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Abstract

Background: Parameter estimation is often the bottlenecking step in biological systemmodeling. For ordinary
differential equation (ODE) models, the challenge in this estimation has been attributed to not only the lack of
parameter identifiability, but also computational issues such as finding globally optimal parameter estimates over
highly multidimensional search space. Recent methods using incremental estimation approach could alleviate the
computational difficulty by performing the parameter estimation one-reaction-at-a-time. However, incremental
estimation strategies usually require data smoothing and are known to produce biased parameter estimates.

Results: In this article, we presented a new parameter estimation method called integrated flux parameter
estimation (IFPE). We employed the integral form of the ODE such that we could compute the integral of reaction
fluxes from time-series concentration data without data smoothing. Here, we formulated the parameter estimation as
a nested optimization problem. In the outer optimization, we performed a minimization of model prediction errors
over parameters associated with a subset of reactions labeled as independent. The dimension of the independent
reaction subset was equal to the degrees of freedom in the calculation of integrated fluxes (IF) from concentration
data. We selected the independent reactions such that given their IF values, the IFs of the remaining (dependent)
reactions could be uniquely determined. Meanwhile, in the inner optimization, we estimated the model parameters
associated with the dependent reactions, one-reaction-at-a-time, by minimizing the dependent IF prediction errors.
We demonstrated the performance of the IFPE method using two case studies: a generalized mass action model of a
branched pathway and a lin-log ODE model of Lactococcus lactis glycolytic pathway.

Conclusions: The IFPE significantly outperformed standard simultaneous parameter estimation in terms of
computational efficiency and scaling. In comparison to incremental parameter estimation (IPE) method, the IFPE
produced parameter estimates with significantly lower bias and did not require time-series data smoothing. The
advantages of IFPE over the IPE however came at the cost of a small increase in the computational time.
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Background
Mathematical modeling is one of the pillars of systems
biology. Here, ODEs have been commonly used to model
cellular systems, especially when dynamical behavior is of
interest. An ODE model is formulated based on viewing
cellular networks as chemical reaction networks, where
the equations describe the mass or molar balance as
follow:

dX(t)
dt

= Sv(X(t), p); X(0) = X0, (1)
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where X(t) ∈ Rm is the vector of m species concentra-
tions, S ∈ Rm×n is the stoichiometric matrix, v(X(t), p) is
the vector of n reaction rate equations, p ∈ Rd is the vec-
tor of d kinetic parameters, and X0 is the vector of initial
concentrations. The creation of ODE models in biology
is often hampered by imprecise knowledge of the reac-
tion rate equations and kinetic parameters [1]. Therefore,
many model parameters have to be estimated from exper-
imental data. Intuitively, time-series concentration data
are desirable for estimating kinetic parameters of ODE
models.
Model parameter estimation is typically formulated as

a global optimization problem, minimizing the difference

© 2014 Liu and Gunawan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: rudi.gunawan@chem.ethz.ch
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Liu and Gunawan BMC Systems Biology 2014, 8:127 Page 2 of 11
http://www.biomedcentral.com/1752-0509/8/127

between experimental observations and model predic-
tion. We can classify existing methods for estimating
ODE model parameters into two general groups: simul-
taneous and incremental approach [2]. In the simulta-
neous approach, we search for the optimal parameter
combination that minimizes the deviation of simulated
concentration predictions from the experimental con-
centration data. Unfortunately, the parameter estima-
tion from biological data is often underdetermined,
where many parameter combinations could fit the data
equally well [3,4]. In addition, other computational fac-
tors such as finding the global optimal solution over
highly multidimensional parameter space and integrat-
ing stiff ODEs, often make the parameter estimation
numerically intractable, even for models with 10–20
parameters [5].
The incremental approach has been used recently

to alleviate the computational issues mentioned above
[6-9]. In this approach, the parameter estimation is per-
formed in several (incremental) steps. First, we smoothen
time-series concentration data XM(t), and differentiate
the resulting smoothing functions to obtain estimates of
dXM(t)/dt. Subsequently, we evaluate the dynamic reac-
tion rate or flux values v(t) from dXM(t)/dt by solv-
ing Eq. (1) algebraically. If the stoichiometric matrix S
has a full column rank, then the flux estimates could
be obtained by multiplying the (pseudo-)inverse of S
with dXM(t)/dt. Finally, we perform the kinetic param-
eter estimation one reaction at a time, by minimiz-
ing the sum of squares of the differences between v(t)
and v(XM(t), p). Here, not only the ODE model is
not integrated, but also the optimizations involve much
smaller parameter space than those in the simultane-
ous approach. For these reasons, methods based on the
incremental approach are usually much faster than those
using the simultaneous approach. However, the param-
eters obtained using incremental estimation strategy are
known to be biased and sensitive to data smoothing
procedure [2].
In the models of cellular networks, such as metabolic

networks, the (pseudo-)inverse of S often does not exist
since cellular species typically participate in more than
one reaction (i.e. m < n). In addition, experimental mea-
surements are typically taken for only a fraction of the
species in themodel. In this case, there are degrees of free-
dom in the flux estimation when applying the incremental
estimation approach. Recently, we presented an incre-
mental parameter estimation method that addressed the
above issue [10]. We formulated the parameter estimation
as a nested optimization problem. Here, we partitioned
the reaction rates into independent and dependent sub-
sets, vI and vD, respectively

(
i.e. v = [vTI vTD]T)

. Because
of the degrees of freedom, we could select an appropriate

vI(t), such that vD(t) can be uniquely obtained from
dXM(t)/dt and vI(t) using Eq. (1). We formulated the
outer optimization problem to estimate parameters asso-
ciated with the independent reactions, referred to as
independent parameters pI . Meanwhile, the remaining
(dependent) parameters pD were estimated in the inner
optimization using the dependent reaction flux esti-
mates. Henceforth, we refer the aforementioned estima-
tion method as the incremental parameter estimation
(IPE). The IPE could offer several orders of magnitude
reduction in the computational time in comparison to
standard simultaneous and incremental methods. How-
ever, the IPE method was affected by the same issues
related to parameter bias and sensitivity to data smooth-
ing mentioned above.
A new class of incremental parameter estimation

methods has recently been proposed without the need
to smoothen and differentiate noisy time series data
[11-13]. In these methods, one calculates the overall
extents of reactions directly from time-series concen-
tration data. The extent of a reaction gives the cumu-
lative amount of moles produced by the reaction [11].
In contrast to the traditional incremental estimation
strategy, the kinetic parameters are estimated from the
reaction extents. However, this method again requires
that the stoichiometric matrix S has a full column
rank.
In this work, we present a new parameter estima-

tion method, called integrated flux parameter estima-
tion, which does not require the stoichiometric matrix
S to have a full column rank. Similar to the IPE, we
formulate the IFPE as a nested optimization problem.
However, in contrast to the IPE, the IFPE relies on the
calculation of integrated fluxes directly from concentra-
tion data, thereby avoiding time-series data smoothing
and differentiation. We show using two case studies that
the IFPE method can provide much reduced parame-
ter bias and higher reliability in comparison to the IPE
method, with only a small increase in the computational
time. Nevertheless, for certain ODE models such as those
using lin-log rate equations, the IFPE can converge to
the optimal parameter solution much faster than the IPE
method.

Methods
In developing the IFPE method, we start with the integral
form of the ODE model, given by:

X(t) − X(0) = S
∫ t

0
v(X(τ ), p)dτ = Sη(X, p) (2)

where η(X, p) denotes the vector of IFs. Here, the i-th IF
ηi is analogous to the overall extent of the i-th reaction per
unit volume of a batch reactor [13]. If the stoichiometric
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matrix S has a full column rank, the IF vector can be
obtained directly from the concentration measurements
XM as follows:

η(tk) = S†(XM(tk) − XM(0)) (3)

where tk denotes the k-th measurement time point, and
S† = S−1 for a square S matrix or S† = (STS)−1 ST
otherwise.
As mentioned earlier, the matrix S in cellular network

models often does not have a full column rank. Here, there
exist degrees of freedom in the calculation of η(tk) from
XM , which is equal to n − rank(S), the dimension of the
(right) null space of S. In this case, we can select a sub-
set of (independent) reaction rates such that given their
IF values ηI ∈ Rn−rank(S), the values of the remaining
(dependent) IFs ηD ∈ Rrank(S) can be uniquely determined
from the relationship in Eq. (2). By partitioning the vector
η into the independent and dependent components η =[
ηTI ηTD

]T and respectively the matrix S into S =[ SI SD],
we derive the following relationship between ηI and ηD:

ηD(tk) = S†D(XM(tk) − XM(0) − SIηI,k(XM , pI)), (4)

where

ηI,k(XM , pI) =
∫ tk

0
vI(XM , pI)dt (5)

and pI are the parameters that appear in the independent
reaction subset. Note that when S has a full row rank, we
can choose ηI such that the submatrix SD is a square non-
singular matrix.
Figure 1 shows the schematic diagram of the IFPE

method. Here, we consider the scenario where time-series

concentration data of all species in the model are avail-
able. However, the IFPE can be extended to a more general
scenario where only a subset of species are measured (see
Additional file 1: Figure S1). In the IFPE, the parame-
ter estimation comprises a nested optimization problem,
where the outer optimization involves the minimization
of the error function �(pI ,XM) given by:

�(pI ,XM)=
√√√√ 1

mK

K∑
k=1

(X(tk ;pI)−XM(tk))T(X(tk ;pI)−XM(tk))

(6)

whereK denotes the number ofmeasurement time points,
and X(tk ;pI) is the simulated concentration prediction
X at time tk . The calculation of �(pI ,XM) involves sev-
eral steps. First, given the values of pI , we evaluate the
independent IF functions ηI,k(XM , pI) according Eq. (5)
using a modified Simpson’s rule (see Additional file 1:
Section 1 and Figure S2 for more detail). Subsequently,
we compute the dependent IFs ηD(tk) using Eq. (4) and
obtain the dependent parameter estimates as p∗

D =
argminpD �in(pD, ηD,XM)with the (inner) error function:

�in(pD, ηD,XM)

=
√√√√ 1

mK

K∑
k=1

(ηD,k(XM ,pD)−ηD(tk))T (ηD,k(XM,pD)−ηD(tk)).

(7)

where

ηD,k(XM , pD) =
∫ tk

0
vD(XM , pD)dt. (8)

The integration in Eq. (8) is also performed using a mod-
ified Simpson’s rule. When each of the parameters pD

Figure 1 Flowchart of integrated flux parameter estimation (IFPE).
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appears only in one reaction rate equation, the mini-
mization of �in can be performed one reaction at a
time. Finally, we compute X(tk ;pI) either from η(XM , p)

according to the integral form of the ODE model (see
Eq. (2)) or by simulating the ODE model. In the case stud-
ies, the latter variant of the IFPE is labeled as IFPE-ODE
to indicate that the calculation of the objective function
requires solving the ODE model.
Finally, there maybe more than one way to appropriately

partition the reactions into the independent and depen-
dent subsets. Here, we use a few guidelines in selecting
the independent subset. First and foremost, we select ηI
such that the (pseudo-)inverse of SD exists. As the com-
putational cost of the nested optimization mainly scales
with the parameter search space of the outer optimiza-
tion, we therefore prefer ηI with fewer pI . Finally, we
also consider prior information regarding the parameter
values, and select the set of ηI with smaller ranges of pI
values.

Results
Below we demonstrate the performance of the IFPE
method on two case studies: a branched metabolic path-
way [6] and a lin-log model of the glycolytic pathway in
L. lactis [14]. In the case studies, we used CVODE sub-
routine from the package SUNDIALS (SUite of Nonlinear
and DIfferential/ALgebraic equation Solvers) for the ODE
integrations [15], with the option MaxNumSteps set to
5000. We performed the outer optimization in Eq. (6)
using the enhanced Scatter Search (eSS) algorithm from
SSmGO (Scatter Search for Matlab Global Optimization)
toolbox [16-18], in which we terminated the parameter
search when the objective function improved less than
a relative tolerance of 10−5 for 50 successive iterations.
Finally, for the inner optimization in Eq. (7), we employed
the MATLAB subroutine lsqcurvefit with the trust region
reflective option. In the outer and inner optimization, we
enforced constraints on the parameter values to be within
upper and lower bounds and to produce only positive IF
values.
We compared the performance of the IFPE with the

IPE [10]. In the IPE implementation, we first smoothened
the time series data using piecewise polynomial spline fit-
ting, and subsequently differentiated the spline functions
to obtain estimates of dXM(t)/dt. We also performed
the outer optimization using the eSS algorithm with the
same convergence criterion as in the IFPE implemen-
tation. However, for the inner optimization, we chose
MATLAB function quadprog using interior-point-convex
algorithm because in the two case studies below, the inner
optimization problem constituted a quadratic program-
ming problem. We implemented two variants of the IPE
using different error functions for the outer optimiza-
tion: the IPE-ODE method with the error function � in

Eq. (6) and the IPE-slope method with the following error
function:

�IPE slope(pI ,XM)

=
√√√√ 1
mK

K∑
k=1

(
dX(tk ;pI)

dt
− dXM(tk)

dt

)T(dX(tk ;pI)
dt

− dXM(tk)
dt

)
.

(9)

Note that the IPE-slope method did not require any inte-
gration of the ODE model. We also enforced constraints
on the parameter values by setting upper and lower
bounds, and on the positivity on the reaction fluxes.
In addition to the IPE method, we further compared

the IFPE to simultaneous parameter estimation (SPE)
method. Here, we estimated the kinetic parameters by
minimizing model prediction errors over all unknown
parameters simultaneously. We also implemented two
versions of the SPE method: the SPE-ODE method with
the objective function in Eq. (6) and the SPE-slopemethod
with the objective function in Eq. (9). We again used
the eSS to find the global parameter solution using the
same convergence criterion and parameter bounds as in
the IFPE implementation.

A generic branched pathway
The first case study comes from a generalized mass action
(GMA) model of a generic branched pathway shown in
Figure 2. Here, the rate equations follow the canonical
power-law function:

vj(X, p) = aj
∏
i
Xgji
i , (10)

where aj is the rate constant and gji is the kinetic order
associated with the i-th metabolite in the j-th reaction.
The generic branched pathway comprises four metabo-
lites and six reactions, described by the ODE model:

d
dt

⎡
⎢⎢⎣
X1
X2
X3
X4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 −1 0 0 −1 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1X
−g13
3

a2X
g21
1

a3X
g32
2

a4X
g43
3 Xg44

4
a5X

g51
1

a6X
g64
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Using the parameters and initial conditions reported
previously [6] (see Additional file 1: Section 2), we gen-
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Figure 2Metabolic network of a generic branched pathway. Double-line arrows indicate metabolic transformations and dashed arrows with
plus or minus signs represent activation or inhibition, respectively.

erated noise-free and noisy time-series concentration of
all metabolites X1 to X4 (see Additional file 1: Figure
S3 for the case of missing measurements). For the noisy
dataset, we simulated five technical replicates under the
same condition, assuming independent additive Gaus-
sian noise with zero mean and 10% coefficient of vari-
ation. The time-series concentration data used in this
example are available in Additional file 2. Here, we
selected v1 and v6 as the independent reaction sub-
set, leading to a square invertible SD and the fewest pI
of 4 parameters. Furthermore, we constrained the rate
constants to within [ 0, 25] and the kinetic orders to
within [ 0, 2].
The median relative errors of the parameter estimates

from the IFPE, IPE and SPE methods are given in Table 1.
We performed the IPE and SPE-slope methods using sev-
eral settings of piecewise spline fitting (see Additional
file 1: Figure S4), where s is the number of piecewise
sections and o is the degree of the polynomials. Com-
paring the outcomes of the IPE and SPE-slope methods
using three different (s, o) combinations showed that the

accuracy of the parameter estimates from these methods
sensitively depends on the manner of which the time-
series data are smoothen, especially for the IPE methods.
We could generally obtain improved parameter accuracy
by increasing the number of pieces and the degree of the
polynomials. But, we urge cautionwhen usingmore pieces
and higher degree polynomials for spline fitting, as this
may lead to data overfitting.
The outcomes of the noise-free data showed that the

IFPE methods could provide more accurate parameter
estimates than the IPE and SPE methods. For the noisy
dataset, the IFPE parameter estimates have similar accu-
racy to the IPE and SPE methods using the best data
smoothing setting. However, in practice the optimal data
smoothing setting is not known. Despite the differences
in the accuracy of parameter estimates from the SPE,
IPE and IFPE methods, Figure 3 shows that except for
the SPE-slope, methods considered here could produce
parameters with a reasonably good fit to the noisy concen-
tration data (also see Additional file 1: Table S1 for more
detail).

Table 1 Comparison of median parameter errors for the branched pathway case study

Median parameter errora (%) Noise-free datab Noisy datac

(s, o) = (3, 3) (s, o) = (5, 3) (s, o) = (3, 5) (s, o) = (3, 3) (s, o) = (5, 3) (s, o) = (3, 5)

SPE-slope 51.9 14.1 46.3 68.8± 19.4 81.2± 9.6 93.4± 7.4

IPE-slope 103 59.4 59.8 87.9± 4.3 68.6± 27.5 58.0± 21.6

IPE-ODE 50.0 19.7 7.74 90.9± 14.7 76.6± 35.6 71.1± 27.1

SPE-ODE 11.4d 37.9± 11.5

IFPE 0.276 66.9± 32.5

IFPE-ODE 0.746 70.0± 31.6

aThe median is taken over 13 parameters in the branched pathway model.
bFor noise-free data, five independent runs were carried out. The median parameter error corresponds to the run with the lowest objective function value.
cFor noisy data, the reported values are the mean± standard deviation of five technical replicates of the data.
dOnly three out of five repeated runs finished within 24 hours. The median parameter error is reported for the parameter estimate corresponding to the lowest
objective function value among the three successful runs.
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Figure 3 Comparison ofmodel predictions using the IPE, IFPE and SPE parameter estimates for the branched pathway case study. The
noisy data correspond to one set of the five technical replicates. For the IPE and SPE-slope estimates, the results correspond to (s, o) = (5, 3).

Tables 2 and 3 give the computational times and the
number of eSS iterations for each of the estimation meth-
ods, respectively. In general, methods requiring the inte-
gration of fluxes and/or ODEs (i.e. IFPE, IFPE-ODE,
IPE-ODE and SPE-ODE) took longer to converge than
the rest. Here, the SPE-ODE was the slowest method
as the optimization involved the entire parameter space
p and the integration of ODEs. For GMA models with
power-law rate equations, the inner optimization of the
IPE simplified into a (log-)linear least square optimization,
which could be solved muchmore efficiently than those in
the IFPE. For this reason, the IPE-ODEmethod converged
about twice faster than the IFPE-ODE despite requiring

more eSS iterations. The IPE-slopemethod was the fastest
among the methods considered as it did not require any
integration. Interestingly, the parameter estimations using
the noise-free dataset took longer to solve than those
using the noisy dataset. In this regard, data noise has a
smoothing effect on the objective function surface, and
the low amount of noise enhanced the convergence to
optimal solution [19]. Finally, we also observed high vari-
ability in repeated runs of eSS in the parameter estimation
using noise-free data. Hence, for the noise-free results
in Tables 1, 2 and 3, we reported the best parameter
estimates corresponding to the lowest objective function
value out of five repeated runs.

Table 2 Comparison of CPU times for the branched pathway case study

CPU timea (sec) Noise-free datab Noisy datac

(s, o) = (3, 3) (s, o) = (5, 3) (s, o) = (3, 5) (s, o) = (3, 3) (s, o) = (5, 3) (s, o) = (3, 5)

SPE-slope 933.84 1255.4 1182.6 207.7± 149.3 111.2± 70.5 40.2± 13.8

IPE-slope 106.48 104.55 185.38 96.8± 17.1 105.4± 16.0 102.9± 36.5

IPE-ODE 415.32 1380.1 1018.9 433.9± 70.6 456.4± 141.9 469.3± 174.4

SPE-ODE 14.8 hoursd 9002± 4839

IFPE 1263 655.9± 198.5

IFPE-ODE 2154 1023± 315

aThe CPU times were recorded using a workstation with Intel Xeon processor 3.33 GHz with 18 GB RAM.
bFor noise-free data, five independent runs were carried out. The CPU time is reported for the run with the lowest objective function value.
cFor noisy data, the reported values are the mean ± standard deviation of five technical replicates of the data.
dOnly three our of five repeated runs finished within 24 hours. The CPU time corresponds to the run with the lowest objective function value among the three
successful runs.
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Table 3 Comparison of the numbers of eSS iterations for the branched pathway case study

eSS iterations Noise-free dataa Noisy datab

(s, o) = (3, 3) (s, o) = (5, 3) (s, o) = (3, 5) (s, o) = (3, 3) (s, o) = (5, 3) (s, o) = (3, 5)

SPE-slope 6730 9144 8636 1440± 1045 753.6± 490.7 259.0± 94.9

IPE-slope 63 65 143 66.2± 7.2 87.0± 18.6 92.4± 69.7

IPE-ODE 75 305 225 76.6± 17.8 83.8± 33.2 92.6± 43.3

SPE-ODE 3827c 787.8± 438.7

IFPE 112 67.0± 13.1

IFPE-ODE 156 70.2± 11.8

aFor noise-free data, five independent runs were carried out. The number of eSS iterations corresponds to the run with the lowest objective function value.
bFor noisy data, the reported values are the mean ± standard deviation of five technical replicates of the data.
cOnly three out of five repeated runs finished within 24 hours. The number of eSS iterations corresponds to the run with the lowest objective function value among
the three successful runs.

In this example, there were more than one way to par-
tition the fluxes into dependent and independent subsets,
even when following the guidelines provided in the pre-
vious section. In order to investigate the sensitivity of
the IFPE and IFPE-ODE performance with respect to the
partitioning of the fluxes, we repeated the parameter esti-
mation runs using five different dependent-independent
sets, in which four runs involved the same number of
independent parameters as above and one run involved a
larger number of independent parameters (vI = {v1, v4}
had 5 independent parameters). The results are given in
Tables S2–S5 in the Additional file 1, showing that the
performance of the IFPE and IFPE-ODE is robust with
respect to the flux partitioning.

The glycolytic pathway in Lactococcus lactis
In the second case study, we consider the parameter esti-
mation involving a lin-log (linear-logarithmic) modeling
of the glycolytic pathway in L. lactis [14]. Here, the enzy-
matic reaction rate is expressed as a linear function of the
logarithm of normalized concentrations [20] as follows:

vj(X, p)

J0j
= ej

e0j

(
1 +

∑
i

εji ln
Xi

X0
i

)
, (13)

where J0j is the rate of the j-th reaction at the reference
state, X0

i and e0j denote the reference concentrations of
the i-th metabolite and j-th enzyme, respectively, and εji
denotes the elasticity representing the influence of the
i-th metabolite concentration on the j-th reaction rate.
Lin-log models can be considered as an extension of
metabolic control analysis (MCA) for dynamical systems,
and have similar mathematical features to power-law rate
equations.
The metabolic pathway is shown in Figure 4, involving

nine metabolites: glucose 6-phosphate (G6P) – X1, fruc-
tose 1, 6-biphosphate (FBP) – X2, 3-phosphoglycerate (3-

PGA) – X3, phosphoenolpyruvate (PEP) – X4, Pyruvate –
X5, Lactate –X6, external glucose (Glu) – X7, ATP – X8
and Pi –X9; and nine metabolic fluxes. The corresponding
lin-log model is given by:

d
dt

⎡
⎢⎢⎢⎢⎢⎢⎣

X1
X2
X3
X4
X5
X6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 2 1 −1 0 0 0 0

−1 0 0 −1 1 −1 −1 0 0
1 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6
v7
v8
v9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6
v7
v8
v9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 + g11 logX1 + g14 logX4 + g17 logX7

a2 + g21 logX1 + g28 logX8

a3 + g32 logX2 + g39 logX9

a4 + g44 logX4

a5 + g53 logX3

a6 + g62 logX2 + g64 logX4 + g69 logX9

a7 + g74 logX4

a8 + g82 logX2 + g85 logX5

a9 + g95 logX5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

The parameters of the lin-log model above have been sim-
plified into ai’s and gij’s, and thus do not necessarily have
any direct physical interpretation. The experimental data
consisted of time-series in vivoNMRmeasurements of the
metabolites [21] (data taken from supplementary material
of [14]).
Following a previous parameter estimation case study of

the above model, we considered only metabolite concen-
tration data up to 10 minutes (see Figure 5), in order to



Liu and Gunawan BMC Systems Biology 2014, 8:127 Page 8 of 11
http://www.biomedcentral.com/1752-0509/8/127

Figure 4 L. lactis glycolytic pathway. Double-lined arrows show the flow of material, while dashed arrows with plus or minus signs represent
activation or inhibition, respectively. Here, v1 describes the reaction flux of PEP + Glu→ G6P + Pyruvate.

avoid taking logarithms of zero concentration values [14].
We treated the external glucose, ATP and Pi (i.e. X7, X8
and X9) as off-line variables, using piecewise spline fit-
ting of time-series concentration data with (s, o) = (6, 4)
(missing time-points were first linearly interpolated from
the remaining data). We assigned v5, v7 and v9 as the
independent fluxes to ensure an invertible SD submatrix
and the fewest independent parameters pI . Furthermore,

we constrained all the parameters of the lin-log model to
within [-500, 500]. For lin-log models, the inner optimiza-
tion in the IFPE methods reduces to a linear least-square
problem and thus can be performed very efficiently.
In this case, we computed

∫
lnXidt for each metabolite

beforehand.
The parameter estimation of the lin-log model above

has been shown to be extremely challenging. Using a

Figure 5Model prediction of concentration data. For the IFPE without ODE integration, the concentration predictions were calculated from the
integrated flux function at the given measurement time points using Eq. (2). For the IFPE-ODE, the concentration predictions were generated by
integrating the ODE model. The concentration predictions of the previous study were generated by integrating the ODE model using the lsqcurvefit
parameters in Table one of [14].
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deterministic optimization algorithm, a previous parame-
ter estimation showed that the convergence to the optimal
parameters depended strongly on prior information of the
parameter values, which were used as initial parameter
guess [14]. In particular, the only successful initial guess
came from the parameter estimation for the GMA model
of the same pathway. Here, the IPE method did not con-
verge within a preset maximum time-limit of 24 hours.
On the other hand, the two variants of the IFPE provided
parameter estimateswithin the time-limit, which are sum-
marized in Table 4. The IFPE method without integrating
the ODE model was expectedly the quickest between the
two IFPE variants, but the resulting fit to the data was
rather poor, as shown in Figure 5. The slower IFPE-ODE
method could produce parameter estimates that fit the
time-series metabolite data as well as those from the pre-
vious study [14]. In contrast to the previous parameter
estimation, the IFPE-ODE however does not require any
prior information on parameter values, aside from the
parameter bounds.

Discussion
The estimation of kinetic parameters of ODE models rep-
resents an active research area in systems biology. The
main challenges in this topic involve the ill-posedness
of the estimation problem such that many indistinguish-
able solutions exist [4], as well as the high computa-
tional cost in solving the associated multidimensional
global optimization problem. In this work, we present a
new parameter estimation method, called integrated flux
parameter estimation, based on an incremental approach
using integrated reaction fluxes. In the IFPE, we formu-
late the parameter estimation as a nested optimization
problem, in which we decouple the parameter estima-
tion into outer and inner optimization over independent
and dependent reaction subspaces, respectively. In com-
parison to standard estimation strategies, the outer and
inner optimizations of the IFPE method involve smaller
parameter dimension, translating to faster convergence
and computational time. As demonstrated in the case
studies, the nested optimization strategy could offer a sig-
nificant improvement in computational speed over the
standard simultaneous estimation.
The IFPE offers a couple advantages over a previous

method, the IPE, which uses a similar nested optimization.

Table 4 Performance comparison for the lin-logmodeling
of L. lactis glycolytic pathway

CPU Timea (sec) � eSS Iterations

IFPE 152.7 3.362 73

IFPE-ODE 3354 1.723 133

aThe CPU time was recorded using a workstation with Intel Xeon processor 3.33
GHz with 18 GB RAM.

One weakness of the IPE method is that the parameter
accuracy sensitively depends on the data smoothing pro-
cedure, as demonstrated in Table 1. Unfortunately, the
optimal data smoothing setting for a given dataset, one
that leads to the most accurate parameter estimates, is
usually not known. In contrast, the IFPE does not require
any time-series data smoothing and differentiation, and
is therefore not affected by the issue above. In addition,
as the IFs are directly estimated from time-series data,
the IFPE can provide much lower parameter bias than the
IPE. The advantages of the IFPE over the IPE come at the
cost of increased computational time due to the numer-
ical integration of reaction flux equations. We note that
in the case studies, the increase in the computational cost
was reasonably low, where the IFPE methods were typi-
cally 1.5 to 2 times slower than the IPE method with ODE
integrations (i.e. IPE-ODE). In some cases, such as in the
parameter estimation of lin-log models, the IFPE however
could offer better computational performance than the
IPE by taking advantage of the structure of the reaction
flux functions.
In the first example (the branched pathway model), we

tested the performance of the two variants of IFPE using
a GMA model with in silico noise-free and noisy data.
Here, we used the same model equations in the data gen-
eration and the parameter estimation. Thus, this exam-
ple represented an idealized parameter estimation case
study, where the only unknown information in the model
was the parameter values. The parameter estimates from
noise-free data indicated that both IFPE variants could
produce nearly unbiased estimates with median parame-
ter errors of less than 1%. The high parameter accuracy
using noise-free data suggested that the parameters are
a priori identifiable. Noise in data expectedly led to less
accurate parameter estimates, not only for the IFPE meth-
ods, but also for the other estimation methods. In the
second example, we applied the IFPE to another pop-
ular class of metabolic network models, namely lin-log
kinetic model. The dataset in the second case study was
less dense than that in the first example. In addition, the
resulting data fitting also appeared worse than that in the
first example. However, themismatch betweenmodel pre-
diction and concentration data depends not only on the
accuracy of the parameter values, but also on how well
model equations approximate the metabolic reactions. In
this regard, the lin-log model in Eqs. 14-15 has difficulty in
describing the transient behavior of L. lactis metabolism.
This issue is not surprising as the lin-log kinetics are
derived from thermodynamics concepts and are in prin-
ciple valid only around steady state (or reference state)
[20]. As shown in Figure 5, the IFPE method could fit
the concentration data as well as the simultaneous esti-
mation approach using an optimized initial parameter
guess.
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The computational cost of the IFPE is a product of the
number of iterations in the outer optimization and the
cost of each iteration. In general, the computational com-
plexity of finding global optimal solution(s) is expected to
increase exponentially with the dimension of the search
space [22]. Assuming that each flux function has roughly
a fixed number of unknown parameters, we thus expect
that the complexity of the outer optimization of the
IFPE scales exponentially with the number of indepen-
dent reactions. Meanwhile, the cost per iteration is asso-
ciated with the integration of reaction flux functions,
the inner optimization, and in the case of IFPE-ODE,
the integration of ODE model. When kinetic parame-
ters are not shared among reaction rate equations, the
inner optimization could be performed one-reaction-at-
a-time and thus its complexity should increase linearly
with the number of dependent fluxes. Meanwhile, the
ODE integrations can slow down the parameter esti-
mation significantly, especially when the ODE model is
stiff.
Here, we have used the eSS global optimization

algorithm, which is a population-based metaheuristic
method combining scatter search and local determinis-
tic optimizations. In comparison to deterministic global
optimization algorithms, metaheuristic methods have
better computational scalability. But, these methods lack
rigorous guarantee in convergence to the global opti-
mal solution, and repeated runs of the algorithm may
not necessarily converge to the same solution. In the
eSS algorithm, we track a population of parameter solu-
tions, which is updated at every iterations. As the
recommended size of the population increases linearly
with the dimension of the search space, the compu-
tational cost per iteration should also increase linearly
with the dimension of pI . Unfortunately, it is difficult
to predict how the convergence rate of eSS would scale
with the dimension of pI . This is because the conver-
gence rate of eSS or any numerical optimization algo-
rithm depends not only on the problem size but also
on the topology of the search space (J. Banga, private
communication).

Conclusions
The estimation of ODE model parameters from time-
series data is often the bottlenecking step in biological
system modeling. In this work, we develop a reliable
and efficient parameter estimation method, called inte-
grated flux parameter estimation, for ODE models hav-
ing more reactions than (measured) species. Such ODE
models are common in biology as cellular species often
participate in more than one reaction and concentra-
tion measurements are available only for a fraction of the
species. The IFPE method relies on the integral form of
the ODE model, based on which one can compute the

integrated fluxes directly from time-series concentration
data. Here, the reactions are partitioned into independent
and dependent subsets such that the dependent IFs can be
uniquely determined from the independent IFs. We for-
mulate the parameter estimation as a nested optimization
problem, where the outer optimization involves the mini-
mization of model prediction errors over the independent
parameters (i.e. parameters appearing in the independent
reaction rates), and the inner optimization involves the
minimization of IF prediction errors over the dependent
parameters (i.e. parameters appearing in the dependent
reaction rates). Using two case studies comprising a GMA
model of branchedmetabolic pathway and a lin-log model
of L. lactis glycolytic pathway, we show that the IFPE
can produce parameter estimates with a low bias and in
much faster computational times than standard parame-
ter estimation method based on simultaneous approach.
In comparison to a previously published nested estima-
tionmethod, the IFPE does not require any smoothing and
differentiation of noisy time-series data. These advantages
come at the cost of a small increase in the computational
times. The IFPE and IPE are available through aMATLAB
user interface called REDEMPTION (Reduced Dimen-
sion Ensemble Modeling and Parameter Estimation)
at http://www.cabsel.ethz.ch/tools/redemption, or upon
request.
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