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Abstract

environments.

Background: Constraint-based metabolic models and flux balance analysis (FBA) have been extensively used in the
last years to investigate the behavior of cells and also as basis for different industrial applications. In this context,
this work provides a validation of a small-sized FBA model of the yeast Pichia pastoris. Our main objective is testing
how accurate is the hypothesis of maximum growth to predict the behavior of P. pastoris in a range of experimental

Results: A constraint-based model of P. pastoris was previously validated using metabolic flux analysis (MFA). In this
paper we have verified the model ability to predict the cells behavior in different conditions without introducing
measurements, experimental parameters, or any additional constraint, just by assuming that cells will make the best use
of the available resources to maximize its growth. In particular, we have tested FBA model ability to: (a) predict growth
yields over single substrates (glucose, glycerol, and methanol); (b) predict growth rate, substrate uptakes, respiration
rates, and by-product formation in scenarios where different substrates are available (glucose, glycerol, methanol, or
mixes of methanol and glycerol); (c) predict the different behaviors of P. pastoris cultures in aerobic and hypoxic
conditions for each single substrate. In every case, experimental data from literature are used as validation.

Conclusions: We conclude that our predictions based on growth maximisation are reasonably accurate, but still far
from perfect. The deviations are significant in scenarios where P. pastoris grows on methanol, suggesting that the
hypothesis of maximum growth could be not dominating in these situations. However, predictions are much better
when glycerol or glucose are used as substrates. In these scenarios, even if our FBA model is small and imposes a
strong assumption regarding how cells will regulate their metabolic fluxes, it provides reasonably good predictions in
terms of growth, substrate preference, product formation, and respiration rates.

Keywords: Constraint- based model, Flux balance analysis, Possibilistic metabolic flux analysis, Pichia pastoris

Background
Pichia pastoris is a methylotrophic yeast widely recognized
as a suitable expression system for basic research and in-
dustrial application [1]. More than 500 proteins have been
expressed using this system due to (a) the possibility to
grow cultures to very high cell densities. (b) The existence
of methanol-inducible alcohol oxidase promoters (AOX).
(¢) its ability to produce post-translational modifications,
and (d) the good protein yield/cost ratio.

As any other living cell, P. pastoris cells are complex
systems, but they can be represented as an array of reac-
tions that convert raw materials into energy and building
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blocks. These collections of chemical reactions form a
metabolic network; and these metabolic networks can be
encoded in an mxn matrix, with m metabolites and # re-
actions, called stoichiometric matrix [2-4]. From these
networks, a constraint-based model can be derived by
imposing a mass balance around the metabolites as-
sumed to be balanced —mostly internal ones—, and by
constraining those reactions that are assumed to be irre-
versible. This way, a constraint-based model defines a
space of feasible flux distributions, i.e., a space of all the
metabolic behaviors that the cells can show in different
conditions [5,6]. These models have the advantage of
not requiring knowledge about kinetic parameters,
which are rarely known for most intracellular reactions.
The space of feasible flux distribution can be still re-
duced by adding more constraints, such as context-
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dependent assumptions. As a result, there are several
methodologies employed with different purposes and
making use of different mathematical frameworks, but
they all have in common the use of a constraint-based
modeling approach [5].Two popular approaches are
metabolic flux analysis (MFA) and flux balance analysis
(FBA). MFA combines the constraint-based model with
a set of experimental measurements, usually of extracel-
lular fluxes, to perform estimations [7]. FBA also uses a
constraint-based model, but it incorporates an assump-
tion of optimal cell behavior [2,8-10].

In particular, FBA is a framework to get predictions from
a constraint-based model using optimization [2,6,8,11].
FBA predictions are based on assuming that cells, due
to evolutionary pressure, have evolved to be optimal in
a particular (and known) way. This approach reduces
the space of feasible flux distributions generated by the
constraint-based model by incorporating «input» con-
straints —typically bounds for the uptake fluxes, based on
known capacities or the availability of substrates—, and
defining an objective function based on an assumption of
optimal cell behavior. Often, the objective function chosen
is the maximization of the biomass growth rate [12,13].
However, many other objective functions have been pro-
posed, such as the maximization of ATP production rate
[14] or the minimization of total flux [15].

Even if FBA predictions based on the hypothesis of
maximal growth rate have been shown to be reasonably
accurate in several studies, their limitations have been
also investigated [16]. It has been argued that the as-
sumption is well justified in many cases, but not in all
situations [10]. Similar conclusions were drawn by
Shuetz et al., when the authors performed a systematic
evaluation of different objective functions in order to
predict intracellular fluxes of E. coli cultures by invoking
optimality principles [13]. They found that no single
objective function was able to accurately predict the be-
havior that cells shown in all the conditions. These limi-
tations are the basis to investigate more sophisticated
objective functions and also for dealing with multiple
criteria simultaneously, by means of Pareto surface and
other analytical tools [17,18].

In this paper, we present the validation of a FBA (con-
straint-based) model of P. pastoris based on a small-
sized metabolic network. In line with previous works
done with small models of other organisms, such as E.
coli [19,20], S. cerevisiae [21,22] or Aspergillus niger [23],
with a less studied organism as P. pastoris. Our main ob-
jective is testing how accurate is the hypothesis of max-
imum growth rate to predict the cells behavior in a
range of experimental environments. The underlying
constraint-based model of P. pastoris was previously val-
idated against experimental data using MFA [24]. Now
we will test the FBA model ability to give reasonable
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predictions without incorporating measurements, just by
assuming that cells will make the best use of the avail-
able resources.

Methods

Constraint based metabolic model

Along this paper, a constraint-based model of P. pastoris
has been used. The model is a modified version of the
one previously described and validated in [24,25]. It is a
standard constraint-based model, as those described in
[5] or [2]. The model was derived from a set of central
metabolic reactions. These reactions are then translated
into constraints by assuming that intracellular metabolites
are at steady-state (and disregarding the dilution effect).
Then, another set of inequality constraints is incorporated
by imposing irreversibility to some reactions. This proced-
ure results in a set of model constraints (MOC) that de-
fines a space of feasible steady state flux distributions, as
follows:

Nv=0

MOC = { Dv>0 (1)

Where N is a stoichiometric matrix, with m metabo-
lites and # reactions, the vector v is the vector of reac-
tion fluxes, which represent the mass flow through each
of the # reactions in the network. The matrix D, is a di-
agonal matrix with Dy =1 if the flux is irreversible and
null otherwise.

Consistency analysis of experimental data

To validate our model predictions, several experimental
datasets corresponding to different P. pastoris chemostat
experiments have been collected from literature. Each
dataset contains experimental measurements of several
extracellular fluxes (e.g., biomass growth, glucose uptake
rate, oxygen uptake rate, etc.). However, these experiments
came from different sources, correspond to cultures of dif-
ferent strains, and have been obtained following different
experimental protocols. For this reason the consistency of
each dataset has been evaluated beforehand using two dif-
ferent methods: (a) a simple carbon balance, and (b) a pos-
sibilistic consistency analysis against our stoichiometric
model.

Carbon balance

The consistency of each experimental dataset has been
evaluated checking that the measurements fulfilled a C-mol
balance. This test could only be performed when measure-
ments for the main uptake and production fluxes of car-
bon sources were available, which generally means that all
substrates (glucose, glycerol and methanol), biomass and
CO, rates were measured, as well as the main possible
byproducts (ethanol, pyruvate, and citrate). The actual
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elemental composition of biomass and ash content were
taken into account whenever available; otherwise a mean
composition was used. A general elemental composition
for recombinant protein was taken from [3]. In those cases
where heterologous protein was measured, it was included
in the carbon balance; however, as the carbon content was
small, it was neglected in those datasets where protein
production was unknown.

In summary, for 52 datasets the carbon balance was
checked based on measurements of glucose, glycerol,
methanol, CO,, biomass, protein, pyruvate, ethanol, and
citrate (note: in some cases the byproducts were not
measured, but reported negligible). For datasets 17, 18
and 50-52 protein production was unknown, but its car-
bon content was assumed to be negligible. Finally, data-
sets 29 to 45 and 53 to 55 could not be checked because
the CO, production rate was unknown.

Possibilistic MFA

As a complementary test, and also to deal with those ex-
perimental datasets lacking a carbon-balance, we perform
a different consistency analysis based on Possibilistic
MFA. The method was described in [5,26] and applied in
[24,25]. Details can be found in those works, but a short
description follows. First, we describe the Possibilistic
MFA method, and then we explain how it can be used to
perform a consistency analysis.

Possibilistic MFA takes into account that experimental
measurements are imprecise and do not exactly satisfy
the constraints in (1). All measurements are thus consid-
ered relatively uncertain, as follows: wy, = v, + e, where
en is a vector containing the errors (or deviations) be-
tween the actual fluxes and their measured values. Simi-
larly, these measurement errors can be represented with
two sets of non-negative variables, € and p:

Wm = Vm + &1-}; + &-|,

€, 1 2 0
O<g<ey™ (2)
max

O<py<py

MeC =

Each candidate solution of (1) and (2) can be denoted
as 8. Then, we (as users) define a function that assigns
possibility in [0, 1] to each solution, ranging between im-
possible and fully possible. A simple way is using a linear
cost index as:

J(8) = aer + -y (3)

Then, the possibility of each solution can be defined
as:

n (8) = exp(-J(d)

Where o y B are row vectors of user defined, sensor
accuracy coefficients. The results can be interpreted as

ScA (4)
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“«

vm =W is fully possible; the more v,, and w differ, the
less possible such situation is”. In particular, and for all
our computations, the bounds & and py"* have been
chosen to define an interval of fully possible values around
the measured ones (+5% deviation); while the weights o
and 3 have been chosen to a decreasing possibility to lar-
ger deviations (e.g., deviations larger than +20% have a
possibility of lower than m =0.1). More details can be
found in [25].

At this point, Possibilistic MFA provides flux estimates
accounting for uncertainty. For instance, the simplest
flux estimate Vy,, in 8., is given by a maximum possibil-
ity (minimum cost) solution of the constraint satisfac-
tion problem (1)-(2), which can be obtained solving a
linear programming (LP) problem.

’min

= ming,,J] s.t{MOCnMeC (5)

This most possible solution given by (5) has an associ-
ated degree of possibility:

n" = exp(-/"") (6)

This value in [0, 1] provides our consistency check.
This value ™" is the possibility of the most possible flux
distribution. It is grading the degree of consistency be-
tween different measurements, and between the measure-
ments (2) and the model constraints in (1). A possibility
equal to one must be interpreted as a complete con-
sistency, while lower values imply that there is some error
in measurements or in the model.

Finally, there is a similar way of express the degree of
consistency provided by the possibilistic method. In this
case, we calculate the percentage of measurements error
(in &™, pp™) that must be allowed to find a solution
with possibility equal to 1. We denote this degree of “as-
sumed error” as AE index. Clearly, the larger this index
is, the more inconsistent measurements are. For ex-
ample, an AE index of 10% implies that a 10% of flexibil-
ity is required around all the measurements to find a
solution that fulfills simultaneously the measurements
and model constraints.

Note: This consistency analysis assumes that model
constraints are accurate; but let us remark that the FBA
hypothesis, which will be evaluated along this paper, has
not been included so far. The model used in the
consistency analysis was validated before and has been
proved to be relatively reliable [24,25].

Flux balance analysis

Several flux balance analysis (FBA) simulations have
been performed. As stated in the backgrounds section,
FBA is a methodology to get predictions from a
constraint-based model by assuming that the cells be-
have optimally. In this way, predictions are obtained by
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solving an optimization problem: maximize the (hypo-
thetical) cells objective function subject to the con-
straints that are imposed by the model.

If the objective function is linear and the constraints
are linear equalities and inequalities —which is the case
for all our computations—, the FBA problem can be for-
mulated as a linear programming problem. In this case,
predictions can be obtained following a simple and effi-
cient four-step procedure.

First: define a set of model constraints (MOC), such as
in (1). These constraints are always the same for a given
organism, independently of its environment and particu-
lar circumstances.

Second: incorporate context-dependent constraints,
which represent the scenario that the modeled organism
is facing in a particular case. For example, these con-
straints define which substrates are available or if there
is oxygen in the media. In general, these constraints will
be inequalities:

vZ’”’ 2v, 2V (7)

Third: define a biologically relevant objective function
Z that is assumed to represent the cells objective, as re-
sult of evolutionary pressure. In all our computations
this objective will be to maximize growth. The objective
function is defined as follows (where d is column vector
of size n with zeros in every position but the one corre-
sponding to the biomass growth):

Z=d-v (8)

Fourth: finally, predictions are obtained by solving a
linear programing problem to compute the flux distribu-
tion that makes the optimal use of the available re-
sources, (i.e., that maximizes the objective function Z).

Nv=0
Dv>0 (9)

min max
v, 2V, 2 vy,

v = max,Z s.t

All FBA computations have been performed with
MATLAB (MathWorks Inc., 2009) and YALMIP Tool-
box [27].

Results and discussion
P. pastoris constraint-based model building
Along this paper, a small-sized, constraint-based model
of P. pastoris shown in Figure 1 will be used. The model
is a modified version of the one previously described
and validated in [24], which was based in a previous
model by Dragosits et al. [28] it is a standard constraint-
based model, whose generalities are described in [5] or [2].
As a constraint based model, it was derived from the
knowledge about P. pastoris metabolic network. The
model is not a comprehensive representation of P. pastoris
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metabolism, but it includes the main catabolic pathways
(Embden-Meyerhoff-Parnas pathway, citric acid cycle,
pentose phosphate and fermentative pathways), considers
the uptake of several carbon sources (glucose, glycerol,
and methanol) and accounts for biomass growth and ATP
balance. Metabolites such as NAD, AcCoA, oxaloacetate,
or pyruvate are considered in both cytosolic and mito-
chonderial pools.

Two new reactions have been incorporated to the
model described in [24] in the pyruvate metabolism and
in the mitochondrial transport. The new reactions are:

Reaction 36: ATP + Oxaloacetate — ADP + Phosphoenol-
pyruvate + CO2.

Reaction 37: Acetyl — CoAmit <> Acetyl — CoA.

The model contains 47 metabolites and 48 metabolic
reactions. There are 37 internal metabolites that are as-
sumed balanced, which define a 37x48 stoichiometric
matrix N with 11 degrees of freedom. All internal reac-
tions are considered irreversible, except for reactions; 2—
8, 15, 22-27, 29, 34, 37 and 44. The matrix and the list
of reactions are given in the Additional file 1.

P. pastoris FBA models

Along this paper the word “model” is used to denote
two different representations of P. pastoris. The first one
is the constraint-based model of P. pastoris that we have
already defined which contains only information regard-
ing its central metabolism and reactions irreversibilities.
The second type of model emerges when we combine
this constraint-based model with a biological objective
for the cells (maximizing growth), so that we obtain a
complete FBA model as defined in the methods sections.
Please recall that the main goal of this paper is to evalu-
ate the validity of the second model, i.e., the validity of
assuming that P. pastoris cells objective is maximizing
its growth rate. Hereinafter, we will denote this second
model as FBA model.

Recompilation and analysis of experimental data

Thus, the main goal of this paper is to validate the pre-
dictions of an FBA model. To do that, experimental
datasets from different chemostat experiments have been
collected from literature. We collected data from 72
chemostat experiments that correspond to P. pastoris
cultures growing on methanol, glycerol, glucose or mix-
tures of these substrates. Each dataset is defined by a set
of experimental measurements of several extracellular
fluxes (e.g., biomass growth, glucose uptake rate, oxygen
uptake rate, etc.). The number of available measure-
ments in each dataset is not always the same, mostly be-
cause gas measurements are sometimes unavailable.
Most datasets correspond to recombinant strains, result-
ing in the production of a heterologous protein. All
datasets can be found in Additional file 2.
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Figure 1 Metabolic network of P. pastoris. Metabolic network for the Pichia pastoris model. For the sake of clarity, the reactions representing
biomass growth and ATP balance have not been included in the scheme (they can be found in the Additional file 1).

Please notice that the experimental datasets come from (a) a simple carbon-balance, and (b) a possibilistic con-
different sources and correspond to experiments with dif-  sistency analysis against our stoichiometric model. Both
ferent strains and different experimental protocols. For  methods are described in detail in the methods section.
this reason, before using them, the consistency of each  The complete results of these analyses can be found in the
dataset has been evaluated using two different methods:  Additional file 2.
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The carbon-balance test of consistency could only be
performed with 52 datasets for which CO, measure-
ments were available. The consistency is reasonably
good for the majority of the tested datasets, with a devi-
ation minor than 10% in carbon content for datasets; 1—
4, 7-14, 46-48, 50, 51, 56—72. Only a few datasets (5, 6,
15, 24-28, 49) have a deviation higher than 10%.

To provide further validation of the data, and deal
with those datasets which consistency cannot be evaluated
with a carbon balance, a possibilistic MFA consistency test
was also applied. Again, most of the datasets are highly
consistent with the model: 72% are fully possible and only
4 in 72 datasets have an AE index larger than 15% —this
includes the intrinsic uncertainty of any measure (e.g. cali-
bration errors, offsets, etc.).

As a result of the analysis, datasets 5, 6, and 15 have
been classified as inconsistent with both methods. This
result suggests that measurement errors are likely in
those datasets. We have decided to keep all datasets in
our further analysis, but these ones will be labeled as less
trustworthy data.

Validation 1: prediction of growth and yields on single
substrates

Several validation tests will be performed in subsequent
sections in order to validate our P. pastoris FBA model.
First, we will check if the model is able to predict growth
on several substrates (glucose, glycerol and methanol).
Then, we will check if the theoretical biomass yields on
these substrates are in agreement with the actual yields
that P. pastoris shows in experimental conditions.

Simulation procedure

To predict the biomass yield we compute a set of FBA
simulations, one per each substrate (glucose, glycerol,
and methanol). In each simulation all substrate uptakes
were fixed to be zero (thus representing the substrate un-
availability) except one, which was fixed to be 1 mmol/g/h
(the exact value is not important, since we will be calculat-
ing yields). Oxygen uptake was assumed to be unlimited.
This way we represent a scenario where one single sub-
strate is being consumed, no other substrates are available,
and oxygen is not limited. The assumed cells objective is
maximizing growth.

Table 1 P. pastoris yields in single substrates
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In summary, we are predicting how P. pastoris cells
will be using each substrate in the selected scenarios, ac-
cording to our model constraints and the assumption of
growth maximization as evolutionary objective.

We performed our simulations to get the optimal flux
distribution that is the model prediction (see methods).
Then we compute biomass growth yields (Yx/s) based
on the flux values of the optimal solution. These values
are finally compared with experimental yields taken from
literature. We also included the yields reported in a
genome-scale model of P. pastoris [29]. The comparison
is presented in Table 1.

Results

We first checked that, as expected, our FBA model is
able to sustain growth on all three single substrates. Glu-
cose, glycerol and methanol are sufficient in their own
to produce all precursors and energy requirement for
growth. According to the model, the best carbon source
was glucose (with a yield of 3.97 Cmol dcw/mmol)
followed by glycerol (2.26 Cmol dcw/mmol), and finally
methanol (0.66 Cmol dcw/mmol). This ranking is in
agreement with data previously reported [30], supporting
the idea that the set of reactions considered in our
model is capturing relatively well the main metabolic
pathways P. pastoris.

Furthermore, the predicted biomass yields for all three
substrates are found to be in reasonably good agreement
with the average experimental yields of our 72 datasets,
and also with the values reported for Caspeta’s genome-
scale model. This provides a first validation for the
model constraints and also for the hypothesis of max-
imal growth as cells objective, as it seems able to capture
(partially, at least) the metabolic regulation that P. pas-
toris has evolved and which determines its behavior in
the presence of these substrates. Notice, however, that the
predicted yields tend to be larger than the experimental
ones. The best agreement is shown with glycerol and glu-
cose (around 13% overestimation), but deviation is signifi-
cant with methanol (around 50% overestimation).

We suggest three tentative hypotheses to explain these
last results.

Firstly, the simplicity of our model makes us disregard
other operating constraints (e.g, thermodynamics, availability

Methanol Glucose Glycerol
Yx/s Ys/02 Ys/coz Yx/s Ys/02 Ys/coz Yx/s Ys/02 Ys/coz
Cmmol mmol mmol Cmmol mmol mmol Cmmol Mmol mmol
mmol-1 mmol-1 mmol-1 mmol-1 mmol-1 mmol-1 mmol-1 mmol-1 mmol-1

FBA (this work) 0.66 083 034 397 1.97 203 226 1.21 0.74

FBA (Caspeta) 049 143 049 391 1.53 1.96 223 0.95 0.68

Exp. (average) 042 +0.09 1.06 £ 0.06 0.55+0.02 341+066 144 +058 18404 1.99+0.17 133+£027 1.01+0.18
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of other nutrients, etc.) additional to stoichiometric and ir-
reversibility constraints that could also influence the actual
capabilities of the microorganism, resulting in actual yields
lower that predicted.

Secondly, our model is not accounting for recombin-
ant protein production, which occurs in the majority of
the experiments used for validation, and which is known
to affect P. pastoris’s use of available resources (and gen-
erally, but not always, to result in lower growth).

Finally, the assumption of growth maximization may
not perfectly capture the actual cells evolutionary objec-
tives (which may be more subtle and complex). This
seems particularly likely when methanol is the substrate,
since the deviation is larger in these scenarios.

All these three issues will be discussed in more depth in
subsequent sections, where more data will be available.

Validation 2: FBA predictions in real scenarios

For the next validation of our FBA model, we will define
scenarios where some substrates are available (glucose,
methanol, or mixes of ethanol and glycerol). Then, we
will use the FBA model to predict if and how these sub-
strates will be consumed. These scenarios correspond to
our 72 datasets, so we will have data to validate the
model predictions. Predictions of growth, substrate up-
take, respiration rates and byproduct formation rates will
be validated against experimental data in each case.

Simulation procedure

Each scenario is defined by the availability of each sub-
strate (glucose, glycerol and methanol), which is repre-
sented by binding their uptake to a maximum value
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equal to the experimental one, as reported in the corre-
sponding dataset (V; < Vi measurea)- Notice that the uptake
flux values are not fixed, but just bounded. To represent
the unavailability of substrates their uptake flux is fixed
to be zero. The oxygen uptake rate was not restricted,
thus assuming that it was not the limiting factor (notice
that this makes the prediction more difficult: if oxygen
was indeed a limitation in some scenarios, our model
will not have this information about the environment
that cells are facing). As before, the objective function
used in the FBA model is growth maximization.

Results

Prediction of growth, substrate uptake, respiration rates,
and byproduct formation rates are given in Figure 2 and
Table 2 for each scenario. As shown in Figure 2 and
Table 2, predictions of growth and substrate uptake are
remarkably accurate in scenarios growing on glycerol
and glucose. It seems clear that growth maximization is
a quite reasonable assumption in these scenarios. It seems
that substrates tend to be used through pathways that re-
sult in almost optimal growth. Notice also that byproduct
formation is not predicted in any scenario, which is also in
agreement with the experimental evidence.

Predictions of oxygen uptake rate and carbon produc-
tion rate are less accurate. This may pinpoint modeling
errors (in the model constraints or in the assumption of
maximizing growth), but also errors in gas measure-
ments: these measurements are generally less reliable,
since they are based on determinations of the exhaust
gases flow and concentration, which are prone to sub-
stantial experimental deviations.
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Figure 2 FBA growth predictions vs. experimental growth. Comparison of predicted growth and experimental growth for each dataset with
different substrates as carbon sources: A) glycerol, B) glucose, C) methanol and methanol-glycerol mixtures. Green labels represent consistent
datasets, whereas red ones are those classified as inaccurate. Gray represents those in which the carbon balance could not be checked.
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Table 2 FBA predicted fluxes vs. experimental fluxes

Glycerol
Code 1] Glycerol Oxygen CO, By-products
msd’ ptd? msd ptd msd ptd msd ptd msd ptd
7 1.88 246 1.09 1.09 2.16 1.32 1.56 0.81 0.00 0.00
11 6.17 6.21 275 275 3.62 333 235 204 0.00 0.00
62 0.90 1.16 052 052 0.82 0.62 0.62 038 NR? 0.00
63 1.11 1.39 0.62 0.62 0.87 0.75 0.65 046 NR 0.00
64 238 2.74 1.21 1.21 1.65 147 1.22 0.90 NR 0.00
65 4.89 542 240 240 3.12 291 229 1.78 NR 0.00
66 837 9.13 4.04 4.04 477 4.89 340 3.00 NR 0.00
70 8.07 831 3.68 368 3.99 445 296 273 NR 0.00
71 8.79 10.16 4.50 4.50 471 544 4.70 334 NR 0.00
72 8.66 9.17 4.06 4.06 419 491 353 3.01 NR 0.00
NRMSE? 12% 0% 14% 23%
Median error® 13% 0% 13% 24%
Glucose
Code 1] Glucose Oxygen CO, By-products
msd ptd msd ptd msd ptd msd ptd msd ptd
1 372 383 0.96 0.96 2.00 1.90 2.09 1.95 >0.02° 0.00
2 372 374 0.94 0.94 178 1.85 1.87 1.90 >0.04° 0.00
3 3.74 3.64 0.92 091 1.69 1.80 1.75 1.85 0.00 0.00
4 3.01 393 0.99 0.99 212 1.95 237 201 >003° 0.00
5 3.71 529 133 133 157 262 203 269 >0.3° 0.00
6 373 6.92 1.74 1.74 0.54 343 1.65 3.52 >1.0¢ 0.00
14 574 6.00 1.51 1.51 271 297 318 3.06 0.00 0.00
49 1.03 171 043 043 033 0.85 0.74 0.87 NR 0.00
50 257 2.78 0.70 0.70 0.78 1.38 1.15 142 NR 0.00
51 3.99 393 0.99 0.99 1.75 1.95 227 201 NR 0.00
53 526 5.56 140 140 1.34 2.76 2.12 2.84 NR 0.00
NRMSE 29% 0% 64% 32%
% Median error 6% 0% 11% 15%
Methanol
Code 1] Methanol Oxygen CO, By-products
msd ptd msd ptd msd ptd msd ptd msd ptd
15 1.60 418 6.31 6.31 7.56 523 344 2.13 0.00 0.00
28 232 266 402 4.02 4.22 333 233 1.36 0.00 0.00
36 031 0.66 0.99 0.99 0.82 033 0.00 0.00
37 1.39 3.09 4.66 4.66 3.86 157 0.00 0.00
38 1.62 373 5.64 5.64 4.67 1.90 0.00 0.00
39 1.04 2.00 3.02 3.02 2.50 1.02 0.00 0.00
40 1.20 2.25 339 3.39 2.81 1.14 0.00 0.00
41 1.93 288 4.34 434 3.60 147 0.00 0.00
42 1.31 240 362 362 3.00 1.22 >001P 0.00
43 1.66 267 4.02 4.02 333 1.36 >001° 0.00

44 0.54 1.15 1.73 1.73 144 0.59 0.00 0.00
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Table 2 FBA predicted fluxes vs. experimental fluxes (Continued)

45 0.66 1.1 1.67 1.67 1.38 0.56 0.00 0.00

53 1.97 269 4.06 4.06 3.36 137 NR 0.00

54 296 393 593 593 491 2.00 NR 0.00

55 354 4.76 7.18 7.18 595 242 NR 0.00

56 122 1.80 272 2.72 293 226 157 0.92 NR 0.00

57 2.12 2.94 444 444 4.70 3.68 248 1.50 NR 0.00

58 2.31 3.17 4.79 4.79 5.05 397 2.72 1.62 NR 0.00

59 2.34 321 4.85 4.85 5.08 4.02 2.68 1.64 NR 0.00

60 3.53 471 712 712 722 5.89 3.76 240 NR 0.00

61 447 5.90 8.90 8.90 867 7.37 4.46 3.01 NR 0.00

NRMSE 61% 0% 51% 45%

% Median error 45% 0% 21% 39%

Glycerol methanol mixtures

Code 1] Glycerol Methanol Oxygen Cco, By-products
msd ptd msd ptd msd ptd msd ptd msd ptd msd ptd

8 207 2.56 0.95 0.95 0.63 0.63 2.70 1.67 1.70 0.92 0.00 0.00

9 1.72 265 0.74 0.74 148 148 3.90 2.12 2.10 1.05 0.00 0.00

10 202 283 0.57 0.57 233 233 4.85 262 2.21 1.21 0.00 0.00

12 6.18 749 2.77 277 1.87 1.87 7.19 4.90 4.8 269 0.00 0.00

13 6.24 6.84 2.23 2.23 2.73 2.73 7.20 4.96 3.60 2.58 0.00 0.00

19 232 284 0.67 0.67 201 201 321 247 1.77 1.18 0.00 0.00

20 232 2.80 051 051 249 249 346 268 1.89 1.22 0.00 0.00

21 232 2.78 043 043 2.73 2.73 3.58 2.78 1.97 1.24 0.00 0.00

22 232 275 031 031 3.09 3.09 3.76 293 2.09 1.27 0.00 0.00

23 232 274 0.28 0.28 3.18 318 379 297 2.09 1.28 0.00 0.00

24 232 2.72 0.18 0.18 349 349 3.96 3.1 217 1.31 0.00 0.00

25 232 269 0.13 0.13 3.62 3.62 3.96 3.16 221 132 0.00 0.00

26 2.32 269 0.11 0.11 3.69 369 4.02 3.19 2.25 133 0.00 0.00

27 232 268 0.09 0.09 3.74 374 4.06 3.21 2.25 1.33 0.00 0.00

29 039 0.86 0.27 0.27 038 037 0.64 033 0.00 0.00

30 0.77 1.56 0.54 0.54 0.50 0.50 1.07 0.57 0.00 0.00

31 1.16 2.25 0.82 0.81 0.63 0.63 1.50 0.82 0.00 0.00

32 1.93 2.89 1.09 1.09 0.66 0.66 1.86 1.03 0.00 0.00

33 2.71 3.69 1.36 1.36 0.94 0.94 242 132 0.00 0.00

34 3.09 4.66 1.90 1.90 0.55 0.55 2.75 1.60 0.00 0.00

35 348 5.81 245 245 044 044 332 1.96 0.00 0.00

46 4.54 583 2.53 253 0.18 0.18 4.78 321 3.25 1.94 0.00 0.00

47 5.63 7.06 261 261 1.76 1.76 535 4.61 3.09 2.53 0.00 0.00

48 544 6.72 222 222 258 258 573 4.82 333 252 0.00 0.00

NRMSE 32% 0% 0% 34% 39%

% Md error 19% 0% 0% 23% 39%

"Measured values from dataset. *Predicted values. *Non reported values. “Root mean square deviation normalized. >Median of percentage errors.
Note: The datasets 1, 2, 4, 5, 6, 42 and 43 reported small quantities of byproducts. *Ethanol and citrate, Peitrate only, “ethanol, citrate and pyruvate.
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It is also noticeable that discrepancies in methanol sce-
narios are larger than those in other substrates, with a
median error of 45% for biomass growth (for 19% in
mixes of glycerol-methanol, 12% in glycerol, and 6% in
glucose). Again, this indicates that the FBA model is less
precise in scenarios in which methanol is consumed. As
we have already mentioned in the former section, there
are several possible reasons for this behavior: (i) our
underlying constraint-based model may have errors or
limitation in the methanol pathways, e.g., reactions and
other constraints may be missing, (b) our model is not
considering the resources devoted to produce recombin-
ant protein, and (c) the hypothesis of maximizing growth
could be less suitable in the case of methanol, since it is
a less frequent substrate in the environment for which
P. pastoris is selectively adapted.

Let us discuss in more depth what could explain these
deviations between predicted and actual cells behavior.

The first reason to explain why predicted values are
larger than the measured ones is that our model is only
accounting for stoichiometric and irreversibility con-
straints, but there could be other operating constraints
such as thermodynamic constraints or biochemical re-
strictions resulting from regulation (e.g. feedback inhib-
ition of enzymes limiting the optimal use of substrates).
This applies for all three substrates; however the over-
estimation in methanol is larger than in glycerol and
glucose, suggesting that our stoichiometric model could
be not accounting for relevant skills in the methanol
metabolism. For example, phenomena such as accumu-
lation of formaldehyde and hydroxide peroxide at high
methanol concentrations may result in cell growth im-
pairment as both oxidized products of methanol are
toxic for the cell [31]. Biogenesis of peroxisomes, the
central metabolism organelle for assimilation and dis-
similation of methanol greatly disturbs cellular content,
as it can occupy 90% of the cell volume during growth
in methanol [32,33]. It should also be mentioned that
the biomass equation in the model was adapted from
other yeast (S. cerevisiae) and growth conditions (glu-
cose as the only carbon source) [28]. Exclusive growth
on methanol might also represent a highly specific cellu-
lar condition that would require the development of a
biomass equation of its own for an improved predictive
accuracy.

However, it is still remarkable that even if our model
is a raw representation of the whole metabolism and
even if metabolism is only part of all phenomena occur-
ring within cells, imposing these constraints seems to be
enough to allow reasonably accurate predictions.

A second reason to explain the deviation is that the
assumption of growth maximization does not perfectly
represent the evolutionary objectives of these cells. This
is particularly plausible in the case of methanol, because
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it is a less common (or frequent) substrate in nature for
P. pastoris. If this is the case, it would be an efficient
evolutionary strategy to not completely regulate every
metabolic reaction if methanol is the only available sub-
strate in a given moment, because these conditions will
not remain long time, and therefore the metabolic cost
of regulate and deregulate every reaction could be an in-
efficient effort. This reasoning is in agreement with the
hypothesis that a specific flux distribution at a certain
condition might be chosen to minimize adjustment efforts
to other conditions, as proposed in [17]. In addition, as
methanol assimilation is a highly specific capability for this
yeast, not seen in most species, it could be the case that
optimal growth is not required to overtake competitors in
an already favorable environment.

Finally, it must be taken into account that our model
is not considering recombinant protein production. This
can also explain why the predicted growth tends to be
larger than the observed one. Metabolic precursors and
energetic resources required to produce recombinant pro-
tein, as the stress that this production provokes in cells,
are not taken into account in our predictions —instead,
we are implicitly assuming that recombinant strains be-
have as a wild type strains, and thus no heterologous pro-
tein is produced—. These phenomena penalize substrate
uptake, and thus growth, and will possibly impact also
growth in terms of yield (although there is evidence sug-
gesting the opposite in scenarios where glucose is the sub-
strate [34]). If these phenomena related with protein
production were taken into account in our model, the pre-
dicted growth might be lower and show a better agree-
ment with experimental data.

In summary, our FBA model, which couples a constraint
based model with the hypotheses of maximization of
growth, shows an acceptable agreement with the experi-
mental data of dozens of chemostat cultures of P. pastoris,
especially when glycerol and glucose are the carbon
sources. Several issues must be highlighted in this regard:
(1) heterogeneity within the evaluated experimental condi-
tions (different sources, microbial strains, recombinant
proteins, culture conditions), where, in addition, measure-
ment accuracy will not always be perfect; (2) our model
does not consider all constraints operating in the system,
but only (partial) stoichiometry and irreversibility; (3) we
are assuming that cells behavior is optimal in one particu-
lar sense —growth—, what is an ext