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Abstract

Background: As a result of recent advances in biotechnology, many findings related to intracellular systems have
been published, e.g., transcription factor (TF) information. Although we can reproduce biological systems by
incorporating such findings and describing their dynamics as mathematical equations, simulation results can be
inconsistent with data from biological observations if there are inaccurate or unknown parts in the constructed
system. For the completion of such systems, relationships among genes have been inferred through several
computational approaches, which typically apply several abstractions, e.g., linearization, to handle the heavy
computational cost in evaluating biological systems. However, since these approximations can generate false
regulations, computational methods that can infer regulatory relationships based on less abstract models
incorporating existing knowledge have been strongly required.

Results: We propose a new data assimilation algorithm that utilizes a simple nonlinear regulatory model and a state
space representation to infer gene regulatory networks (GRNs) using time-course observation data. For the estimation
of the hidden state variables and the parameter values, we developed a novel method termed a higher moment
ensemble particle filter (HMEnPF) that can retain first four moments of the conditional distributions through filtering
steps. Starting from the original model, e.g., derived from the literature, the proposed algorithm can sequentially
evaluate candidate models, which are generated by partially changing the current best model, to find the model that
can best predict the data. For the performance evaluation, we generated six synthetic data based on two real
biological networks and evaluated effectiveness of the proposed algorithm by improving the networks inferred by
previous methods. We then applied time-course observation data of rat skeletal muscle stimulated with corticosteroid.
Since a corticosteroid pharmacogenomic pathway, its kinetic/dynamics and TF candidate genes have been partially
elucidated, we incorporated these findings and inferred an extended pathway of rat pharmacogenomics.

Conclusions: Through the simulation study, the proposed algorithm outperformed previous methods and
successfully improved the regulatory structure inferred by the previous methods. Furthermore, the proposed
algorithm could extend a corticosteroid related pathway, which has been partially elucidated, with incorporating
several information sources.
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Background
Gene regulatory networks (GRNs) are fundamental for
sustaining complex biological systems in cells. Although
a comprehensive understanding of intracellular systems
is still far from complete, many findings regarding intra-
cellular systems have been published as a result of recent
technological advances in biotechnology, e.g., microarray
and Chip-Seq. By combining these findings, we can con-
struct biological simulationmodels in which the dynamics
of biomolecules are described by mathematical equations,
e.g., the Michaelis-Menten model [1] and S-system [2].
However, simulation results may not match results from
biological observations due to inaccurate or missing infor-
mation about intracellular systems.
In oder to infer unknown parts of biological sys-

tems, there exist roughly two major approaches, i.e.,
simulation model-based and statistical approaches. In
constructing biological simulation models, regulatory
relationships among biomolecules are collected from the
literature. To represent the regulatory systems, mathe-
matical equations, often differential equations [1-4], are
given to describe the dynamic behavior of the involved
biomolecules. The parameter values of these simula-
tion models have been estimated to be consistent with
the data by some computational methodologies. Several
methods have been proposed to infer regulatory struc-
tures [5,6], to reproduce the dynamic behavior of bio-
logical systems recorded in the literature [7-10], and to
improve published pathways so that they are consistent
with the data [11,12]. However, differential equation-
based approaches are computationally intensive when
updating parameter values and simulation results simul-
taneously. Therefore, they cannot be applied to more than
several genes when much of the regulatory structure is
unknown.
A statistical approach using more abstracted models,

e.g., Bayesian networks [13-16] and the state space model
[17-21], have been successfully applied to infer the struc-
ture of transcriptional regulation using data from biolog-
ical observations. Whereas purely data-driven methods
need to explore a large model space, some studies have
further incorporated other information, e.g., literature-
recorded pathways and TFs information [22-26]. In con-
trast, these approximations can generate false regulations;
there is a trade-off relationship between accuracy and
computational ease. To overcome the problem, methods
to improve and deconvolve networks, which are inferred
by some computational approaches, utilizing less abstract
models to better predict the data have been also proposed
recently [27-29]. In following the direction, we should
apply models that can maximally emulate the nonlinear
dynamics of gene regulatory networks and establish a
method for estimating the parameter values that maxi-
mize the ability to predict the data.

For this purpose, we proposed a novel data assimila-
tion algorithm utilizing a simple nonlinear model, termed
the combinatorial transcription model [5,30], and a state
space representation [31,32], to infer GRNs by restor-
ing networks that is inferred by some GRNs inference
methods or derived from the literature. Since the non-
linearity results in generating non-Gaussian conditional
distributions of the hidden state variables, we applied the
unscented Kalman filter (UKF) [33-35] that can efficiently
calculate the approximated conditional distributions as
Gaussian distributions [36]. However, UKF cannot sat-
isfy the requirements for estimating accurate parameter
values of the model; thus, the first four moments of the
conditional distributions of the hidden states should be
retained. To address this problem, we developed a novel
method, termed a higher-moment ensemble particle fil-
ter (HMEnPF), which can retain the first two moments
and the third and fourth central moments throughout
the prediction, filtering, and smoothing steps. Starting
from an original network, which is derived from the
literature or some GRNs inference methods, the pro-
posed algorithm using HMEnPF improves the network
based on the nonlinear state space model. Furthermore,
the combinatorial transcription model was extended so
that the model can handle additional biomolecules such
as drugs.
To show the effectiveness of the proposed algorithm, we

first prepared synthetic time-course data and compared
the proposed algorithm to GeneNet [37,38] based on
an empirical graphical Gaussian model (GGM), G1DBN
[39] based on dynamic Bayesian networks using first
order conditional dependencies, and the previous algo-
rithm using UKF only [36]. For this comparison, six
synthetic data with 30 time-points were generated based
on a WNT5A [40] and a yeast-cell-cycle network [41].
As an application example, we used the time-course
microarray data after stimulating rat skeletal muscle
with corticosteroid, which were downloaded from the
GEO database (GSE490). For this experiment, we also
utilized corticosteroid pharmacogenomics [42,43], a pre-
viously defined regulatory structure for rat skeletal muscle
[44], TF information from ITFP (Integrated Transcrip-
tion Factor Platform) [45] and the original network
inferred by G1DBN. Consequently, we proposed candi-
date pathways for an extension of corticosteroid-related
pathways.

Methods
State space representation of combinatorial transcription
model
Let xi(t) be the abundance of the ith (i = 1, . . . , p)
gene as a function of time t. As a gene regula-
tory system, we assume that xi(t) is controlled by
its synthesis and degradation processes, and that the
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quantity of synthesis is regulated by the other genes as
described by

dxi(t)
dt

= fi
(
x(t), θ fi

) · ui − xi(t) · di + v(t), (1)

where fi is a function of the regulatory effect on the ith
gene by other genes, x(t) = (x1(t), . . . , xp(t))′, θ fi is a vec-
tor of tuning parameters for fi, ui is a synthesis coefficient,
di is a degradation coefficient and v(t) is a random system
noise. Here, (·)′ stands for transposition. fi is often con-
sidered as a hill function, such as the Michaelis-Menten
model [1].
Since the estimation of parameter values maximiz-

ing prediction ability is a computationally heavy task
when using differential equations, difference equations
have been typically utilized to analyze biological sys-
tems [4,5,17,18,20,21,46]. The impact of such substitution
was discussed previously [3,4]. In this study, we han-
dle a simple nonlinear difference equation based on the
combinatorial transcription model [5,30,36] described by

xi,t+1 = (1 + ai,i)xi,t +
∑
j∈Ai

ai,j · xj,t

+
∑
j∈Ai

∑
k∈Ai\j

bi,(j,k) · xj,t · xk,t + ui + vi,t , (2)

where xi,t is the amount of the ith gene at time t, ai,j is
an individual effect by the jth gene on the ith gene, bi,(j,k)
is a combinatorial effect of the jth and kth genes on the
ith gene and Ai is an active set of genes regulating the
ith gene. Since this model is a simple extension of a linear
model to express a combinatorial effect by two different
genes, bj,j is not considered.
Under the framework of data assimilation, in order to

combine the simulation results with the observed exper-
imental data, we apply a state space representation of
Eq. (2) given by

xt+1 = Axt + Bvec(xtx′
t) + u + vt , (3)

yt = xt + wt , (4)

where xt = (x1,t , . . . , xp,t)′, A = (a1, . . . ,ap)′ ∈ Rp×p is
a linear effect matrix, ai = (ai,1, . . . , ai,p)′ (i = 1, . . . , p),
B = (b1, . . . , bp)′ ∈ Rp×p2 is a combinatorial effect matrix,
bi = (bi,(1,1), . . . , bi,(1,p), bi,(2,1), . . . , bi,(p,p))′ (i = 1, . . . , p),
vec is a transformation function (Rp×p → Rp2), u =
(u1, . . . ,up)′, and vt∼ N(0,Q) and wt ∼ N(0,R) are sys-
tem and observational noises with diagonal covariance
matrices, respectively. We define an entire set of time
points T = {1, . . . ,T} and the observed time set Tobs (Tobs
⊂ T ), and consider Tobs = T in the following for simplic-
ity. Note that A and B should be sparse matrices, and we

also consider an active set of elements Bi (i = 1, . . . , p),
which are sets of non-zero columns in the ith row of B.

Incorporation of biomolecules affecting biological systems
Although the regulatory system of Eqs. (3) and (4) can
only represent dynamic regulation among genes, other
biomolecules, such as drugs, can affect the regulatory sys-
tem. To address these cases, we further consider a term
representing the concentration of other biomolecules as
represented by

xt = Axt−1 + Bvec(xtx′
t) + Gdt−1 + u + vt , (5)

where dt is an M-dimensional vector containing the con-
centration of the biomolecules at the tth time point, G =
(g1, . . . , gp)′ is an p × M matrix and gi = (gi,1, . . . , gi,M)′
(i = 1, . . . , p) is an M-dimensional vector representing
their regulatory effects on the ith gene. As withAi and Bi,
we consider an active set of elements Gi for the ith row of
the drug effectG. A conceptual view of Eq. (5) is illustrated
in Figure 1. In using Eqs. (4) and (5), we try to infer the
regulatory structure among genes and estimate the values
of θ = {A, B, G, u, Q, R, μ0}.

A higher-moment ensemble particle filter
Let Yt be {y1, . . . , yt}. In estimating the parameter val-
ues and calculating the likelihood of Eqs. (4) and (5),
conditional probability densities p(xt|Yt−1), p(xt|Yt) and
p(xt|YT ) can be non-Gaussian forms. Thus, since these
probability densities can be analytically intractable, we
applied a type of Monte Carlo approach termed ensemble
approximation. In this approach, for example, a probabil-
ity density p(xt) is approximated by

p(xt) = 1
N

N∑
n=1

δ
(
xt − x(n)

t

)
, (6)

Figure 1 A combinatorial transcription model. A cartoon figure of
the combinatorial transcription model regarding the ith gene. A gene
undergoes synthesis and degradation processes, and its synthesis
process is regulated through individual effects ai,j , ai,k and a
combinatorial effect bi,(j,k) .
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where x(n)
t is the nth sample from p(xt), N is the number

of samples and δ is a Dirac delta function. A sam-
ple x(n)

t and a set of samples {x(n)
t } are called parti-

cle and ensemble, respectively. Previously, many types
of ensemble approximation methods have been devel-
oped to obtain conditional distributions of the hidden
state variables in nonlinear state space models, e.g., the
ensemble Kalman filter (EnKF) [47] and the particle fil-
ter (PF) [48,49]. Here, our requirements for this study are
the followings; (i) the number of particles is not reduced
through filtering steps since p and the dimension of θ

can be too high for the resampling procedure and (ii) the
third and fourth moments of probability densities of the
hidden states should be kept to optimize θ as explained
in the next sub-section. To satisfy these requirements,
we extended a method termed the ensemble particle fil-
ter (EnPF) [50,51], which can retain the first twomoments
through filtering steps, and developed a novel method
termed a higher-moment ensemble particle filter (HM-
EnPF) that can additionally retain third and fourth central
moments without reducing particles. The procedure of
the proposed method is explained below.

Prediction step
In this step, we attempt to calculate p(xt+1|Yt) after
obtaining p(xt|Yt) (t = 0, . . . ,T − 1). Let x(n)

t|t be a sample
from a conditional probability density p(xt|Yt). Initially,
generate particles x(n)

0|0 ∼ p(x0) for n = 1, . . . ,N . Then, for
t = 0, . . . ,T − 1,

1. Generate particles v(n)
t ∼ N(0,Q) for n = 1, . . . ,N .

2. Calculate x(n)
t+1|t by applying x

(n)
t|t and v(n)

t to Eq. (5)
for n = 1, . . . ,N .

Filtering step
In this step, we attempt to calculate p(xt+1|Yt+1) after
obtaining p(xt+1|Yt) (t = 0, . . . ,T − 1). This step consists
of the following three sub-steps termed “Particle Filter
Step”, “Ensemble Kalman Filter Step” and “Merging Step”.
At the tth (t ∈ Tobs) time step,

1. “Particle Filter Step” is firstly executed to obtain{
x̂(n)
t|t

}
that is according to the theoretically exact

conditional probability density p(xt|yt) as follows.
(a) Resample x̂(n)

t|t according to

p(xt|yt) = 1∑N
ṅ=1 p

(
yt|x(ṅ)

t|t−1

)

×
N∑

n=1
p

(
yt|x(n)

t|t−1

)
δ
(
xt − x(n)

t|t−1

)
.

(7)

(b) Calculate the first and second moments
μt|t = E

[{
x̂(n)
t|t

}]
and Vt|t = Var

[{
x̂(n)
t|t

}]
,

respectively.
(c) Standardize x̂(n)

t|t as

ẑ(n)
t|t = V− 1

2
t|t ·

(
x̂(n)
t|t − μt|t

)
. (8)

(d) Calculate the third and fourth central

moments m̂(3)
t|t = E

[{
ẑ(n)
t|t

}3]
and m̂(4)

t|t =

E
[{

ẑ(n)
t|t

}4]
, respectively.

2. “Ensemble Kalman Filter Step” is secondly executed
to obtain

{
x̃(n)
t|t

}
that is calculated under the Gaussian

assumption with regard to p(xt|yt) as follows.
(a) Generate particles w(n)

t ∼ N(0,R) for
n = 1, . . . ,N .

(b) Calculate Kalman gain

Kt = Vt|t−1
(
Vt|t−1 + Rt

)−1 , (9)

where Vt|t−1 = Var
[{

x(n)
t|t−1

}]
and

Rt = Var
[{

w(n)
t

}]
.

(c) Calculate x̃(n)
t|t as

x̃(n)
t|t = x(n)

t|t−1 + Kt
(
yt − x(n)

t|t−1 + w(n)
t

)
.
(10)

(d) Calculate the first and second moments
μ̃t|t = E

[{
x̃(n)
t|t

}]
and Ṽt|t = Var

[{
x̃(n)
t|t

}]
,

respectively.
(e) Standardize x̃(n)

t|t as

z̃(n)
t|t = Ṽ− 1

2
t|t ·

(
x̃(n)
t|t − μ̃t|t

)
. (11)

(f) Calculate the third and fourth central

moments m̃(3)
t|t = E

[{
z̃(n)
t|t

}3]
and m̃(4)

t|t =

E
[{

z̃(n)
t|t

}4]
, respectively.

3. “Merging Step” is finally executed to obtain
{
x(n)
t|t

}
of

which the first, second, third central and fourth
central moments match to those of

{
x̂(n)
t|t

}
. Here, we

consider a standardization function S(γ ,α,β) that
transforms a normal random vector γ into a
normalized random vector x whose the third and
fourth central moments are α and β , respectively.
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From a previous study [52], we have S(γ ,α,β) and
Sinv(x,α,β) that transforms x to γ as explained in
the Additional file 1. Then, we obtained x(n)

t|t as

x(n)
t|t = V̂

1
2
t|tS

(
z(n)
t , m̂(3)

t|t , m̂
(4)
t|t

)
+ μ̂t|t , (12)

z(n)
t = Sinv

(
z̃(n)
t|t , m̃

(3)
t|t , m̃

(4)
t|t

)
. (13)

Smoothing step
The smoothing step used for calculating xt|s (s > t) was
essentially the same as the filtering step. The details of the
smoothing step can be found in the Additional file 2.

Parameter estimation using EM-algorithm
Let XT = {x0, . . ., xT } be the set of state variables. The
log-likelihood of observation data is given by

log L = log
∫
p(x0)

∏
t∈T

p(xt|xt−1)
∏

t∈Tobs
p(yt|xt)dx1 . . . dxT ,

(14)

where p(x0) is a probability density of N-dimensional
Gaussian distributions N(μ0,�0), p(xt|xt−1) and p(yt|xt)
can be probability densities of N-dimensional non-
Gaussian distributions obtained by ensemble approxima-
tion.
In this study, we estimate the values of θ by maximiz-

ing Eq. (14) using the EM-algorithm. Thus, the conditional
expectation of the joint log-likelihood of the complete
data (XT ,YT ) at the lth iteration

q(θ |θ l) = E[ log p(YT ,XT |θ)|YT , θ l] , (15)

is iteratively maximized with respect to θ until the con-
vergence is attained. More details are included in the
Additional file 3.

Network restoration algorithm
We consider an algorithm to explore the best model by
sequentially evaluating candidate models generated from
the current best modelMcurrent by partially modifying the
regulation. Briefly, given the original model Moriginal, we
attempt to sequentially create and evaluate candidates that
are generated by adding, deleting and replacing regulatory
components of Mcurrent until the best model is no longer
updated. A conceptual view is illustrated in Figure 2.
Due to the heavy computational cost to evaluate the

model by HMEnPF, we proposed a novel algorithm for
reconstructing GRNs with combining UKF and HMEnPF
as described in Algorithms 1, 2, 3, 4 and 5 and illustrated
in Figure 3. Compared to EnKF (the computational task
of EnKF is included in HMEnPF), the computational cost
for UKF in prediction, filtering, and smoothing steps are

Figure 2 The schematic view of the proposed algorithm. The
proposed algorithm performs three ways to explore model space,
thus, adding, deleting and replacing a regulation from the current
best model. Starting from the original model, the proposed algorithm
tries to find the best model with respect to the BIC score.

roughly 2p+1
N , 1

N and 2
N ·Tobs , respectively. The theoretical

details of UKF for the combinatorial transcription model
were discussed previously [36]. Briefly, the proposed
algorithm first calculate ea, eb and eg explained in the
Additional file 4 for all candidate models, next evaluate
the top r1 candidates for each row by UKF and then evalu-
ate the r2 top candidates by HMEnPF. Note that, when the
systems includeG, regulations by the drugs are inferred in
the same way as A in Algorithms 1, 2, 3, 4 and 5. In Results
and discussion section, we set {r1, r2, addmax, delmax} =
{5, 5,+∞,+∞}.

Algorithm 1 The proposed algorithm for improving
GRNs utilizing UKF and HMEnPF
1: Set addmax, delmax, r1 and r2;
2: Define that add and del are the number of added and

deleted regulations fromMoriginal, respectively;
3: flag ← 0; c ← 0;Mcurrent ← Moriginal;
4: BICcurrent ← the BIC score of the original model;
5: Execute the first phase of the proposed algorithm

(Algorithm 2)
6: Execute the second phase of the proposed algorithm

(Algorithm 3)
7: OutputMcurrent

Results and discussion
Comparison using synthetic data
To show the effectiveness of the proposed algorithm,
we prepared synthetic time-course gene expression data
based on the synthetic networks,WNT5A [40] and a yeast
cell-cycle [41], as illustrated in Figures 4 and 5, respec-
tively. For each network and three different system noises,
we generated five time-courses (T = {1, 2, . . . , 30}) by
using Eqs. (3) and (4); thus, six sets of five time-courses
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Figure 3 The analysis flow of the proposed algorithm. The proposed algorithm (Algorithm 1) consists of two phases (Algorithm 2 and 3) and the
second phase consists of two sub-algorithms (Algorithm 4 and 5). Starting from the original model, the proposed algorithm tries to explore the best
model.

Algorithm 2 The first phase of the proposed algorithm
1: flag ← 0;
2: c ← 0;
3: while flag < 2 do
4: for i = 1 to p do
5: for k = 1 to r1 do
6: if c (mod2) = 0 and Ai,j ofMcurrent = 0 and

add < addmax then
7: j ← the kth minimum element with respect

to e(i, jcan) (jcan /∈ Ai) ofMcurrent ;
8: ConsiderM that is constructed from

Mcurrent by setting a regulation to the ith
gene by the jth gene as included in the active
set;

9: else if c (mod2) = 1 and Ai,j ofMcurrent = 1
and del < delmax then

10: j ← the kth minimum element with respect
to e(i, jcan) (jcan ∈ Ai) ofMcurrent ;

11: ConsiderM that is constructed from
Mcurrent by setting a regulation to the ith
gene by the jth gene as not included in the
active set;

12: end if
13: Estimate the parameter values and obtain the

BIC score ofM by UKF;
14: end for
15: end for
16: Estimate the parameter values and obtain the BIC

score of the top r2 candidates by HMEnPF;
17: if BICcurrent > the minimum BIC score among

models calculated above then
18: SetMcurrent and BICcurrent as those of the

minimum one;
19: flag ← 0;
20: else
21: flag ← flag + 1;
22: end if
23: c ← c + 1;
24: end while

Algorithm 3 The second phase of the proposed
algorithm
1: flag ← 0;
2: while flag < p2 do
3: for i = 1 to p do
4: for j = 1 to p do
5: if Ai,j ofMcurrent = 1 then
6: changed ← Execute sub-algorithm 1(i, j);
7: end if
8: if changed then
9: flag ← 0;

10: Execute sub-algorithm 2;
11: else
12: flag ← flag + 1;
13: end if
14: changed ← FALSE;
15: if flag >= p2 then
16: break;
17: end if
18: end for
19: if flag >= p2 then
20: break;
21: end if
22: end for
23: end while

were prepared. The values of the parameters A, B and u
in Eq. (3) were determined between -1 and 1, the sys-
tem noise vt and observational noise wt were generated
according to Gaussian distributions with a mean 0 and
three variances 0.01, 0.05 and 0.1, and that with a mean
0 and a variance 0.3, respectively. For the original net-
works to be improved by the proposed algorithm, we
utilized GeneNet [37,38] based on an empirical graphi-
cal Gaussian model (GGM) and G1DBN [39] based on
dynamic Bayesian networks using first order conditional
dependencies. After the restoration, the original and
improved networks were evaluated by true positive (TP),
false positive (FP), true negative (TN), false negative (FN),
precision rate

(
PR = TP

TP+FP

)
, recall rate

(
RR = TP

TP+FN

)
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Algorithm 4 Sub-algorithm 1(iorig , jorig)
1: changed ← FALSE;
2: Set Mcandidate as Mcurrent with deleting a regulation

to the iorigth gene by the jorigth gene;
3: Estimate the parameter values and obtain the BIC

score BICcandidate by HMEnPF;
4: if BICcurrent > BICcandidate and delmax > del then
5: Set Mcandidate as Mcurrent ; BICcandidate ←

BICcurrent ;
6: changed ← TRUE;
7: else
8: for i = 1 to p do
9: for k = 1 to r1 do

10: j ← the kth minimum element with respect to
e(i, jcan) (jcan /∈ Ai) ofMcandidate;

11: Consider Mcandidate that is constructed from
Mcandidate by setting a regulation to the ith
gene by the jth gene as included in the active
set;

12: if addmax < add or delmax < del ofMcandidate
then

13: continue;
14: end if
15: Estimate the parameter values and obtain the

BIC score by UKF;
16: end for
17: end for
18: Estimate the parameter values and obtain the BIC

score of the top r2 candidates by HMEnPF;
19: if BICcurrent > the minimum BIC score among

candidate models calculated above then
20: Set Mcurrent and BICcurrent as those of the mini-

mum one;
21: changed ← TRUE;
22: end if
23: end if
24: return changed;

and F-measure
(
= 2PR·RR

PR+RR

)
. Note that, since GeneNet

infers undirected regulations among genes, we compared
its results to the undirected true networks. In addition,
since a directed network is required for the original net-
work, we transformed the undirected network inferred
by GeneNet as follows; (i) a true directed regulation was
set when an inferred undirected regulation was correct,
and (ii) a false directed regulation of which direction was
randomly selected was set when an inferred undirected
regulation was incorrect. Here, to clarify the significance
of HMEnPF, we also showed the results of the previ-
ous algorithm using UKF only [36]. These results are
summarized in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
and 12.

Algorithm 5 Sub-algorithm 2
1: while TRUE do
2: for i = 1 to p do
3: for k = 1 to r do
4: j ← the kth minimum element with respect to

e(i, jcan) (jcan /∈ Ai) ofMcurrent ;
5: ifAi,j ofMcurrent = 0 and add < addmax then
6: Consider M that is constructed from

Mcurrent by setting a regulation to the ith
gene by the jth gene as included in the active
set;

7: Estimate the parameter values and obtain
the BIC score ofM by UKF;

8: end if
9: end for

10: end for
11: Estimate the parameter values and obtain the BIC

score of the top r2 candidates by HMEnPF;
12: if BICcurrent > the minimum BIC score among

models calculated above then
13: Set Mcurrent and BICcurrent as those of the mini-

mum one;
14: else
15: break;
16: end if
17: end while

The results indicate that the proposed algorithm using
HMEnPF and only UKF could outperform G1DBN and
GeneNet, and the proposed algorithm showed better per-
formance than that of using UKF only. This concludes that
retaining higher moment information can improve the

Figure 4 AWNT5A network. A real biological network, termed
WNT5A network [40], used for the comparison analysis. A node and
an arrow represent a gene and regulatory effect, respectively.
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Figure 5 A yeast cell-cycle network. A real biological network of
yeast cell-cycle from the KEGG database [41] used for the comparison
analysis. A node and an arrow represent a gene and regulatory effect,
respectively.

accuracy of approximation and estimate correct param-
eter values. Additionally, we recognized that the perfor-
mance of the proposed algorithm strongly depends on
the accuracy of the original network. Thus, to obtain
better results, we should carefully construct original net-
works or select inference methods for creating the orig-
inal network. Note that the Jar file of the proposed
algorithm is available at: http://sunflower.kuicr.kyoto-u.
ac.jp/~t-hasegw/, and the synthetic data, the parameter
values and the original networks are in the Additional
file 5.

Inference using real data
As an application example, we analyzed microarray time-
course gene expression data from rat skeletal mus-
cle [42,43]. The microarray data were downloaded from
the GEO database (GSE490). The time-course gene

Table 1 The comparison results using the original model
given by G1DBN and the five time-courses generated from
WNTA5A network with Gaussian system noise of mean 0
and variance 0.01

PR RR F-measure TP FP TN FN

HMEnPF 0.689 0.573 0.625 17.2 7.8 52.2 12.8

UKF 0.632 0.533 0.577 16.0 9.4 50.6 14.0

G1DBN 0.487 0.453 0.466 13.6 15.0 45.0 16.4

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and G1DBN for the five time-courses generated fromWNTA5A
network with Gaussian system noise of mean 0 and variance 0.01. The results of
‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses were
averaged. The networks inferred by G1DBN were used as the original networks
for the former two algorithms.

Table 2 The comparison results using the original model
given by GeneNet and the five time-courses generated
fromWNTA5A network with Gaussian system noise of
mean 0 and variance 0.01

PR RR F-measure TP FP TN FN

HMEnPF 0.595 0.520 0.553 15.6 10.4 49.6 14.4

UKF 0.573 0.493 0.529 14.8 10.6 49.4 15.2

GeneNet 0.493 0.495 0.493 10.4 10.8 13.2 10.6

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and GeneNet for the five time-courses generated fromWNTA5A
network with Gaussian system noise of mean 0 and variance 0.01. The results of
‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses were
averaged. The networks inferred by GeneNet were used as the original networks
for the former two algorithms.

expression data was measured at 0, 0.25, 0.5, 0.75, 1, 2, 4,
5, 5.5, 7, 8, 12, 18, 30, 48, and 72 [h] (16 time points) after
stimulation of corticosteroid, but we removed data at 48
and 72 [h] (steady state profiles) for computational effi-
ciency. The data at time 0 represent controls (untreated).
There were two, three, or four replicated observations for
each time point.
Because corticosteroid pharmacokinetics/dynamics in

skeletal muscle have been modeled based on differen-
tial equations [43], the time-dependent concentration of
corticosteroid in nucleus in rat skeletal muscle can be
obtained for dt as explained in the Additional file 6. Fur-
thermore, corticosteroid catabolic/anabolic processes in
rat skeletal muscle have been partially established [44];
thus, we handled gene (i) TFs, Trim63, Akt1, Akt2, Mstn,
Mtor, Irs1, and (ii) non-TFs, Akt3, Anxa3, Bcat2, Bnip3,
Foxo1, Igf1, Igf1r, Pik3c3, Pik3cb, Pik3cd, Pik3c2g, Rheb,
Slc2a4 with their regulatory relationships. Additionally,
we handled genes (iii) TFs, Cebpb, Cebpd, Gpam, Srebf1
and (iv) non-TFs, Rxrg, Scarb1, Scd, Gpd2, Mapk6, Ace,
Ptpn1, Ptprf, Edn1, Agtr1a, Ppard, Hmgcs2, Serpine1, Il6r,
Mapk14, Ucp3 and Pdk4 that are suggested as corti-
costeroid related genes [42]. Note that the microarray
(GSE490) does not include three genes in the original

Table 3 The comparison results using the original model
given by G1DBN and the five time-courses generated from
a yeast-cell cycle network with Gaussian system noise of
mean 0 and variance 0.01

PR RR F-measure TP FP TN FN

HMEnPF 0.759 0.700 0.727 18.2 5.8 58.2 7.8

UKF 0.707 0.692 0.698 18.0 7.6 56.4 8.0

G1DBN 0.574 0.562 0.555 14.6 12.8 51.2 11.4

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and G1DBN for the five time-courses generated from a yeast
cell-cycle network with Gaussian system noise of mean 0 and variance 0.01. The
results of ‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses
were averaged. The networks inferred by G1DBN were used as the original
networks for the former two algorithms.

http://sunflower.kuicr.kyoto-u.ac.jp/~t-hasegw/
http://sunflower.kuicr.kyoto-u.ac.jp/~t-hasegw/
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Table 4 The comparison results using the original model
given by GeneNet and the five time-courses generated
from a yeast cell-cycle network with Gaussian system
noise of mean 0 and variance 0.01

PR RR F-measure TP FP TN FN

HMEnPF 0.827 0.738 0.778 19.2 4.2 59.8 6.8

UKF 0.703 0.708 0.704 18.4 8.0 56.0 7.6

GeneNet 0.413 0.520 0.460 10.4 14.8 10.2 9.6

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and GeneNet for the five time-courses generated from a yeast
cell-cycle network with Gaussian system noise of mean 0 and variance 0.01. The
results of ‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses
were averaged. The networks inferred by GeneNet were used as the original
networks for the former two algorithms.

Table 5 The comparison results using the original model
given by G1DBN and the five time-courses generated from
WNTA5A network with Gaussian system noise of mean 0
and variance 0.05

PR RR F-measure TP FP TN FN

HMEnPF 0.646 0.580 0.609 17.4 9.4 50.6 12.6

UKF 0.609 0.573 0.589 17.2 10.8 49.2 12.8

G1DBN 0.490 0.460 0.468 13.8 14.6 45.4 16.2

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and G1DBN for the five time-courses generated fromWNTA5A
network with Gaussian system noise of mean 0 and variance 0.05. The results of
‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses were
averaged. The networks inferred by G1DBN were used as the original networks
for the former two algorithms.

Table 6 The comparison results using the original model
given by GeneNet and the five time-courses generated
fromWNTA5A network with Gaussian system noise of
mean 0 and variance 0.05

PR RR F-measure TP FP TN FN

HMEnPF 0.705 0.633 0.665 19.0 8.0 52.0 11.0

UKF 0.649 0.567 0.604 17.0 9.2 50.8 13.0

GeneNet 0.453 0.543 0.492 11.4 14.0 10.0 9.6

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and GeneNet for the five time-courses generated fromWNTA5A
network with Gaussian system noise of mean 0 and variance 0.05. The results of
‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses were
averaged. The networks inferred by GeneNet were used as the original networks
for the former two algorithms.

Table 7 The comparison results using the original model
given by G1DBN and the five time-courses generated from
a yeast-cell cycle network with Gaussian system noise of
mean 0 and variance 0.05

PR RR F-measure TP FP TN FN

HMEnPF 0.661 0.600 0.628 15.6 8.0 56.0 10.4

UKF 0.573 0.538 0.553 14.0 10.4 53.6 12.0

G1DBN 0.482 0.515 0.495 13.4 15.0 49.0 12.6

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and G1DBN for the five time-courses generated from a yeast
cell-cycle network with Gaussian system noise of mean 0 and variance 0.05. The
results of ‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses
were averaged. The networks inferred by G1DBN were used as the original
networks for the former two algorithms.

Table 8 The comparison results using the original model
given by GeneNet and the five time-courses generated
from a yeast cell-cycle network with Gaussian system
noise of mean 0 and variance 0.05

PR RR F-measure TP FP TN FN

HMEnPF 0.604 0.577 0.589 15.0 9.8 54.2 11.0

UKF 0.578 0.562 0.568 14.6 11.0 53.0 11.4

GeneNet 0.387 0.360 0.366 7.2 11.2 13.8 12.8

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and GeneNet for the five time-courses generated from a yeast
cell-cycle network with Gaussian system noise of mean 0 and variance 0.05. The
results of ‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses
were averaged. The networks inferred by GeneNet were used as the original
networks for the former two algorithms.

Table 9 The comparison results using the original model
given by G1DBN and the five time-courses generated from
WNTA5A network with Gaussian system noise of mean 0
and variance 0.1

PR RR F-measure TP FP TN FN

HMEnPF 0.689 0.633 0.659 19.0 8.8 51.2 11.0

UKF 0.637 0.600 0.616 18.0 10.6 49.4 12.0

G1DBN 0.590 0.513 0.548 15.4 11.0 49.0 14.6

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and G1DBN for the five time-courses generated fromWNTA5A
network with Gaussian system noise of mean 0 and variance 0.1. The results of
‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses were
averaged. The networks inferred by G1DBN were used as the original networks
for the former two algorithms.

Table 10 The comparison results using the original model
given by GeneNet and the five time-courses generated
fromWNTA5A network with Gaussian system noise of
mean 0 and variance 0.1

PR RR F-measure TP FP TN FN

HMEnPF 0.671 0.607 0.635 18.2 9.0 51.0 11.8

UKF 0.644 0.593 0.615 17.8 10.2 49.8 12.2

GeneNet 0.503 0.590 0.542 12.4 12.2 11.8 8.6

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and GeneNet for the five time-courses generated fromWNTA5A
network with Gaussian system noise of mean 0 and variance 0.1. The results of
‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses were
averaged. The networks inferred by GeneNet were used as the original networks
for the former two algorithms.

Table 11 The comparison results using the original model
given by G1DBN and the five time-courses generated from
a yeast-cell cycle network with Gaussian system noise of
mean 0 and variance 0.1

PR RR F-measure TP FP TN FN

HMEnPF 0.721 0.731 0.725 19.0 7.4 56.6 7.0

UKF 0.714 0.715 0.713 18.6 7.6 56.4 7.4

G1DBN 0.611 0.585 0.591 15.2 10.2 53.8 10.8

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and G1DBN for the five time-courses generated from a yeast
cell-cycle network with Gaussian system noise of mean 0 and variance 0.1. The
results of ‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses
were averaged. The networks inferred by G1DBN were used as the original
networks for the former two algorithms.
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Table 12 The comparison results using the original model
given by GeneNet and the five time-courses generated
from a yeast cell-cycle network with Gaussian system
noise of mean 0 and variance 0.1

PR RR F-measure TP FP TN FN

HMEnPF 0.724 0.746 0.735 19.4 7.4 56.6 6.6

UKF 0.690 0.731 0.709 19.0 8.6 55.4 7.0

GeneNet 0.407 0.460 0.427 9.2 13.6 11.4 10.8

The comparison results of the proposed algorithm, the previous algorithm using
UKF only [36], and GeneNet for the five time-courses generated from a yeast
cell-cycle network with Gaussian system noise of mean 0 and variance 0.1. The
results of ‘PR’, ‘RR’, ‘F-measure’, ‘TP’, ‘FP’, ‘TN’ and ‘FN’ for the five time-courses
were averaged. The networks inferred by GeneNet were used as the original
networks for the former two algorithms.

pathway [44], Redd1, Bcaa and Klf15. In summary, we
handled the concentration of corticosteroid in nucleus,
these 40 genes (shown in Table 13) and an original net-
work that was inferred by G1DBN with regulatory rela-
tionships among (i) and (ii). Note that TFs information
was derived from ITFP (Integrated Transcription Factor
Platform) [45].
Consequently, we obtained the improved network as

illustrated in Figure 6. A purple circle, blues circles, and
green circles represent corticosterid, TF candidates and
non-TF candidates, respectively. In the center of this
figure, there exist corticosteroid regulations to several TF
and nonTF genes and regulatory effects transmit to down
stream genes of TF candidates genes. In addition, there
exist some interesting findings. At first, genes included in
‘response to insulin stimulus (GO:0032868)’ and ‘insulin
receptor binding (GO:0005158)’, ‘Igf1’, ‘Akt1’, ‘Akt2’, ‘Srebf1’,
‘Ptprf ’, ‘Mtor’ and ‘Ptpn1’, construct a regulatory compo-
nent in the bottom right of this figure. Including ‘Cebpd’
and ‘Cebpb’, which are assumed to be candidate genes for
insulin-related transcription factors and selected as hub

Table 13 Sets of pharmacogenomic genes handled in the
real data experiment

Gene Set Literature TF
[43]/[42] candidate

(i) Trim63, Akt1, Akt2,Mstn, Irs1 ◦/- ◦

(ii)

Akt3, Anxa3, Bcat2, Bnip3,

◦/- -
Foxo1, Igf1, Igf1r,Mtor

Pik3c3, Pik3cb, Pik3cd,
Pik3c2g, Rheb, Slc2a4

(iii) Cebpb, Cebpd, Gpam, Srebf1 -/◦ ◦
Rxrg, Scarb1, Scd, Gpd2,
Mapk6, Ace, Ptpn1

(iv) Ptprf, Edn1, Agtr1a, Ppard, -/◦ -

Hmgcs2, Serpine1
Il6r,Mapk14, Ucp3, Pdk4

genes, functional relationships between corticosteroid
and insulin-related functions were reported [53]. On the
other hand, ‘Irs1’, ‘Bcat2’, ‘Edn1’, ‘Ucp3’, ‘Pdk4’, ‘Mstn’,
‘Foxo1’ and ‘Rxrg’ that are involved in ‘positive regula-
tion of metabolic process (GO:0009893)’ and ‘fatty acid
metabolic process (GO:0006631)’ build the other regula-
tory process. Since some combinatorial regulations were
inferred, it is conceivable that higher moment approx-
imation can affect the estimation results beyond linear
models.

Conclusions
In this paper, we developed a novel approach to restore
original GRNs to be consistent with time-course mRNA
expression data based on the combinatorial transcrip-
tion model. Since we applied a state space representation
with the nonlinear system equation in the context of data
assimilation, the conditional distributions of the hidden
variables can be non-Gaussian distributions. In contrast
to the previous approaches using particle filter, Gaussian
approximation and regression-based solutions, our pro-
posed approach, HMEnPF, can retain the first, second,
third central and fourth central moments through filter-
ing steps to estimate near optimal parameter values by the
EM-algorithm.
According to the comparison results using six synthetic

data based on the real biological pathways, the proposed
algorithm successfully explored better models than the
previous methods, G1DBN and GeneNet, considering lin-
ear relevance. Moreover, the proposed algorithm using
HMEnPF outperformed that of using UKF. This concludes
that HMEnPF retaining parts of higher moment infor-
mation can improve the accuracy of the estimation of
the parameter values beyond unscented approximation
(that cannot retain any moment through filtering steps
based on Gaussian approximation). Through the experi-
mental results, we also observed that the performance of
the restoration algorithm strongly depends on the original
network, which was prepared by literature information or
some GRNs inference methods. Thus, one of significant
points is to select methods to infer the original network.
On the other hand, the proposedmethod has some limita-
tions. For example, we require time-course data in which
the number of time points should be more than 10 or so.
Moreover, due to its heavy computational costs, the calcu-
lation for more than 20−30 genes without TF information
can be infeasible.
As an application example, we prepared corticos-

teroid pharmacogenomic pathways in rat skeletal mus-
cle that have been investigated and established a part
of regulatory relationships and related genes. Addition-
ally, the intracellular concentration of corticosteroid that
directly/indirectly affects gene expression can be obtained
by the previously developed differential equations and TF
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Figure 6 An inferred network of rat pharmacogenomics by the proposed algorithm. An inferred network of corticosteroid
pharmacogenomics in rat skeletal muscle by the proposed algorithm. Since a part of the pharmacogenomic system has been investigated
previously, we inferred the relationships incorporating known pathways (red dotted arrows) and related genes [43,44], where a purple circle, blues
circles and green circles represent corticosterid, TF candidates and non-TF candidates, respectively.

information for rat genes can also be utilized. In summary,
we inferred the regulatory relationships among 40 genes
and corticosteroid with fixing the established pathways
and restricting that only TF candidates can regulate other
genes. G1DBN was employed to construct the original
model for the proposed algorithm. Consequently, several
combinatorial regulations and regulations by corticos-
teroid were inferred by extending the original network.
Since previous linear models may not be able to infer
these regulations, the proposed algorithm can be valu-
able to restore inferred and literature-based networks to
be consistent with the data.

Additional files

Additional file 1: The standardization function for HMEnPF. The
standardization function and its inverse function for HMEnPF are described
in the file.

Additional file 2: The procedure of the smoothing step in HMEnPF.
The procedure of the smoothing step in HMEnPF is described in the file.

Additional file 3: The detailed solution of the EM-algorithm for the
estimation of the parameter values. The detailed solution of the E- and
M-steps in the EM-algorithm for HMEnPF are described in the file.

Additional file 4: The functions measuring the effectiveness of
regulatory edges. The functions measuring the effectiveness of
regulatory edges ea , eb and eg are described in the file.

Additional file 5: The synthetic data fromWNT5A and a yeast
cell-cycle networks. The six synthetic data from WNT5A and a yeast
cell-cycle networks, their parameter values and the original networks are
included in the file.

Additional file 6: The corticosteroid pharmacokinetics/dynamics in
rat skeletal muscle. The differential equations of rat pharmacokinetics/
dynamics are described in the file.
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