
Marin et al. BMC Systems Biology  (2015) 9:13 
DOI 10.1186/s12918-015-0156-0
RESEARCH ARTICLE Open Access
Identification of AMP-activated protein kinase
targets by a consensus sequence search of the
proteome
Traci L Marin1,5†, Brendan Gongol1,5†, Marcy Martin1,2, Stephanie J King1, Lemar Smith1, David A Johnson1,
Shankar Subramaniam3, Shu Chien3,4 and John Y-J Shyy1,2*
Abstract

Background: AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase that is
activated by cellular perturbations associated with ATP depletion or stress. While AMPK modulates the activity
of a variety of targets containing a specific phosphorylation consensus sequence, the number of AMPK targets
and their influence over cellular processes is currently thought to be limited.

Results: We queried the human and the mouse proteomes for proteins containing AMPK phosphorylation consensus
sequences. Integration of this database into Gaggle software facilitated the construction of probable AMPK-regulated
networks based on known and predicted molecular associations. In vitro kinase assays were conducted for preliminary
validation of 12 novel AMPK targets across a variety of cellular functional categories, including transcription, translation,
cell migration, protein transport, and energy homeostasis. Following initial validation, pathways that include NAD
synthetase 1 (NADSYN1) and protein kinase B (AKT2) were hypothesized and experimentally tested to provide a
mechanistic basis for AMPK regulation of cell migration and maintenance of cellular NAD+ concentrations during
catabolic processes.

Conclusions: This study delineates an approach that encompasses both in silico procedures and in vitro experiments
to produce testable hypotheses for AMPK regulation of cellular processes.

Keywords: AMPK, AKT2, ATF2, MMP-2, FOXO3a, NADSYN1, Phosphorylation consensus sequence, Bioinformatics,
Proteome, Network prediction
Background
Maintenance of cellular health requires the orchestration
of multiple metabolic pathways and signaling cascades
whose effects sum to maintain cellular homeostasis.
AMP-activated protein kinase (AMPK) has emerged as a
major regulator of cellular metabolism through activation
of signaling cascades that are protective against stress.
AMPK is composed of three subunits (α, β, and γ), and its
activation occurs via AMP-dependent and -independent
mechanisms leading to phosphorylation of the α subunit
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at Thr172. While elevation of the AMP: ATP ratio pro-
motes AMP binding to the γ subunit, which permits acti-
vation by LKB1, Ca2+ influx elicits activation by CaMKKβ
independent of the AMP: ATP ratio [1-3]. In addition to
Thr172 phosphorylation a variety of posttranslational
modifications including phosphorylation at sites other
than Thr172 as well as myristolation of the β subunit can
control AMPK activation [4].
Once activated, AMPK initiates an array of signaling

cascades by phosphorylating proteins with a βϕβXXXS/
TXXXϕ consensus sequence (hydrophobic, φ=M, L, I, F, or
V; basic, β=R, K, or H, X = any amino acid, S/T = phos-
phorylation site) [5,6]. AMPK targets often contain slight
variants of this consensus sequence, because AMPK can
phosphorylate sites flanked by amino acid sequences lacking
the basic residues in the −4/-6 positions. Additionally,
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the −5 hydrophobic residue may be shifted to the −4
position [7]. Understanding how AMPK exerts its pro-
tective effects via various signaling pathways requires
knowledge of all of AMPK targets, which may be more
extensive than currently recognized. To explore this pos-
sibility, we mapped its phosphorylation consensus se-
quence to both human and mouse proteomes. Delineation
of AMPK networks involved integration of these data into
Gaggle software to organize putative targets based on func-
tion. Along with knowledge gained from an extensive lit-
erature review, networks were constructed and then used
to predict pathways linking the putative targets [8]. This
approach yielded an extraordinarily large group of putative
AMPK targets and suggested several novel pathways. The
predicted pathways from this approach have the potential
to redefine the role of AMPK as a survival master switch
responding to stress imposed on the cell.

Results and discussion
Bioinformatics and systems biology approach
Initially, we performed an in silico search of the AMPK
phosphorylation consensus sequence to the human and
mouse proteomes. The most stringent AMPK consensus
phosphorylation sequence (i.e., βϕβXXXS/TXXXϕ [5,6])
was queried to the ENSEMBL proteome, which yielded 866
human and 811 mouse putative AMPK targets. Searching
with a less stringent consensus phosphorylation sequence
Figure 1 Bioinformatics screening of putative AMPK substrates. (A) Th
phosphorylation consensus sequence and their integration into functional
phosphorylation sequence containing proteins in various functional catego
in the SWISS-PROT proteome, in which β and ϕ were un-
specified, yielded 4505 human and 3158 mouse putative
AMPK targets from over 17,000 peptides. Some putative
targets have multiple potential phosphorylation sites. To
delineate cellular functions regulated by AMPK via these
targets, the resulting databases were imported into Gaggle
software, along with putative target annotations compiled
from an extensive literature review, and then displayed
graphically with Cytoscape software (Figure 1A). This bio-
informatics compilation of proteins containing the AMPK
phosphorylation consensus sequence represents a novel
database for putative AMPK targets and suggests the in-
volvement of AMPK in cellular functions spanning both
top-down (receptor response to stimulus) and bottom-up
perspectives (transcriptional regulation for cellular func-
tions) (Figure 1B). A representative list of potential AMPK
targets is found in Additional file 1: Table S1.

AMPK phosphorylation of NADSYN1 and transactivation
through FOXO3a
We next focused on an array of cellular processes that
appear to be regulated by AMPK for validation and par-
tial pathway delineation. Acting as an energy homeostatic
regulator, AMPK activation should increase NADH levels
necessary for ATP generation through oxidative phosphor-
ylation and prolonged catabolic flux. Cantó et al. reported
that AMPK activation increases cellular NAD+ levels
e algorithm used in the identification of proteins containing an AMPK
categories. (B) Pie chart illustrating the representation AMPK consensus
ries.
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independent of nicotinamide phosphoribosyltransferase
(NAMPT), a key enzyme in NAD+ synthesis [9]. Of the
pathways involving NAD+ biogenesis, glutamine-dependent
NAD+-synthetase (NADSYN1) also contributes to main-
taining cellular NAD+ by catalyzing the final step in its bio-
synthesis. NADSYN1 and NAD+ are precursors for many
signaling molecules involved in a variety of cellular pro-
cesses, particularly for redox balance [10]. Furthermore,
AMPK can directly phosphorylate the transcription factor,
forkhead box O3a (FOXO3a), which likely binds to the
NADSYN1 promoter [11]. Given that NADSYN1 contains
an AMPK phosphorylation consensus sequence and its
promoter has a FOXO3a recognition sequence, we hypoth-
esized that AMPK phosphorylates and activates NADSYN1
as well as promotes NADSYN1 transcription through phos-
phorylation of FOXO3a (Figure 2A). In vitro kinase assays
of recombinant NADSYN1 showed that AMPK can phos-
phorylate NADSYN1 (Figure 2B). Elevated AMPK activity
in these assays was evident by AMPK autophosphorylation
(Figure 2B). To demonstrate that AMPK can phosphorylate
the predicted target site at Ser641, we generated a peptide
analogous to the sequence containing Ser641 and its
flanking AMPK phosphorylation consensus sequence
(KVKRFFS641KYSM) and a mutant peptide with Ser to
Figure 2 AMPK phosphorylates NADSYN1 at Serine 641. (A) Schematic
panel represents in vitro kinase assay using (γ-32P) ATP, full-length recombinant
panel represents to Coomassie blue (CB) stain to demonstrate equal substrate
kinase assay repeated using NADSYN1 Ser641 and Ser641A peptides (C) o
only (γ-32P) ATP without AMPK nor substrate. AMPK represents reactions
the AMPK phosphorylation site in acetyl CoA carboxylase, serving as a positive
repeated at least 3 times.
Ala substitution. In vitro kinase assay in the presence of
AMPK showed increased 32P incorporation to the S641
peptide and SAMS peptide, a 13-residue peptide with a
sequence around the AMPK target on acetyl CoA carb-
oxylase and the standard positive control for AMPK
kinase activity [5] (Figure 2C). The level of 32P incorpo-
rated into the S641A peptide was much lower, which
was comparable to background or reaction without pep-
tide. Similar results were obtained with the use of full
length recombinant NADSYN1 (Figure 2D). Next, we in-
vestigated whether AMPK regulates NADSYN1 transacti-
vation through phosphorylation of FOXO3a. Chromatin
immunoprecipitation (ChIP) assays revealed that AICAR,
an AMPK agonist, increased the binding of FOXO3a to
the NADSYN1 promoter with a corresponding increase in
the level of NADSYN1 mRNA in C2C12 cells (Figures 3A,
3B), which were attenuated if AMPK or FOXO3a were
knocked down by siRNA. Additionally, AICAR increased
the level of phosphorylated FOXO3a and NADSYN1 in
AMPK+/+, but not AMPK−/− mouse embryonic fibroblasts
(MEFs) (Figure 3C). We also verified AMPK phosphoryl-
ation of NADSYN1 by using C2C12 cells, which are a
mouse muscle cell line. Likewise, AICAR increased
NADSYN1 expression and FOXO3a phosphorylation
of AMPK phosphorylation and transactivation of NADSYN1. (B) Bottom
NADSYN1 without (left) and with recombinant (right), active AMPK. Top
protein loading. Scintillation counter per minute (CPM) quantification of
r full length NADSYN1 (D). Background represents reactions with
with AMPK, (γ-32P) ATP, but no substrate. SAMS is a peptide containing
control. Student t-test used to determine *p < 0.5, all experiments were



Figure 3 AMPK activation increases the expression and activity of NADSYN1. (A) ChIP assay illustrating the level of FOXO3a binding to
the NADSYN1 promoter following treatment with AMPK activator, 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, 1 mM), for
8 h. (B) qRT-PCR results illustrating the NADSYN1 mRNA abundance following transfection with control, AMPK, or FOXO3a siRNA and then
treated with AICAR or left untreated. (C) Immunoblot of AMPK+/+ and AMPK−/− MEFs transfected with control, AMPK, or FOXO3a siRNA and
treated with AICAR or left untreated. (D) Immunoblotting of lysates from cells transfected with control, AMPK, or FoxO3a siRNA then treated
with or without AICAR. [NAD+] measured in AMPK+/+ and AMPK−/− MEFs (dashed line represents CTRL no treatment) (E) or C2C12 cells
(F) transfected with control, AMPK, or NADSYN1 siRNA and treated with AICAR with or without the NAMPT inhibitor FK688. Data analyzed
using Wilcoxon signed-rank test or Mann–Whitney U test. *p < 0.05, all experiments were repeated at least 3 times.
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in C2C12 cells (Figure 3D). This increase was abol-
ished when AMPK or FOXO3a were knocked down.
Next, we investigated how NADSYN1 activity is affected
by AMPK phosphorylation. As illustrated in Figure 3E, the
AMPK+/+ MEFs had a higher level of [NAD+] compared to
AMPK−/− MEFs, which was attenuated when NADSYN1
was knocked down. In addition to NADSYN1, NAMPT is
also a source of intracellular NAD+. Following transfection
with control, AMPK, or NADSYN1 siRNA, C2C12 cells
were treated with AICAR in the presence or absence of
FK688, a pharmacological inhibitor of NAMPT, and the
[NAD+]/[NADH] ratio was measured. While AMPK acti-
vation by AICAR increased the cellular [NAD+], NAD-
SYN1 or AMPK knocked down attenuated this increase
(Figure 3F). Taken together, these results suggest that
AMPK phosphorylates NADSYN1 to prolong NAD+

production, while concurrently increasing NADSYN1
transactivation through phosphorylation of FOXO3a.
Because of the involvement of AMPK, FOXO3a, and
[NAD+] in regulating cellular energy status, this pro-
posed pathway can be used to test hypotheses involving
AMPK’s regulated metabolic pathways during energy con-
suming processes such as cell migration or angiogenesis.

AMPK activation increases cell migration through the
AKT2-ATF2-MMP-2 pathway
AMPK is involved in a variety of stress responses of vascu-
lar endothelial cells (ECs) such as cell migration and
angiogenesis, both of which require prolonged metabolic
flux to achieve energy homeostasis. For example, AMPK
positively regulates EC migration and differentiation facili-
tating angiogenesis under hypoxia [12,13]. With our phos-
phorylation consensus sequence database, we assembled a
subgroup of putative AMPK targets involved in angiogen-
esis. Within this subgroup, we chose AKT2 for analysis
because AKT2 phosphorylates activating transcription
factor 2 (ATF2) [14,15]. In turn, phosphorylated ATF2
transcriptionally regulates matrix metalloproteinase-2
(MMP-2) causing matrix degradation and cell migra-
tion [16,17], as summarized in Figure 4A. Given that
AKT2 Ser268 is a putative AMPK phosphorylation site,
we performed kinase assays and quantified the level of



Figure 4 AMPK phosphorylation of AKT2 at Serine 268. (A) Schematic of AMPK regulation of EC migration through AKT2 phosphorylation.
(B) Bottom panel represents in vitro kinase assay using (γ-32P) ATP and full-length recombinant AKT2 in the presence or absence of AMPK. Top
panel represents CB staining for equal loading of recombinant AKT2. (C,D) CPM quantification of kinase assay using AKT2 Ser268 and Ser268A
peptides (C) or full-length AKT2 (D). The experimental conditions were the same as those in Figure. 2. Student t-test used to determine *p < 0.5,
all experiments were repeated at least 3 times.
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phosphorylation using both the recombinant AKT2
(Figures 4B, 4D) and peptides analogous to a sequence
around Ser268 that includes the AMPK phosphoryl-
ation consensus sequence (LEYLHS268RDVV) or a pep-
tide with an alanine substituted for the serine to
support AMPK phosphorylation of AKT2 at Ser268
(Figure 4C). Next, we conducted ChIP assays to deter-
mine if AMPK phosphorylation of AKT2 increases
ATF2 binding to the MMP-2 promoter. ECs treated
with AICAR had an increased level of ATF2 interacting
with the MMP-2 promoter but not if AMPK or AKT2
were knocked down (Figure 5A). Furthermore, AICAR
treatment increased MMP-2 mRNA levels, which were
attenuated if the cells were transfected with AMPK,
AKT2, or ATF2 siRNA (Figure 5B). Additionally, MMP-2
protein levels also increased with AICAR treatment in
ECs transfected with control RNA, but not in cells trans-
fected with AMPK or AKT2 siRNA (Figure 5C). Immuno-
blotting further revealed that AICAR increased MMP-2
expression and phosphorylation of ATF2 in AMPK+/+ but
not in AMPK−/− MEFs (Figure 5D). Next, we tested if
AMPK regulates the activity of MMP-2. As illustrated in
Figure 5E, AMPK activation by AICAR increased MMP-2
activity but not if the cells were transfected with AMPK,
AKT2 or ATF2 siRNA. We then conducted in vitro
wound-closure assays to elucidate the effect of the AMPK/
AKT2/ATF2/MMP-2 signaling cascade on EC migration
and model wound healing. Cells treated with AICAR
showed enhanced cell migration into the scratched zone,
which was attenuated if AMPK, AKT2, or ATF2 were
knocked down (Figures 5F, 5G). Taken together, these data
suggest that AMPK regulates EC migration through phos-
phorylation of AKT2, which promotes ATF2 transactiva-
tion of MMP-2 during EC migration.

Identification of novel AMPK substrates and signaling
networks for future study
After assembling a list of proteins containing the AMPK
phosphorylation consensus sequence, the resulting data-
base was integrated into Gaggle software to gain an un-
derstanding of the subcellular systems or functional
categories that the identified targets represent. We also
utilized this software to determine the number of connec-
tions each target has with other proteins. Central node
substrates were identified as proteins with a high level in-
terconnectivity within a functional category, which indi-
cates a greater influence a protein has on a phenotypic
response. Highly connected nodes were chosen for further
validation as AMPK targets using kinase assays. Predicted
phosphorylation sequences of the identified proteins
chosen are illustrated in Figure 6A. Kinase assays demon-
strate AMPK can phosphorylate these full length proteins



Figure 5 AMPK activation regulates EC migration through transactivation of MMP-2. (A) ChIP analysis illustrating the level of ATF2 binding
to the MMP-2 promoter in HUVECs transfected with control, AMPK, or AKT2 siRNA, then treated with AICAR (1 mM). Results are expressed as fold
change. (B) HUVECs were transfected with control, AMPK, AKT2, or ATF2 siRNA and treated with AICAR prior to quantifying MMP-2 mRNA abundance
with qRT-PCR. Immunoblot analysis and densitometry of MMP-2 and ATF2 (phosphorylated and total) in (C) HUVECs transfected with control, AMPK, or
AKT2, siRNA or (D) AMPK+/+ and AMPK−/− MEFs treated with AICAR or left untreated. (E) HUVECs were transfected with control, AMPK, AKT2, or ATF2
siRNA and then treated with AICAR or left untreated for 8 h prior to analyzing the level of MMP-2 activity. (F) Scratch assay with confluent ECs transfected
with control, AMPK, AKT2, or ATF2 siRNA followed by scratch induction then treated with AICAR or left untreated for 8 hr prior to imaging and quantifying
EC migration (G). Data analyzed using Wilcoxon signed-rank test or Mann–Whitney U test. *p < 0.05, all experiments were repeated at least
3 times.
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(Figures 6B-D). Based on these results, we outlined micro
networks illustrating the outcome AMPK phosphoryl-
ation of each substrate may have. Additional file 2:
Figure S1 illustrates graphically how these substrates
could be involved in various cellular functions.

G protein coupling to the seven-transmembrane receptor
(GPCRs) activity
Beta Arrestin 1 (ARRB1) regulates many signaling cas-
cades through steric hindrance of GPCRs and serves as
a scaffold for several AMPK regulated signaling mole-
cules, including extracellular-signal-regulated kinases
1/2 (ERK1/2) and nuclear factor kappa-light-chain-en-
hancer of activated B cells (NFκB) [18,19]. Additionally,
it participates in transactivation of c-fos and p27 by
recruiting histone acetyltransferases, such as p300,
which correlates with conditions that activate AMPK
[20-22]. Thus, AMPK’s regulation of these signaling
pathways could be mediated through ARRB1 phos-
phorylation (Additional file 2: Figure S1A).

5’-terminal oligopyrimidine (TOP) regulation
DDX56, also known as nucleolar helicase of 61 kDa
(NOH61), is a putative RNA helicase implicated in a
number of cellular processes involving alteration of
RNA secondary structure [23]. DDX56 is a constituent
of free nucleoplasmic 65S preribosomal particles and
seems to be necessary for ribosome synthesis at the
level of large (60S) ribosomal subunit assembly [23].
Transcriptional inhibitors, such as actinomycin D, cause



Figure 6 Kinase assays and predicted phosphorylation sequence of representative AMPK targets. (A) AMPK phosphorylation consensus
sequence. Blue represents basic amino acids, orange represents hydrophobic amino acids, and red represents phosphorylated amino acids.
(B-D) Coomassie blue staining (CB) and autoradiography of in vitro kinase assays without (left) and with activated AMPK (right), (γ-32P) ATP, and
full-length recombinant substrates. Arrow (→) indicates substrate. Each panel is accompanied by the control kinase assay that contained only
recombinant, active AMPK and (γ-32P) ATP to identify relative position of autophosphorylated AMPK subunits.
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complete dissociation of DDX56 from nucleolar compo-
nents [23]. All vertebrate genes encoding for the riboso-
mal proteins contain TOP [23]. Interestingly, exercise-
activated AMPK is accompanied by decreased translation
of TOP containing genes [24]. Although the mechanism
by which activated AMPK represses the translation of
ribosomal proteins is unclear, it would be independent of
ribosomal protein S6 kinase or ribosomal protein S6 (rpS6)
phosphorylation, both of which are known to regulate
translation [25]. One possibility is that AMPK decreases
the translation of TOP genes through phosphorylation of
DDX56 and in turn attenuates the functions related to
TOP genes in the nucleolus (Additional file 2: Figure S1B).

Endoplasmic reticulum (ER) stress and calcium homeostasis
Calnexin (CALNX) is a type I integral ER transmembrane
chaperone that transiently binds to the newly synthesized
glycoproteins to assist in their folding and transport [26].
Because ER stress is hallmarked by elevated levels of un-
folded organelle proteins [27], CALNX has been suggested
to be a key protective component of the unfolded protein
response (UPR)/ER stress response, which activates
protein folding/transport chaperones, while decreasing
protein synthesis [28]. Through phosphorylation of its
cytoplasmic domain, CALNX also regulates sarco/endo-
plasmic reticulum calcium ATPase (SERCA) 2b, regulating
Ca2+ signaling and Ca2+-sensitive chaperone functions in
the ER [29]. This phosphorylation event prevents the in-
hibition of SERCA and the subsequent Ca2+ efflux to
cause ER stress [30]. Although AMPK decreases SERCA
oxidation, maintaining its activity and intracellular Ca2+

homeostasis [31], the mechanism for this is unknown.
Our analyses suggest that AMPK regulation of Ca2+ and
SERCA activity could be through phosphorylation of
CALNX Ser-247 and/or Thr-93, functioning as a protect-
ive mechanism (Additional file 2: Figure S1C).

Insulin signaling and glucose transport
High-mobility group AT-hook 1 (HMGA) is a transcrip-
tional regulator that preferentially binds to the minor
groove of A/T-rich regions in double-stranded DNA to
form transcriptionally active multiprotein-DNA complexes
that regulate the expression of target genes such as the
insulin receptor (IR) [32]. HMGA1, through AMPK-
caveolin-1 (Cav-1) signaling, can also potentiate the re-
cruitment of transcriptional complexes to the solute
carrier family 2 and glucose transporter member 3
(SLC2A3/Glut3) promoters [33]. Importantly, Cav-1 ex-
pression is necessary for metformin induction of AMP
binding and activation of AMPK [34]. These observa-
tions suggest that the Cav-1/AMPK/HMGA1 signaling
pathway is involved in the transcriptional regulation of
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genes important for insulin signaling and glucose trans-
port (Additional file 2: Figure S1D).

Smooth muscle cell (SMC) recruitment and vasculogenesis
Krüppel-like Factor 2 (KLF2) is a transcription factor
that regulates diverse biological processes by direct DNA
binding or association with transcription co-regulators
such as acetyltranferases, cAMP response element bind-
ing protein (CREBP), and p300 [35-37]. KLF2 is highly
expressed in ECs during embryonic development [38].
Klf2 genetic knockout results in defective recruitment of
pericytes and vascular SMCs, impaired vasculogenesis,
and lethality [39]. The mechanism by which KLF2 re-
cruits SMCs is poorly understood. Lysophosphatidic acid
(LPA) and its receptor, LPA4, are mediators of SMC re-
cruitment in vasculogenesis. Interestingly, the LPA4 pro-
moter contains a KLF2 binding site [40]. Given that AMPK
activation promotes KLF2 expression [41], AMPK may
modulate KLF2 transcriptional activity to increase LPA4 ex-
pression (Additional file 2: Figure S1E). Our analysis sug-
gests that AMPK phosphorylation of KLF2 might provide
an additional mode of regulation such as enhanced protein
stability, altered protein-protein/protein-nucleic acid inter-
actions, or increased transcriptional specificity.

Ribosomal biogenesis
Treacle, commonly referred to as TCOF, is a nucleolar
protein involved in ribosomal gene transcription. TCOF
interacts with upstream binding factor (UBF) and pro-
moter selectivity factor SL1 to promote RNA polymerase
I activity [42,43]. TCOF deficiency results in poor neural
crest formation and proliferation due to neuroepithelial
apoptosis as a consequence of decreased expression of
28s ribosomal subunit of rRNA, which ultimately results
in the expression of genes important for structural de-
velopment [44]. Although the role of AMPK in regulat-
ing protein synthesis is generally believed to be negative,
AMPKα1 and α2 null embryos are lethal ~10.5 days
post-conception because of poor expression of genes im-
portant for growth and survival [45]. If AMPK indeed
regulates TCOF expression, it may prevent aberrant pro-
tein synthesis allowing normal embryonic development
(Additional file 2: Figure S1F).

Epigenetics
Charged multivesicular body protein 1B (CHMP1b) also
plays a role in gene regulation through chromatin struc-
tural maintenance [46]. CHMP1b associates with nuclease-
resistant, condensed chromatin and the polycomb-group
(PcG) proteins, which are required for maintenance of
gene silencing during development. CHMP1b induction
causes cell-cycle arrest and increased S-phase cell num-
ber [47]. However, CHMP1b also forms a shell around
chromatin that frequently is associated with histone H3
phosphorylation and acetylation regulating transcriptional
activity [47,48]. The phosphorylation of CHMP1b by
AMPK could play a role in the transition of active and in-
active chromatin domains and therefore determination of
heritable epigenetic marks (Additional file 2: Figure S1G).

mRNA processing and translation
Cleavage and polyadenylation specificity factor 2 (CPSF2)
is the 100-kDa subunit of the CPSF that recognizes the
AAUAAA consensus sequence and interacts with proteins
such as the poly (A) polymerase to prompt cleavage of
template mRNA and initiation of poly (A) addition in pre-
mRNA 3'-end formation [49]. This process inhibits mature
mRNA degradation and activates translation [49]. Under
stress, AMPK phosphorylation of CPSF2 may increase the
association of CPSF2 with the CPSF complex, thus direct-
ing CPSF’s recognition of the AAUAAA sequence
(Additional file 2: Figure S1H). As a result of this
process, AMPK could increase the translation of genes ne-
cessary for stress resistance. Alternatively, AMPK could
inhibit this process causing the degradation of genes that
are involved in excessive energy expenditure.

Cell cycle and circadian rhythm
Nuclear casein kinase and cyclin-dependent kinase sub-
strate 1 (NUCKS1) is a substrate for casein kinase and
cyclin-dependent kinase (CDK) and its phosphorylation
is important for cell-cycle regulation [50]. Upon mitosis,
DNA-bound NUCKS1 translocates from the nucleus to
the cytoplasm [51]. Aberrant overexpression of NUCKS1
is correlated with breast carcinomas [50,51]. Import-
antly, cancer is highly associated with disrupted cellular
circadian rhythm, which serves to regulate positive and
negative transcriptional feedback loops. Both casein kinase
and CDK are key regulators of cellular circadian rhythm
as is AMPK [52,53]. Thus, AMPK could regulate circadian
rhythm through phosphorylation of NUCKS1 (Additional
file 2: Figure S1I).

Chromatin structure and protein folding
Zuotin-related factor 1 (ZRF1) executes both cytosolic
and nuclear functions. In the nucleus, ZRF1 binds to the
DNA sequence: 5’-GTCAAGC-3’ and facilitates histone
2A K119 ubiquitination leading to chromatin remodeling
and transcription activation [54]. In the cytoplasm, ZRF1,
by stimulation of the ATPase activity of heat shock
70 kDa protein A14 (HSPA14) chaperones, acts as a mo-
lecular chaperone to promote protein folding of the nas-
cent polypeptide chain as it exits the ribosome [55,56].
The phosphorylation of ZRF1 by AMPK may result in
dissociation of ZRF1 from the ribosome leading to its nu-
clear accumulation (Additional file 2: Figure S1J). Thus, this
pathway putatively regulated by AMPK would participate
in epigenetic remodeling of promoters of target genes.
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Conclusion and perspective
AMPK has emerged as a master regulator of metabolism
by serving as an energy sensor. However, the multiple
modes of AMPK activation, many of which remain elu-
sive, indicate that AMPK’s function may extend beyond
a mere energy sensor. Here, our in silico database to-
gether with biological validations suggests that AMPK is
a master regulator of a broader range of cellular processes
at more levels than previously recognized. Identifying
AMPK targets by phosphorylation consensus sequence
mapping is a simplification of the biochemistry that occurs
at the substrate-enzyme interface because tertiary struc-
ture and binding domain chemistry is important for kinase
substrate specificity and accessibility. However, arguably,
the constraints of the active site require a minimum signa-
ture sequence within the catalytic pocket that mirrors a
chemical signature flanking the phosphorylation site for
catalysis to occur [57]. Although in silico screening of the
phosphorylation consensus sequence for candidate sub-
strates of a kinase is a useful tool, the presence of such a
phosphorylation consensus sequence in a given protein
does not necessitate its phosphorylation in the cell. Fur-
ther, some predicted AMPK targets offer slight variation
to the exact consensus sequence, which presents a limita-
tion of in silico analysis. Clearly, additional validation of
individual targets and networks is necessary. Several bio-
chemical tools are available and essential for such valid-
ation including in vitro kinase assays using recombinant
protein substrates and phospho-antibodies for cellular and
in vivo studies. Additional levels of AMPK phosphoryl-
ation specificity can be achieved with AMPK α1 and α2
knockout MEF cells and conditional knockout mice fol-
lowing treatment with AMPK agonists/activators such as
exercise, caloric restriction, metformin, and AICAR. This
database provides investigators with an AMPK-related
network development tool that should stimulate experi-
mental validation and offers new insights into AMPK in-
volvement in health and disease.

Methods
Bioinformatics approach
Using an R script, the AMPK phosphorylation consensus
sequence, βϕβXXXS/TXXXϕ (where hydrophobic, φ =M,
L, I, F, or V; basic, β =R, K, or H, X = any amino acid, S/T =
phosphorylation site) was mapped to human and mouse
proteomes imported from ENSEMBL proteome database
[5-7]. To find the proteins containing an AMPK phosphoryl-
ation consensus sequence, each peptide sequence obtained
from the R script mapping was individually pasted into the
BLAST algorithm provided by NCBI (http://www.ncbi.nlm.
nih.gov/sutils/blink.cgi?mode=query). Using the less strin-
gent consensus phosphorylation sequence, in which φ and β
were not specified to be a specific amino acid, a Scansite
search was also performed to compare with the ENSEMBL
search to the SWISS-PROT protein database [5-7]. The gen-
erated databases were integrated into Gaggle software to
predict and display pathways involving AMPK [9].

Kinase assays
AMPK kinase assays were performed using full-length re-
combinant proteins in 50 mM HEPES (pH 7.4), 1 mM
AMP, 1 mM (γ-32P) ATP, 5 mM MgCl2, 1 pM AMPK
(Sigma Aldrich), and the putative target recombinant pro-
tein (1 nM) in a 50 μl reaction volume at 37°C for 1 h.
Proteins were then resolved by using SDS-PAGE, stained
with Coomassie blue, and subjected to autoradiographic
analysis. Peptide assays were performed under the same
conditions but with 3 nM peptide, (γ-32P) ATP 1 mM, and
1 pM AMPK. SAMS peptide (3 nM) was used as positive
control. Peptide reactions were terminated by blotting
samples onto Whatman grade P81 ion-exchange chroma-
tography paper, rinsed in 1% phosphoric acid, washed in
acetone, and allowed to air dry prior to submersion in
1 ml scintillation fluid. The radioactivity was measured
with a Beckman LS 6500 scintillation counter.

Cell lines
MEF cells were isolated from mice according to standard
protocols [58]. HUVEC and C2C12 cells were purchased
from American Type Culture Collection (ATCC) Cat#
CRL-1730 and CRL-1772 respectively.

siRNA knockdown of gene expression
siRNA knockdown was conducted according to standard
protocols. The following human siRNA sequences were
used from Qiagen: Scrambled, AMPK, AKT2, and ATF2,
Cat# 1022076, SI00086359, SI00305872, SI00305872 re-
spectively. The following mouse siRNA sequences were
used from Qiagen: AMPK, FOXO3a, and NADSYN1,
cat# SI01388219, SI01005207, and GS78914 respectively.

Chromatin immunoprecipitation (ChIP) assay
Cells were incubated in 0.75% paraformaldehyde and har-
vested in FA lysis buffer (50 mM HEPES-KOH, pH 7.5,
140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% so-
dium deoxycholate, 0.1% SDS and Halt Protease inhibi-
tors) prior to sonication with a Bioruptor 200. Protein was
immunoprecipitated overnight at 4°C, washed with wash
buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, pH 8.0,
150 mM NaCl, 20 mM Tris–HCl (pH 8.0) and eluted
with 100 μl elution buffer (1% SDS, 100 mM NaHCO3).
DNA was purified using Qiagen PCR purification kit prior
to qPCR analysis. The following primers were used for
qPCR analysis of immunoprecipitated DNA: NAD-
SYN1 promoter forward, ATTCCTTGGCTTCCTACT
GC; NADSYN1 promoter reverse, GTGTCTTGATA
GATGGGCTACAG; MMP-2 promoter forward, GC

http://www.ncbi.nlm.nih.gov/sutils/blink.cgi?mode=query
http://www.ncbi.nlm.nih.gov/sutils/blink.cgi?mode=query
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AGAAGGAAAGAGGTAAGGAAG; MMP-2 promoter
reverse, GAAGGAATGGTCAGAAACAGATG.
Quantitative real-time PCR (qRT-PCR)
RNA was purified using TRIzol reagent from Life Tech-
nologies. Two ng of RNA was converted to cDNA using
Promega reverse transcriptase according to the manufac-
turer’s instructions. cDNA was then quantified via qPCR
using SYBER green qPCR master mix from Bio-Rad. Re-
sults were calculated using the delta-delta ct method.
The following primers were used for qRT-PCR analysis:
NADSYN1 forward, GAGAGCCTTTGTCCAGTTTTG;
NADSYN1 reverse, GTTGTCATCTTGTGCCTGTTC.
MMP-2 forward, TTGAGAAGGATGGCAAGTACG;
MMP-2 reverse, TGGTGTAGGTGTAAATGGGTG.
Immunoblotting
Cells were lysed in 10 mM Tris (pH 7.4), 0.1 M NaCl,
1 mM EDTA, 1 mM EGTA, 1 mM NaF, 20 mM
Na4P2O7, 2 mM sodium orthovanadate (Na3VO4), 0.1%
SDS, 0.5% Sodium Deoxycholate, 1% Triton X-100, 10%
Glycerol, 1 mM PMSF and protease inhibitors. The ob-
tained cell lysates were then resolved by 10% SDS-
PAGE, blocked with 5% milk, rinsed with TBST, probed
with NADSYN, FOXO3a, β-actin, AMPK, MMP2, ATF2
primary antibodies from ABcam cat# ab139561, ab12162,
ab8227, ab110036, ab86607, and ab47476 respectively,
P-FOXO3a and P-ATF2 primary antibodies from Cell
Signaling (Cat # 8174 and 9221), and secondary anti-
bodies (Cat# 7074S and 7076S). The blotted proteins
bands were made detectable by Emerson chemilumin-
escence substrate (ECL) and image captured on HyBlot
CL autoradiography film.
MMP-2 assay
MMP-2 activity was determined using Amersham Matrix
Metalloproteinase-2 (MMP-2) Biotrak Activity Assay
System RPN2631 protocol.
NADSYN1 assay
The cellular concentration of NAD+ was measured in
C2C12 cell lysates using EnzyChromTM NAD+/NADH
Assay Kit (E2ND-100) and protocol from BioAssay
Systems.
Statistical analysis
Data are expressed as means ± SEM of at least three in-
dependent experiments. Comparisons of mean values
between two groups were evaluated using a two-tailed Stu-
dent’s t-test, Wilcoxon signed-rank test or Mann–Whitney
U test. Unless otherwise indicated, *p < 0.05 was considered
statistically significant.
Additional Files

Additional file 1: Table S1. Putative AMPK substrates. Additional file 1:
Table S1 contains a representative list of putative AMPK substrates along
with their official symbols, official names, cellular locations, and functions.

Additional file 2: Figure S1. Predicted modules of AMPK phosphorylated
substrates and the related functions. (A) AMPK phosphorylation of ARRB1
inhibits GPCR signaling and increases histone acetylation activity at c-Fos and
p27 promoters. (B) AMPK phosphorylation of DDX56 TOP gene translation
and subsequent 60S ribosomal biogenesis. (C) AMPK phosphorylation of
Calnexin acts a chaperone to positively regulate ER Ca2+ efflux through
SERCA2b. (D) AMPK phosphorylation of HMGA1 increases INSR and
Glut3 transcription through the Cav-1/AMPK pathway. (E) AMPK
phosphorylation of KLF2 increases LP4R transcription and SMC recruitment.
(F) AMPK phosphorylation of Treacle associates with UBF to increase
AMPK-related gene transcription. (G) AMPK phosphorylation of CHMP1b
facilitates lysosomal recycling of proteins and increases S1 cell cycle
arrest. (H) AMPK phosphorylation of CPSF2 increases translation of AMPK
related genes. (I) AMPK phosphorylation of NUCKS transcriptionally regulates
the circadian rhythm. (J) AMPK phosphorylation of ZRF1 inhibits ATPase
activity but increases transcription of AMPK-related genes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TLM and BG contributed equally to the manuscript. They conceived and
designed the study, performed molecular experiments and bioinformatics
analysis, drafted the manuscript and performed statistical analysis. LS
performed immunoassays, participated in experimental design, and
coordinated with the draft development. MM and SJK performed molecular
assays. DAJ, SS, SC, and JYS participated in its design and coordination and
helped to draft the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
This work was supported in part by National Institutes of Health Grants
HL89940 (JS), HL108735 (SC, SS, JS). The authors would like to acknowledge
Dr. Salvador Soriano and Mr. Brian Woo for their intellectual opinions
regarding this project; Ms. Whitney Marin for optimization of the NAD+
assay; Mrs. Laura Angelica Hernandez de la Ramirez for data base
management; and Ms. Sandra Cegielski and Dr. Salvador Soriano for taking
the time to read and edit this manuscript.

Author details
1Divisions of Biochemistry and Molecular Biology and Biomedical Sciences,
University of California, Riverside, CA 92521-0121, USA. 2Division of
Cardiology, Department of Medicine, University of California,
San Diego, La Jolla, CA 92093, USA. 3Division of Physiology, Department of
Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
4Department of Bioengineering and Institute of Engineering in Medicine,
University of California, San Diego La Jolla, CA 92093, USA. 5Department of
Cardiopulmonary Sciences and Anatomy, Schools of Allied Health and
Medicine, Loma Linda University, Loma Linda, CA 92350, USA.

Received: 20 August 2014 Accepted: 24 February 2015

References
1. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase:

ancient energy gauge provides clues to modern understanding of metabolism.
Cell Metab. 2005;1:15–25.

2. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that
maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

3. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al.
Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream
of AMP-activated protein kinase in mammalian cells. Cell Metab.
2005;2:21–33.

4. Sanz P1, Rubio T, Garcia-Gimeno MA. AMPK beta subunits: more than just a
scaffold in the formation of AMPK complex. FEBS J. 2013;280:3723–33.

http://www.biomedcentral.com/content/supplementary/s12918-015-0156-0-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12918-015-0156-0-s2.tiff


Marin et al. BMC Systems Biology  (2015) 9:13 Page 11 of 12
5. Towler MC, Hardie DG. AMP-Activated Protein Kinase in Metabolic Control
and Insulin Signaling. Circ Res. 2007;100:328–41.

6. Leff T. AMP-activated protein kinase regulates gene expression by direct
phosphorylation of nuclear proteins. Biochem Soc Trans. 2003;31:224–7.

7. Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, et al. AMPK regulates histone
H2B O-GlcNAcylation. Nucleic Acids Res. 2014;42:5594–604.

8. Shannon PT, Reiss DJ, Bonneau R, Baliga NS. The Gaggle: an open-source
software system for integrating bioinformatics software and data sources.
BMC Bioinformatics. 2006;7:176.

9. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al.
AMPK regulates energy expenditure by modulating NAD+ metabolism and
SIRT1 activity. Nature. 2009;458(7241):1056–60.

10. LaRonde-LeBlanc N, Resto M, Gerratana B. Regulation of active site
coupling in glutamine-dependent NAD (+) synthetase. Nat Struct Mol Biol.
2009;16(4):421–9.

11. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, et al. The energy
sensor AMP-activated protein kinase directly regulates the mammalian FOXO3
transcription factor. J Biol Chem. 2007;282(41):30107–19.

12. Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling
in endothelial cells is essential for angiogenesis in response to hypoxic
stress. J Biol Chem. 2003;278(33):31000–6.

13. Liu Y, Tang G, Zhang Z, Wang Y, Yang GY. Metformin promotes focal
angiogenesis and neurogenesis in mice following middle cerebral artery
occlusion. Neurosci Lett. 2014;579C:46–51.

14. Zhu F, Zhang Y, Bode AM, Dong Z. Involvement of ERKs and mitogen- and
stress-activated protein kinase in UVC-induced phosphorylation of ATF2 in
JB6cells. Carcinogenesis. 2004;25(10):1847–52.

15. Fan Y, Gong Y, Ghosh PK, Graham LM, Fox PL. Spatial coordination of actin
polymerization and ILK-Akt2 activity during endothelial cell migration.
Dev Cell. 2009;16(5):661–74.

16. Song H, Ki SH, Kim SG, Moon A. Activating transcription factor 2 mediates
matrix metalloproteinase-2 transcriptional activation induced by p38 in
breast epithelial cells. Cancer Res. 2006;66(21):10487–96.

17. Ben-Yosef Y, Miller A, Shapiro S, Lahat N. Hypoxia of endothelial cells leads
to MMP-2-dependent survival and death. Am J Physiol Cell Physiol.
2005;289(5):C1321–31.

18. Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, et al.
Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the
beta2 adrenergic receptor. J Biol Chem. 2006;281(2):1261–73.

19. Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ. Beta-arrestin inhibits
NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor
IkappaBalpha. Proc Natl Acad Sci U S A. 2004;101(23):8603–7.

20. Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of
beta-arrestin1 in GPCR signaling: regulation of histone acetylation and
gene transcription. Cell. 2005;123(5):833–47.

21. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Beta-arrestins and cell signaling.
Annu Rev Physiol. 2007;69:483–510.

22. Yu MC, Su LL, Zou L, Liu Y, Wu N, Kong L, et al. An essential function for
beta-arrestin 2 in the inhibitory signaling of natural killer cells. Nat Immunol.
2008;9(8):898–907.

23. Zirwes RF, Eilbracht J, Kneissel S, Schmidt-Zachmann MS. A novel helicase-type
protein in the nucleolus: protein NOH61. Mol Biol Cell. 2000;11(4):1153–67.

24. Avni D, Biberman Y, Meyuhas O. The 5’ terminal oligopyrimidine tract
confers translational control on TOP mRNAs in a cell type- and sequence
context-dependent manner. Nucleic Acids Res. 1997;25(5):995–1001.

25. Reiter AK, Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMPK represses
TOP mRNA translation but not global protein synthesis in liver. Biochem
Biophys Res Commun. 2008;374(2):345–50.

26. Hebert DN, Molinari M. In and out of the ER: protein folding, quality control,
degradation, and related human diseases. Physiol Rev. 2007;87:1377–408.

27. Coe H, Bedard K, Groenendyk J, Jung J, Michalak M. Endoplasmic reticulum
stress in the absence of calnexin. Cell Stress and Chaperones.
2008;13(4):497–507.

28. Zhang K, Kaufman RJ. Signaling the unfolded protein response from the
endoplasmic reticulum. J Biol Chem. 2004;279(25):25935–8.

29. Roderick HL, Lechleiter JD, Camacho P. Cytosolic phosphorylation of
calnexin controls intracellular Ca (2+) oscillations via an interaction with
SERCA2b. J Cell Biol. 2000;149(6):1235–48.

30. Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, et al.
Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+
ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction
of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes.
2005;54:452–61.

31. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, et al. Reduction of AMP-activated
protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis
in vivo. Circ Res. 2010;121(6):792–803.

32. Foti D, Iuliano R, Chiefari E, Brunettii A. A nucleoprotein complex containing
Sp1, C/EBPb, and HMGI-Y controls human insulin receptor gene transcription.
Mol Cell Biol. 2003;23:2720–32.

33. Ha TK, Chi SG. CAV1/caveolin 1 enhances aerobic glycolysis in colon
cancer cells via activation of SLC2A3/GLUT3 transcription. Autophagy.
2012;8(11):1684–5.

34. Salani B, Maffioli S, Hamoudane M, Parodi A, Ravera S, Passalacqua M, et al.
Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in
non-small-cell lung cancer cells. FASEB J. 2012;26(2):788–98.

35. Anderson KP, Kern CB, Crable SC, Lingrel JB. Isolation of a gene encoding a
functional zinc finger protein homologous to erythroid Krüppel-like factor:
identification of a new multigene family. Mol Cell Biol. 1995;15(11):5957–65.

36. Evans PM, Zhang W, Chen X, Yang J, Bhakat KK, Liu C. Kruppel-like factor 4
is acetylated by p300 and regulates gene transcription via modulation of
histoneacetylation. J Biol Chem. 2007;282(47):33994–4002.

37. Li D, Yea S, Dolios G, Martignetti JA, Narla G, Wang R, et al. Regulation of
Kruppel-like factor 6 tumor suppressor activity by acetylation. Cancer Res.
2005;65(20):9216–25.

38. Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM. The KLF
transcription factor is required for normal tunica media formation and
blood vessel stabilization during murine embryogenesis. Genes Dev.
1997;11(22):2996–3006.

39. Wu J, Bohanan CS, Neumann JC, Lingrel JB. KLF2 transcription factor
modulates blood vessel maturation through smooth muscle cell migration.
J Biol Chem. 2008;283(7):3942–50.

40. Sumida H, Noguchi K, Kihara Y, Abe M, Yanagida K, Hamano F, et al. LPA4
regulates blood and lymphatic vessel formation during mouse
embryogenesis. Blood. 2010;116(23):5060–70.

41. Young A, Wu W, Sun W, Benjamin Larman H, Wang N, Li YS, et al. Flow
activation of AMP-activated protein kinase in vascular endothelium leads to
Krüppel-like factor 2 expression. Arterioscler Thromb Vasc Biol. 2009;29
(11):1902–8.

42. Valdez BC, Henning D, So RB, Dixon J, Dixon MJ. The Treacher Collins
syndrome (TCOF1) gene product is involved in ribosomal DNA gene
transcription by interacting with upstream binding factor. Proc Natl Acad
Sci U S A. 2004;101(29):10709–14.

43. Poortinga G, Hannan KM, Snelling H, Walkley CR, Jenkins A, Sharkey K, et al.
MAD1 and cMYC regulate UBF and rDNA transcription during granulocyte
differentiation. EBMO J. 2004;23(16):3325–35.

44. Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey JP, et al. Tcof1/
Treacle is required for neural crest cell formation and proliferation
deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A.
2006;103(36):13403–8.

45. Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, et al.
AMPK: Lessons from transgenic and knockout animals. Front Biosci.
2009;14:19–44.

46. Howard TL, Stauffer DR, Degnin CR, Hollenberg SM. CHMP1 functions as a
member of a newly defined family of vesicle trafficking proteins. J Cell Sci.
2001;114(Pt 13):2395–404.

47. Stauffer DR, Howard TL, Nyun T, Hollenberg SM. CHMP1 is a novel nuclear
matrix protein affecting chromatin structure and cell-cycle progression.
J Cell Sci. 2001;114(Pt 13):2383–93.

48. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD.
Synergistic coupling of histone H3 phosphorylation and acetylation in
response to epidermal growth factor stimulation. Mol Cell. 2000;5(6):905–15.

49. Chan S, Choi EA, Shi Y. Pre-mRNA 3’-end processing complex assembly and
function. Wiley Interdiscip Rev RNA. 2011;2(3):321–35.

50. Drosos Y, Kouloukoussa M, Østvold AC, Grundt K, Goutas N,
Vlachodimitropoulos D, et al. NUCKS overexpression in breast cancer.
Cancer Cell Int. 2009;9:19.

51. Grundt K, Skjeldal L, Anthonsen HW, Skauge T, Huitfeldt HS, Østvold AC. A
putative DNA-binding domain in the NUCKS protein. Arch Biochem Biophys.
2002;407(2):168–75.

52. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. Double-time is
a novel Drosophila clock gene that regulates PERIOD protein accumulation.
Cell. 1998;94(1):83–95.



Marin et al. BMC Systems Biology  (2015) 9:13 Page 12 of 12
53. Um JH, Pendergast JS, Springer DA, Foretz M, Viollet B, Brown A, et al.
AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.
PLoS One. 2011;6(3):e18450.

54. Richly H, Rocha-Viegas L, Ribeiro JD, Demajo S, Gundem G, Lopez-Bigas N,
et al. Transcriptional activation of polycomb-repressed genes by ZRF1.
Nature. 2010;468(7327):1124–8.

55. Otto H, Conz C, Maier P, Wölfle T, Suzuki CK, Jenö P, et al. The chaperones
MPP11 and Hsp70L1 form the mammalian ribosome-associated complex.
Proc Natl Acad Sci U S A. 2005;102(29):10064–9.

56. Hundley HA, Walter W, Bairstow S, Craig EA. Human Mpp11 J protein:
ribosome- tethered molecular chaperones are ubiquitous. Science.
2005;308(5724):1032–4.

57. Johnson LN. Structural basis for substrate recognition and control in protein
kinases. Ernst Schering Res Found Workshop. 2001;34:47–69.

58. Xu J. Preparation, culture, and immortalization of mouse embryonic
fibroblasts. Curr Protoc Mol Biol. 2005;Chapter 28(Unit 28):1.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Bioinformatics and systems biology approach
	AMPK phosphorylation of NADSYN1 and transactivation through FOXO3a
	AMPK activation increases cell migration through the AKT2-ATF2-MMP-2 pathway
	Identification of novel AMPK substrates and signaling networks for future study
	G protein coupling to the seven-transmembrane receptor (GPCRs) activity
	5’-terminal oligopyrimidine (TOP) regulation
	Endoplasmic reticulum (ER) stress and calcium homeostasis
	Insulin signaling and glucose transport
	Smooth muscle cell (SMC) recruitment and vasculogenesis
	Ribosomal biogenesis
	Epigenetics
	mRNA processing and translation
	Cell cycle and circadian rhythm
	Chromatin structure and protein folding

	Conclusion and perspective
	Methods
	Bioinformatics approach
	Kinase assays
	Cell lines
	siRNA knockdown of gene expression
	Chromatin immunoprecipitation (ChIP) assay
	Quantitative real-time PCR (qRT-PCR)
	Immunoblotting
	MMP-2 assay
	NADSYN1 assay
	Statistical analysis

	Additional Files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

