 mm/cm?. Lavé et al.
used 3 mL of medium but the dimensions of their cul-
ture dishes are unspecified. Had they used 6-well or 12-
well plates, we would obtain values of 0.33 and
1.99 mm/cm?, respectively. Thus, the ratio is likely much
smaller for Lavé et al., providing a plausible explanation
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Figure 4 Propranolol concentration profiles for validating runs
of the ISHC. Points from each curve are averages from 16 Monte
Carlo trials. The top three plots achieve validation targets drawn
from Griffin and Houston (CL =89+ 4.2 pL/min/WO6 cells). The
bottom three plots achieve validation targets drawn from Lavé et al.
(CL =51 ul/min/10° cells).

for the much larger measure of intrinsic clearance. We
can make corresponding adjustments to ISHC analogs
and mechanisms if and when additional information
(like culture geometry) becomes available.

The above explanation is supported by the fact that
validating parameterizations for Griffin and Houston re-
quired relatively small values for pExitMedia (e.g. con-
trast experiments 1 and 4 in Table 3). Thus, Drugs enter
CellSpace much less frequently, lowering the frequency
of metabolism events. This information is consistent
with the hypothesis that the larger height to area ratio
contributes to smaller intrinsic clearance.

PMMs are robust to changes in model context
PMMs are designed to mimic the underlying referent
biological mechanism without being tied to model
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context. For example, they are not intrinsically tied to a
particular time mapping; rather, they are tied to the time
mapping of their client model (e.g. ISL, ISHC). Drug
clearance experiments span considerably different time
scales in vivo (seconds to minutes) versus in vitro (mi-
nutes to hours). Thus, there is a corresponding fold
difference in the simulation cycle-to-time mapping be-
tween the ISL and ISHC. That the pharmacodynamic re-
sponse module can achieve validation targets for both
experimental contexts demonstrates that the modules
are robust to changes in analog-to-time mappings.

There is over a five-fold discrepancy in intrinsic clear-
ance values between Griffin and Houston and Lavé
et al., though their experimental protocols are very simi-
lar. Such experimental variability, coupled with uncer-
tainty arising from other sources, is a troubling reality.
Such differences in absolute, quantitative wet-lab mea-
sures have real explanations. While we may speculate
explanations based on experimental details or in silico
results, we typically lack the precise knowledge required
to systematically reduce that uncertainty. For M&S
methods to be able to achieve validation targets for the
same or similar experimental protocols, it is desirable to
use models, modules, and methods that enable spanning
these ranges of wet-lab measures. That the ISHC can
achieve validation targets for both intrinsic clearance
values using the same PMMs demonstrates that flexibility.

Phenotype and mechanism overlap

When object-oriented software engineering methods are
used to implement a concrete mechanism, the product of
the process is an extant hypothesis: analogs produce a
mechanism upon execution. By doing so, we have instanti-
ated (represented with a sequence of concrete instances) a
mechanism in silico. A consequence of mechanism execu-
tion will be measureable phenomena that are similar (or
not) to pre-specified phenomena, such as a response
following exposure to a xenobiotic. We measure simula-
tion features; those measurements enable testing the hy-
pothesis. If phenomena meet pre-specified similarity
criteria, then the simulation stands as a challengeable,

Table 3 Relevant ISHC parameters and corresponding in silico intrinsic clearance values among validating runs

Griffin and Houston [33]

Lavé et al. [52]

(CL = 8.9+ 4.2 pL/min/10° cells)

(CL =51.0 uL/min/10° cells)

Experiment number 1 2
pExitMedia 0.02 0.02
pExitCell 1.0 1.0

pBind 0.25 0.25
pMetabolize 0.5 0.25
dosage 10000 10000

CL (uL/min/1 0° cells) 959+0.22 871 +0.34

3 4 5 6

0.03 0.2 0.18 0.2

1.0 1.0 10 0.85

0.25 0.25 0.5 0.5

0.25 0.5 0.5 0.5

10000 10000 10000 10000
12.82+043 4853+0.79 4836+ 0.64 53.30+0.94
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tested theory about mechanistic events at a coarse grain
level that may have occurred during the wet-lab experi-
ments [27].

The ISL and ISHC include PMMs that encapsulate
individual mechanisms and structural components that
simulate objects and space. Executing each analog
instantiates the mechanisms, producing measurable
phenomena: outflow profile for the ISL and intrinsic
clearance for the ISHC. We have demonstrated that the
phenomena meet pre-specified similarity criteria based
on results from both in vivo and in vitro experiments.
The ISL and ISHC share certain phenotypic attributes
with their wet-lab counterparts. Their in silico mecha-
nisms thus stand as challengeable, plausible explanations
of referent mechanisms of drug response that may have
occurred during the wet-lab experiments. These conclu-
sions are explicated below, driven by schematics of over-
lap in phenotype and mechanism among different
models systems (illustrated in Figure 5).

An implicit hypothesis of wet-lab, biomedical experi-
ments, illustrated in Figure 5A, is that attributes of the ob-
jects or system of study (e.g. mammalian cells) measured
in a particular, controlled experimental context (e.g.
in vitro) are quantitatively similar to corresponding

Human
hepatocytes
in situ

Aspect of
interest:
drug clearance

Phenotype Space

Phenotype Space

Figure 5 Phenotype overlap. A) Shaded circles represent sets of
measured values of a subset of all phenotypic attributes. Asterisks
represent the conceptual aspect of interest: drug clearance. They
encompass the set of derived measures related to drug clearance,
though measurements and their generative mechanisms may
different among model systems. There is clear overlap of some
measured attributes of an isolated, perfused rat liver (green circle)
and corresponding human hepatocytes in situ (orange circle). The
same can be said of in vitro hepatocyte culture cells (blue circle)
and an isolated, perfused rat liver. In non-overlapping regions, the
mapping between related attributes is complex. B) The ISL and ISHC
(dark purple circles) are in silico analogs with their own measurable
phenotypes. Overlapping regions represent targeted attributes that
have achieved quantitative measures of similarity. The light purple
connecting the two analogs illustrates that the transformation
between the ISL and ISHC need not be one-to-one. Exploring ISL-
ISHC transformations may be instructive of the transformation that
occurs between when in vivo cells are isolated into in vitro cultures.
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attributes in particular humans. However, such precise
phenotypic overlap is rare. Attributes of mammalian epithe-
lial cells in one experimental context—a particular wet-lab
use case—may be absent in another. A precondition for
achieving the long-term goal of simulating human com-
ponent attributes is having analogs capable of mimick-
ing different wet-lab use cases characterized by different
areas of phenotypic overlap. For example, there are
similarities in drug response attributes between in vitro
and in vivo systems, but there are few with precise,
quantitative, one-to-one mappings. We have demon-
strated that different regions of phenotypic overlap can
be achieved with two analogs of different structure, use
case, and quantitative validation targets, but which use
the same PMMs and separate simulation-to-validation
target mappings.

Though the ISHC contains Hepatocytes that are
mechanistically similar to those used by the ISL, they
need not map one-to-one with ISL Hepatocytes. This ro-
bustness enables a transformation between analogs (light
purple in Figure 5B). We hypothesize that ISL-ISHC
transformations may be instructive of differences in re-
lated attributes between in vitro and in vivo systems.
When researchers isolate hepatocytes from livers to
study them in culture, in vitro-in vivo extrapolations are
embedded in considerable uncertainty. M&S methods
can help shrink those uncertainties if validated analog
Tissues can be disaggregated into Cells that separately
achieve validation targets drawn from in vitro data. We
would not assume that attributes are unchanged when
the Cells are “reassembled” into Tissue. However, we do
know that the tissue cells transformed themselves into
what was observed in vitro. In silico, possibly drawing on
other wet-lab observations, we can explore plausible ex-
planatory analog transformations. In doing so we can
shrink the set of analog options and build confidence in
transformation explanations. At a minimum, the validated
in vitro parameterizations can serve as a starting point in
the search for granularity-specific parameterizations,
which achieve new tissue or organ validation targets.

We now move our focus from phenotype space to
mechanism space. While the in silico experimental con-
text (i.e. model structure) differed between the ISL and
ISHC, the PMMs were identical. Yet, they separately
achieved validation targets for different wet-lab systems
(in vivo vs. in vitro) with different measures of drug
clearance (outflow profile vs. intrinsic clearance). For
this to be the case, we assume that some aspects of the
generative mechanisms are similar between isolated, per-
fused rat livers and in vitro hepatocyte culture cells.
Taken together, these observations support our claim
that pharmacodynamic behaviors of PMMs during exe-
cution have similarities with both wet-lab counterparts—
that is, they are biomimetic during execution.
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Additional benefits of modularity

We identify six additional benefits of PMMs that are
unique or especially important to multi-scale, biomedical
M&S:

(1) PMMs enable concrete component-to-biological
counterpart mappings. State information is grouped
into physiologically meaningful groupings. Modules
require (as parameters) these groups according to
what has been found to influence the referent
mechanism. As a result, non-physiological,
mechanism-specific data required for software
implementation purposes (e.g. counters or indices)
are kept hidden from the modeler. Thus, model
components are made explicit, intuitive, and easily
understood.

(2) PMMs increase transparency to wet-lab biologists.
For wet-lab researchers to easily follow, interpret,
and challenge—unassisted—on simulation details,
models must be transparent in both representation
and execution—form and function. Transparency in
representation is achieved by using physiologically
meaningful components that map concretely to
biological counterparts. Transparency in execution
is achieved because interacting model components
produce discrete events with hypothesized
biological counterparts.

(3) PMMs facilitate separate validation of individual
components. Each module can achieve validation
targets for data gathered from a variety of wet-lab
experimental protocols. Components can be tested
in isolation or within the broader model context.
When modules are falsified, modularity simplifies
the reengineering involved in iterative refinement.
As demonstrated here, pharmacodynamic response
PMMs can achieve validation targets for data drawn
from both in vitro and in vivo drug metabolism
experiments. So doing improves face validity of
mechanisms and trust in their surviving analogs.

(4) PMMs can be exchanged “on the fly”"—that is,
during a particular simulation. The PMMs being
used by an entity can therefore differ at different
simulation cycles. Thus, the set of PMM:s being
used can be considered part of the entity’s state
information. This capability has various
applications. Mechanisms can switch among
different versions (or be turned “off” or “on”) based
on an entity’s state at a given simulation cycle.
Different types of state transitions can lead to
different versions of mechanisms. For example, a
cell analog that transitions from a normal to
diseased state during a simulation can switch
between corresponding normal or diseased versions
of PMMs. Disease progression and spread can be
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measured during a simulation. Mechanisms can
also switch between coarse- and fine-grained
versions when specified events occur. Future
progeny of current PMMs can exhibit increasingly
tunable mechanistic resolution by including
additional “nested” PMMs.

(5) PMMs can be exchanged between in silico
experiments. In this case it is also useful to think of
the set of PMMs being used as part of an analog’s
parameterization. Separate in silico experiments can
test hypotheses about the differences between
normal and diseased states, active and inactive
states, coarse- and fine-grained mechanisms, etc.

(6) PMMs enable biomedical domain knowledge to be
embedded within concrete analogs. The first type of
knowledge embedded in PMMs is the types of
physiological information that have been found to
directly affect a biological mechanism. This type of
knowledge is made explicit because the information
is partitioned into physiologically meaningful
groupings. It is embedded in logic and algorithms of
a PMM, apart from its implementation in a particular
analog like the ISL or ISHC. This knowledge will
likely be further generalized when additional cell
types (e.g. Heart Cell) falsify existing PMMs. In such
cases, PMMs may require additional physiological
information via new or altered parametric containers.
In this way, the falsification of one cell type may
inform models of other cell types. The second type of
embedded knowledge arises from the implementation
of a PMM in a specific model. This knowledge is
flexible because each model defines the parametric
containers independently, resulting in different
mechanisms for different analogs. For example, we
embed the knowledge that in vivo hepatocytes
experience a gradient in available resources based on
their distance from the portal vein, whereas in vitro
hepatocytes have uniform resources because they
directly contact well-mixed culture media. As new
mechanistic insight accumulates, knowledge may be
embedded in new or altered versions of PMMs,
which can be easily exchanged. Thus, models
utilizing PMMs can be concrete instantiations of
current understanding about the referent biological
system in a particular experimental context.

Limitations and goals

The modularization methods presented here have several
limitations. They are currently limited to object-oriented
models, though they could be adapted to functional or
logical programming paradigms. Alternative strategies
exist for modularizing mathematical models [17,22].
Including modular mathematical models within or along-
side object-oriented ones is feasible but may present
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technical challenges. Mathematical PMMs therefore
require additional M&S methods. The Java-specific imple-
mentation we used for the ISL and ISHC is limited to pro-
gramming environments supporting software interfaces
(e.g. Java, C++, C#) or something similar (e.g. Objective-C
has protocols, Scala has traits).

A long-term goal of building PMMs is to facilitate de-
velopment of an analog-based knowledge repository.
Such a repository will be an easily accessible, organized
framework feature [1]. It will contain annotated records
of analogs (current and falsified) and their mechanisms,
along with records of in silico experiments. To be both
useful and productive, analog components within the re-
pository should be modular. Thus, PMMs are expected
to be integral repository components.

Multi-scale models like the ISL and ISHC are designed
to have a long lifetime. They are perpetual works in pro-
gress whose set of targeted attributes will expand accord-
ing to iterative model refinement and new validation data.
During this process, new PMMs will develop that are
increasingly biomimetic during execution and generate
phenomena that overlap increasingly large areas in pheno-
type space. In parallel, we anticipate that PMMs will be
adopted, reused, and repurposed by in silico analogs of
different cell and tissue types.

Conclusions

We present a modularization method that defines analog
modules based on referent physiological mechanisms. Doing
so facilitates separate validation of individual components,
enables facile component exchange during or between simu-
lations, and allows analogs to become increasingly transpar-
ent, flexible, and biomimetic. The ISHC demonstrates the
feasibility of PMMs and their usefulness across multiple
model use cases. The pharmacodynamic response module
developed here is robust to changes in model context and
flexible in its ability to achieve validation targets in the
face of considerable experimental uncertainty. Adopting
the modularizations methods presented here is expected
to facilitate model reuse and integration, thereby acceler-
ating the pace of biomedical research.

Additional files

Additional file 1: Sample abridged Java code for each of the three
key software aspects: physiomimetic parametric container, PMM,
and mechanism user. The code is intended to illustrate the Java-specific
implementation of the three software aspects. For simplicity, it omits
many mechanism details, only leaving those features important to the
modularization process. Thus, the code is not intended to compile as is.

Additional file 2: Characteristic ISL propranolol outflow profile
before and after modularization. The band represents +1 standard
deviation from the wet-lab validation data. The results before and after
modularization are identical; thus, all black data points completely
overlap red data points.
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