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Abstract

dynamical system

Background: Aspergillus fumigatus is a ubiquitous airborne fungal pathogen that presents a life-threatening health
risk to individuals with weakened immune systems. A. fumigatus pathogenicity depends on its ability to acquire iron
from the host and to resist host-generated oxidative stress. Gaining a deeper understanding of the molecular
mechanisms governing A. fumigatus iron acquisition and oxidative stress response may ultimately help to improve the
diagnosis and treatment of invasive aspergillus infections.

Results: This study follows a systems biology approach to investigate how adaptive behaviors emerge from
molecular interactions underlying A. fumigatus iron regulation and oxidative stress response. We construct a Boolean
network model from known interactions and simulate how changes in environmental iron and superoxide levels
affect network dynamics. We propose rules for linking long term model behavior to qualitative estimates of cell
growth and cell death. These rules are used to predict phenotypes of gene deletion strains. The model is validated on
the basis of its ability to reproduce literature data not used in model generation.

Conclusions: The model reproduces gene expression patterns in experimental time course data when A. fumigatus is
switched from a low iron to a high iron environment. In addition, the model is able to accurately represent the
phenotypes of many knockout strains under varying iron and superoxide conditions. Model simulations support the
hypothesis that intracellular iron regulates A. fumigatus transcription factors, SreA and HapX, by a post-translational,
rather than transcriptional, mechanism. Finally, the model predicts that blocking siderophore-mediated iron uptake
reduces resistance to oxidative stress. This indicates that combined targeting of siderophore-mediated iron uptake
and the oxidative stress response network may act synergistically to increase fungal cell killing.

Keywords: Boolean network, Discrete dynamic model, Invasive aspergillosis, Siderophores, Stochastic discrete

Background

Aspergillus fumigatus is a ubiquitous airborne fungus
which has become an increasingly dangerous pathogen
of humans worldwide, causing invasive infections, severe
asthma and sinusitis [1]. The most severe form of A. fumi-
gatus infection, called invasive aspergillosis (IA), occurs
when inhaled A. fumigatus spores germinate into hyphae
and invade lung tissue. IA is a major cause of mortality
in immunocompromised human hosts [2-6]. In immuno-
competent individuals A. fumigatus may trigger allergic
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reactions and is a major cause of fungal keratitis, an
inflammation of the cornea [7].

Our focus on A. fumigatus oxidative stress response
and iron acquisition is motivated by the following three
arguments. First, several studies show that deletion of
genes involved in either A. fumigatus oxidative stress
response or iron acquisition leads to attenuated virulence
in vivo [5,8-10]. Impairment of the corresponding host
defense mechanisms, e.g. defective ROS production or
inability to sufficiently deplete available iron, also leads
to an increased susceptibility to A. fumigatus infection
[4,10,11]. Second, recent publications present proof of
concept that targeting either A. fumigatus oxidative stress
response or iron acquisition systems may be an effective
treatment strategy [10,12]. Thus oxidative stress response
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and iron acquisition are important systems contribut-
ing to A. fumigatus pathogenicity, and both systems are
feasible targets for therapeutic intervention. Third, iron
uptake and oxidative stress response networks are known
to interact, and hence more can be learned about the
molecular mechanisms underlying these networks if they
are studied together. In fact, a connection between iron
uptake and oxidative stress response has been described
in both A. fumigatus and S. cerevisiae [13-15]. These
motivating points will now be discussed in greater detail.

Several lines of evidence point to the A. fumigatus ROS-
detoxifying enzymes as key virulence factors and potential
drug targets. Firstly, on the host side, the activation of
the enzymatic complex NADPH oxidase (NOX) and sub-
sequent production of cytotoxic ROS by host phagocytic
cells is a critical mechanism for host defense against fun-
gal pathogens such as A. fumigatus [16-18]. Noteably,
a mouse model of fungal keratitis in the cornea using
mice that do not express a functional NOX complex
showed that neutrophil NOX expression was required
for inhibiting A. fumigatus growth [10]. From a fun-
gal perspective, genes encoding oxidative stress response
enzymes are known to be among the most differentially
expressed genes of A. fumigatus hyphae following expo-
sure to human neutrophils from healthy individuals [19].
Furthermore, A. fumigatus antioxidant enzymes and the
ROS-sensing transcription factor deletion strains show a
heightened sensitivity to ROS in vitro [9,10,20].

Other evidence suggests that the adeptness of A. fumi-
gatus to acquire iron from the host is a major basis of its
pathogenicity. Both the fungus and host require iron for
important cellular functions including respiration, gene
regulation, DNA synthesis, and oxidative stress response
[21]. Iron deprivation of invading pathogens by the host
is a crucial host defense mechanism [22-24]. To combat
this, fungi secrete siderophores, low-molecular-mass iron
binding compounds that sequester iron from host pro-
teins. [25]. A significant body of evidence suggests that
the victor of this battle for iron is a key determinant
of whether infection will persist or be cleared [25-28].
Notably, a mutant A. fumigatus strain unable to produce
both extra- and intracellular siderophores was avirulent
in a mouse model of IA [5]. Any advantage A. fumigatus
has in the battle for iron can be dangerous. For instance,
increased iron in bone marrow is a risk factor for IA in
high-risk patients [11]. Similarly, the heightened suscep-
tibility to fungal infections in neutropenic patients may
be in part due to increased extracellular iron due to the
absence of host cells which mediate iron sequestration
[29].

Leal et al. show that the use of topical drugs to tar-
get either A. fumigatus oxidative stress response or iron
acquisition systems is effective for treating A. fumiga-
tus infection in mice cornea [10,12]. The fungal iron
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acquisition system is a particularly promising target
for therapeutic intervention because the fungal proteins
which import ferri-siderophores are one of the few protein
families that are unique to fungi [30]. This might make it
possible to design drugs which specifically target the fun-
gus without affecting the host, perhaps by a “Trojan horse”
approach [31,32]. Furthermore, the iron acquisition and
oxidative stress response networks are connected. Indeed
it was found in A. fumigatus that deletion of a key iron
regulatory protein, AsreA, caused increased sensitivity
to superoxide [13]. Also in A. fumigatus deletion of an
intracellular siderophore led to decreased expression of
conidial, but not hyphal, catalase [33]. Similarly, in A.
nidulans oxidative stress was shown to increase the accu-
mulation of an intracellular siderophore [14]. Finally, a
yeast mutant with deletion of genes that regulate the tran-
scription of high-affinity iron transport genes also showed
several phenotypes related to oxidative stress such as
hypersensitivity to hydrogen peroxide [15].

The role of mathematical modeling

The purpose of the present work is to gain a deeper
understanding of the molecular mechanisms underly-
ing the systems that most contribute to A. fumigatus
pathogenicity, the iron acquisition and oxidative stress
response networks. For this purpose, we have constructed
a novel dynamic mathematical model of key molecu-
lar interactions defining these networks. Mathematical
modeling of complex molecular interaction networks
allows for the encoding of dynamic interactions among
molecules, and thus enables the simulation of global net-
work behavior based on information known about indi-
vidual interactions.

Recently, the first computational model of A. fumiga-
tus iron regulation was proposed [34]. Taking a top-down
approach, Linde et al. used gene expression time series
data to reverse engineer a regulatory network and pre-
dict new interactions between transcription factors and
target genes. The authors constructed a system of differ-
ential equations to model changes in gene expression as a
function of other genes in the network. A major challenge
to building differential equations models is that many of
the required parameters are either unknown or unmea-
surable, and so parameters must be estimated by fitting
equations to experimental time series data, which is lim-
ited for A. fumigatus iron regulation and oxidative stress
response.

However, there is a wealth of qualitative data for these
networks, for example the interaction between a tran-
scription factor and a gene, from high-throughput tran-
scriptomic experiments such as microarrays [13,29,35]. In
contrast to the Linde et al. computational study, we take
a bottom-up approach to investigate both iron regula-
tion and oxidative stress response, and we apply a discrete
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dynamic modeling framework. Discrete models make use
of the available qualitative data by encapsulating the reg-
ulatory logic driving a network, and they do not require
kinetic parameters. Simulation of discrete models pro-
vides coarse-grained information as the network evolves
over an arbitrary unit of time in response to broad changes
in some physiological condition. Qualitative observations
generated by these models are extremely useful for inves-
tigating the ability of known or proposed information to
explain current experimental results, studying how per-
turbations may alter global behavior, and for pinpointing
productive future experiments.

Discrete models, in particular Boolean network mod-
els, are routinely used to investigate biological systems
such as gene regulatory networks, signaling pathways,
and metabolic pathways [36-41]. Discrete models have
contributed insights into host-pathogen interactions for
several pathogenic bacteria [42-44]. To our knowledge,
discrete models have not yet been used to study A. fumi-
gatus biology, yet many aspects of yeast biology have
been explored via discrete models [45-47]. This includes
a Boolean network model of metabolic adaptation to
oxygen in relation to iron homeostasis and oxidative
stress [48].

Results and discussion

Description of model species

The model contains an oxidative stress response mod-
ule and a larger iron acquisition module which is made
up of five submodules: siderophore biosynthesis (SB),
iron uptake, iron storage, iron usage, and iron regulation.
Figure 1 is a graphical representation of all model species
(nodes), their interactions (edges), and the sign of the
interaction.

Siderophore biosynthesis

A. fumigatus produces four siderophores, low molecular
mass ferric iron-specific chelators [33]. Two extracellu-
lar siderophores are excreted from the cell to sequester
iron from the extracellular space [8]. And two intracel-
lular siderophores are used for intracellular iron storage
[14,49]. For simplicity, our model considers only one
extracellular siderophore, triacetylfusarinine C (TAFC),
and one intracellular siderophore, ferricrocin (FC), which
have been shown to be the two most abundant and
active A. fumigatus siderophores [50]. The first step in
the biosynthesis of all four siderophores is the hydrox-
ylation of ornithine catalyzed by SidA, an ornithine
monooxygenase.

Iron uptake

Iron uptake is believed to be the main iron homeostasis
control mechanism used by A. fumigatus, in part because
mechanisms of iron excretion have not been found in
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fungi [51]. A. fumigatus has three known mechanisms of
iron uptake: low affinity ferrous iron uptake, which has not
yet been characterized at the molecular level, and two high
affinity ferric iron uptake systems, namely siderophore-
mediated iron uptake and reductive iron assimilation
(RIA) [8]. RIA involves the reduction of ferric iron to fer-
rous iron by the ferric reductase FreB and subsequently
the import of ferrous iron by a protein complex consisting
of the ferroxidase FetC and the iron permease FtrA [52].
For simplicity, these three proteins are modeled as a single
species called RIA.

Siderophore-mediated iron uptake is represented in
the model by nodes TAFC, MirB, and EstB. TAFC is
released into the extracellular space to steal ferric iron
from host proteins such as transferrin [53]. A protein fam-
ily called siderophore-iron transporters (SIT) recognizes
and retrieves specific ferri-siderophores. After binding to
Fe3T, the ferri-TAFC complex is taken back up by the
TAFC-specific SIT MirB [54]. After import into the cell
the ferri-TAFC complex is degraded by a TAFC-specific
esterase called EstB [55]. Subsequently, breakdown prod-
ucts are recycled, and iron is released into the cell for
transfer to intracellular siderophores or the iron vacuole
[56].

Iron storage

Unlike bacteria, plants and animals, most fungi lack
ferritin-mediated iron storage [51]. Instead, A. fumigatus
relies on siderophore-mediated iron storage via the intra-
cellular siderophore FC and a siderophore-independent
iron storage unit, the iron vacuole [49,56]. Import of iron
into the vacuole is in part mediated by the protein CccA
which is localized in the vacuolar membrane [56]. The
labile iron pool, a pool of redox-active iron, is also mod-
eled as a transitory state between the release of iron from
ferri-TAFC and the transfer of iron to FC or the vacuole.
Again, since fungi lack mechanisms for iron excretion,
iron storage plays a crucial role in avoiding iron-induced
toxicity. In A. nidulans, FC deficiency was shown to cause
an increase in LIP and a decrease in the oxidative stress
resistance of hyphae [57].

Iron usage

All iron consuming pathways, for example heme biosyn-
thesis, TCA cycle, respiration, and ribosome biogenesis,
are modeled as a single species named ICP.

Regulation

Iron is toxic in excess; thus tight regulatory mechanisms
are required to maintain iron homeostasis. Iron regulation
in A. fumigatus is controlled by two central transcrip-
tion factors: the bZip CCAAT-binding transcription fac-
tor HapX and the GATA transcription factor SreA [13,29].
HapX and SreA are postulated to sense intracellular iron
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Figure 1 Model interaction diagram of A. fumigatus iron regulation and oxidative stress response. Rectangles represent genes. Ovals represent
other molecules. Fe*+ and O; are external parameters to describe the physiological state of a fungal cell. A — B represents activation. A 4 B8

levels through a posttranslational mechanism similar to
the mechanism employed by a closely related species,
the fission yeast Schizosaccharomyces pombe [27]. In S.
pombe, orthologs of HapX and SreA physically interact
with a monothiol glutaredoxin Grx4 which is localized
along the nuclear rim [58-60]. When intracellular iron lev-
els are low Grx4 maintains SreA in an inactive state [59].
When intracellular iron levels are high, Grx4 inactivates
HapX by directing its export from the nucleus [58]. Hence,
intracellular iron blocks HapX function while activating
SreA function at the posttranslational level. Furthermore,
SreA represses transcription of hapX when intracellular
iron levels are high, while HapX represses transcription
of sreA when intracellular iron levels are low. Both tran-
scriptional and posttranslational regulatory mechanisms
are modeled.

SreA transcriptionally represses genes coding for pro-
teins involved in iron uptake, including sidA, mirB,
estB, and those involved in RIA [13]. HapX activates
siderophore biosynthesis, in part by upregulating the pro-
duction of the precursor ornithine, and activates the
transcription of mirB [29]. HapX indirectly activates the
transcription of sidA, estB, and the genes involved in

RIA through its repression of sreA. Additionally, HapX
represses iron consuming pathways, catl, and cccA at the
transcriptional level.

Oxidative stress response
NOX expressed by host phagocytic cells catalyzes the con-
version of oxygen to the the extremely reactive superox-
ide anion, O, . Contact between neutrophils and hyphae
triggers a respiratory burst, the targeted release of O,
from the neutrophil into the extracellular space where it
diffuses into nearby hyphal cells. The A. fumigatus ROS-
sensing transcription factor Yapl is believed to be the
main regulator of antioxidant defense against O, and
hydrogen peroxide, Hy0, [61,62]. Yap1 typically resides in
the cytoplasm, yet under oxidative stress conditions Yap1l
localizes to the nucleus and from there controls, directly
or indirectly, the expression of key ROS-detoxifying
enzymes including superoxide dismutases (SODs), cata-
lases, and thioredoxin peroxidases (peroxiredoxins) [61].
Elevated free iron levels (high LIP) in the cell also con-
tribute to the formation of ROS [63].

SODs catalyze the conversion of O, to less reac-
tive HyOy which can then be converted to non-reactive
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H,O by either catalases or peroxiredoxins. A. fumigatus
produces four SODs, yet only the mitochondrial SOD2
and cytoplasmic SOD3 are modeled here since both are
most strongly expressed in hyphae, the tissue invasive
form of this pathogen, as opposed to in conidia [20]. A.
fumigatus hyphae produce two catalases, Catl and Cat2,
which break down hydrogen peroxide [9]. The thiore-
doxin pathway in A. fumigatus is not well characterized;
however, two putative peroxiredoxins and five putative
thioredoxins have been identified [10,61]. Briefly, per-
oxiredoxins reduce Hy0, and by doing so become oxi-
dized, a non-functional state. Thioredoxins then reduce
the oxidized peroxiredoxins back to their functional state
so that more Hy0y can be reduced [64]. In the model
the thioredoxin pathway is modeled as a single vari-
able. Note that in Figure 1 the ROS species has a self-
activating arrow. The purpose of this interaction is to
enforce “memory” in the system, ie. if ROS is high
at the current time step and antioxidant enzymes are
not expressed or inactive, then the ROS variable should
“remember” to remain high until antioxidant enzymes are
active.

Building and simulating the mathematical model

The model presented in this paper is discrete. This means
species can take on only a finite number of states, and
the state of each species is iteratively updated at discrete
time steps according to logical rules. The discrete model
presented here is a Boolean network model, meaning
that each species can take on only two states (e.g. low
expressed or high expressed; low active or high active),
which may be represented numerically by either a 0 or
a 1. Furthermore, the rules determining how species are
updated are Boolean functions.

We conducted an extensive literature survey to iden-
tify key species involved in the A. fumigatus iron reg-
ulatory and oxidative stress response networks as well
as the interactions of each species with other species
in the networks (Figure 1). Table 1 gives a biological
description of each species and the meaning assigned to
its states. Note that for different species we may assign
different meanings to their states. Importantly, the two
species iron and superoxide should be thought of as
external parameters since they are meant to distinguish
between different physiological conditions that are reflec-
tive of the host-pathogen interaction. Iron and superox-
ide have no regulators (incoming arrows) (see Figure 1)
and so, unlike other species, a fixed state is chosen at
the start of a simulation and this state will never be
updated.

Next we integrated all identified interactions into a
dynamic framework by specifying, through logical rules
called update rules, how each species transitions between
its two states based upon the states of its inputs. Table 2
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Table 1 List of species, their biological type, and their
model states

Species Type Model states
0 1
hapX Gene Low expressed High expressed
sreA Gene Low expressed High expressed
HapX Protein; bZip Low active High active
CCAAT-binding TF
SreA Protein; GATA TF Low active High active
RIA Enzyme complex; Low active High active
reductive iron
assimilation
EstB Enzyme; Low active High active
TAFC-specific
esterase
MirB Protein; Low active High active
TAFC-specific
importer
SidA Enzyme; ornithine  Low active High active
monooxygenase
TAFC Extracellular Low synthesized  High synthesized
siderophore
ICP Iron consuming Low active high active
pathways
LIP Labile iron pool Low iron High iron
CccA Protein; iron Low active High active
importer to
vacuole
FCtfe Intracellular Low iron High iron
siderophore w/
bound iron
FC—fe Intracellular Low synthesized  High synthesized
siderophore w/o
bound iron
VAC Vacuole Low iron High iron
ROS Reactive oxygen Low ROS High ROS
species
Yap1 Protein; bZip TF Low active High active
SOD2/3 Enzyme; Low active High active
superoxide
dismutase
Cat1/2 Enzymes; hyphal Low active High active
catalases
Thioredoxin Enzyme pathway Low active High active
P.
Iron Physiological state  Low iron High iron

Superoxide Physiological state  Low superoxide High superoxide

lists the update rule for each species as a Boolean function
along with a summary of experimental support for each
rule. The model is available in SMBL qual format, a stan-
dard language for representation of qualitative models of
biological networks [65], see Additional file 1.
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Table 2 Update rules of model species and supporting literature citations

Update rules

Literature support

1 hapX(t+1) = NOT SreA

Transcription of hapX is repressed by SreA [13,29].

2 sreA(t+1) = NOT HapX

Transcription of sreA is repressed by HapX [13,29].

3 HapX(t+1) = hapX AND (NOT LIP)

An ortholog of HapX is inactivated by intracellular iron [58].

4 SreA(t+1) = sreA AND LIP

An ortholog of SreA is activated by intracellular iron [59,60].

5 RIA(t+1) = NOT SreA

SreA transcriptionally represses RIA genes [13].

6 EstB(t+1) = NOT SreA

SreA transcriptionally represses estB [13].

7 MirB(t+1) = HapX AND (NOT SreA)

HapX transcriptionally activates mirB [29]. SreA transcriptionally represses
mirB [13].

8 SidA(t+1) = HapX AND (NOT SreA)

HapX up regulates the SidA substrate ornithine [29]. SreA transcriptionally
represses sidA [13].

9 TAFC(t+1) = SidA

SidA catalyzes the first step in siderophore biosynthesis [5,8]

10 ICP(t+1) = (NOT HapX) AND (VAC OR FC*¢)

HapX represses consumption of intracellular iron [29].

11 LIP(t+1) = (TAFC AND MirB AND EstB) OR (Iron AND RIA)

TAFC sequesters iron from the extracellular space [8]. MirB imports ferri-
TAFC [54]. EstB

degrades ferri-TAFC bonds and releases free iron [55]. RIA compensates for
a lack of

siderophores when grown in high iron media [33].

12 CccA(t+1) = NOT HapX

HapX transcriptionally represses cccA [29].

13 FCe(t+1) = SidA

SidA catalyzes the first step in siderophore biosynthesis [5,8]

14 FCHe(t+1) = LIP AND FC—e

FCis involved in intracellular iron storage [14,49].

15 VAC(t+1) = LIP AND CccA

CccA mediates import of intracellular iron into the vacuole [56].

16 ROS(t+1) = LIP OR
< Superoxide AND ( NOT (SOD3 AND ThP AND Cat1/2) ) ) OR

< ROS AND ( NOT (S0D3 AND (ThP OR Cat1/2) ) ) >

Elevated free iron levels catalyze the formation of ROS [63].

SODs convert 05 to HyO; [20]. Either catalases or thioredoxin

convert H,O, to non-reactive H,O [9,64].

17 Yap1(t+1) = ROS

Yap-1 is activated by superoxide [61,62].

18 SOD2/3(t+1) = Yap1

Yap-1 activates transcription of sod2/3 [61].

19 Cat1/2(t+1) = Yap1 AND (NOT HapX)

Yap-1 activates transcription of cat1/2 [61]. HapX transcriptionally represses
catl [29].

20 ThP(t+1) = Yap1

Yap-1 activates transcription of thioredoxin peroxidases [61].

21 lron(t+1) = Iron

External parameter.

22 Superoxide(t+1) = Superoxide [= NOT Superoxide, Figure 5 only]

External parameter.

Species that appear on the right side of the = represent states at time t.

In general, the dynamic behavior of discrete models
is simulated by starting from an initial state and then
enumerating the changing state space as each species is
updated over a specified number of iterations called time
steps. The result of deterministic simulations, when all
species are updated simultaneously at each time step, is
shown in Figure 2. This system has no steady state solu-
tion for any of the four external conditions. All long term
behavior is oscillatory, i.e. the stable states form a limit
cycle and 100% of the 1048576 states converge to the limit
cycle displayed.

Many biological processes such as gene expression have
been found to exhibit a high degree of stochasticity

[66-69]. Furthermore, protein levels can differ signif-
icantly among cells in a population [70,71]. To our
knowledge no single cell gene expression or protein level
measurements are available for A. fumigatus. Hence in
order to make comparisons to experimental data possible,
we needed to account for the variability that one observes
in a population of cells. We accounted for this variabil-
ity by simulating randomness in the update of species.
At each time step, rather than updating all species, some
species are randomly selected to be updated, while the
unselected species are left in their current state. We
assume that the average of many of these stochastic simu-
lations represents a population level measurement.
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Linking model simulation results to phenotype predictions
For the results presented in this paper, we ran 100 inde-
pendent stochastic simulations (initialized in the same
state) and, for each species, calculated the average state
at each time step. From there, we counted the number
of times a species took on any average state throughout
the simulation period. We can plot a histogram of these
counts to visualize a distribution of species’ average state
across 100 simulations, as in Figure 3. To characterize
long-term behavior, we introduce a measure called the sta-
ble distribution mean (SDM) for a given species under
a given set of initial conditions. The SDM is simply the
mean of the distribution of the average states from time
steps 100 to 200. Excluding the first 100 time steps from
the calculation gives the model time to settle into a stable
configuration.

We first simulated the Boolean network model of wild
type A. fumigatus under each of the four possible condi-
tions: (1) low iron and low superoxide, (2) high iron and
low superoxide, (3) low iron and high superoxide, and (4)
high iron and high superoxide. Figure 3 (A) - (C) show the
distributions of average states across 100 wild type sim-
ulations for six selected species under three of the four

conditions. Wild type distributions are not shown for the
remaining condition; instead Figure 4(B) and (D) show
trajectories, the average state at each time step, for eight
selected species.

For both low iron conditions, we observed that HapX,
the transcription factor activating iron uptake and
repressing iron consumption, is more active than SreA,
the transcription factor repressing iron acquisition. This
leads to strong activity of proteins related to siderophore-
mediated iron uptake (MirB) and reductive iron assim-
ilation (RIA). Conversely, for the high iron conditions
we observe that SreA is more active than HapX. Conse-
quently, activity of both MirB and RIA are significantly
reduced as compared to the low iron, low superoxide
condition. These results recapitulate experimental obser-
vations [29,72].

ROS-detoxifying enzymes, SOD2/3 and Catl/2, are
moderately active in the low iron, low superoxide con-
dition. As expected, since free iron and superoxide con-
tribute to ROS, the activity of SOD2/3 and Catl/2 are
elevated in high iron and high superoxide conditions. Fur-
ther, we observed that in low iron conditions Cat1/2 is less
active than SOD2/3. This makes sense because catalases
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require heme as a cofactor whereas SODs instead require
copper, zinc or manganese [20].

Based on experimental results of wild type A. fumiga-
tus growth under each of the four conditions [8,20,33],
we used the stable distribution mean (SDM) of model
variables ROS and ICP to establish a phenotype refer-
ence according to the following rules (see Figure 3). If the
SDM of ICP is 0, then we interpret the model observa-
tion as minimal or no growth. An ICP SDM in (0, 0.33) is
interpreted as low growth. Otherwise, an ICP in [0.33, 1]
signifies a high growth phenotype. If the ROS SDM falls
in [0.66,1] we interpret this as high cell death. When the
SDM of ROS is 1, we assume ROS is so overwhelming that
the entire population dies. Otherwise, for an ROS SDM in
[0, 0.66) the interpretation is low cell death. These rules
bin wild type model behavior to match what we observe
experimentally. We then used this set of rules to infer the
severity of model knockouts.

Stochastic simulations reproduce in vitro time course data

We validated the model on the basis of its ability to repro-
duce transcriptional time course data from a previously
published study and data generated in this study. In both

experiments, A. fumigatus is grown in iron depleted min-
imal media (low iron, low superoxide conditions). After
an incubation period, iron is added to the media (high
iron, low superoxide conditions) and gene expression is
measured over a period of hours either using microarrays
(Schrettl et al., 2008 [13]) or by qRT-PCR (this study, see
Methods).

To mimic the switch from low iron to high iron con-
ditions, all simulations were initialized from a state of
iron starvation (Figure 4G). Iron and superoxide were
fixed at 1 and 0, respectively, throughout model simula-
tions. Experimental results are displayed alongside model
simulation results in Figure 4. From the Schrettl et al.
study, we plot all time course data for genes which corre-
spond to species in the model. For knockout simulations,
the state of the corresponding species is fixed at 0. To
distinguish between model and experimental knockouts,
using sreA as an example, we write sreA=0 to refer to
model knockouts and AsreA to refer to experimental
knockouts.

The model provides a good qualitative reproduction of
changes in gene expression over time. Additionally the
model captures the relative differences in degrees of up-
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or down-regulation among genes. For ease of exposition,
we discuss the following results in the syntax of model
species even though some model species refer to amount
of protein while the experimental results refer to amount
of transcript.

Wild type results

For wild type A. fumigatus, the experimental and model
simulation results show the same expression patterns.
Following the switch from low to high iron, catalases
Catl/2, the vacuolar iron importer CccA, and sreA were
quickly up-regulated, then slowly decreased and leveled
off. After the addition of iron, the expression of hapX,
siderophore biosynthesis enzyme SidA, ferri-siderophore
importer MirB, ferri-siderophore esterase EstB, and
reductive iron assimilation RIA (ftrA in the experimen-
tal data) were quickly down-regulated and remained
low. Moreover, the model recapitulates experimental
observations that among species contributing to iron
uptake, SidA and MirB were less active under high iron
conditions, as compared to the activity of RIA and EstB.

AsreA results

Experimental and model simulation results are also in
agreement for the AsreA deletion strain, except for SidA
and MirB which we discuss shortly. As in the wild type
case, expression of CccA and Catl/2 increased sharply
after the addition of iron. However in the AsreA knock-
out, expression of CccA and Catl/2 remained high over
time. This can be attributed to the fact that iron uptake
mechanisms were depressed in a AsreA mutant. Indeed,
in contrast to the wild type case, both experimental and
model simulation results showed no change in the expres-
sion of hapX, EstB, or RIA despite being exposed to high
iron over a long period of time.

In the AsreA deletion experimental data the amount of
sidA transcript remained the same, whereas the amount
of SidA enzymatic activity in the model simulation plum-
meted to very low. This in fact is not a discrepancy
and serves to illustrate an important point. Although
both HapX and SreA ultimately activate and respectively
repress SidA enzymatic activity, only SreA directly tran-
scriptionally regulates sidA [13,29]. Instead, HapX up-
regulates the production of ornithine, the SidA substrate.
This explains the derepression of sidA in the experimental
data yet the lack of SidA activity in the model simula-
tion. A difference between amount of sidA transcript and
SidA enzymatic activity is not visible in the wild type
data because HapX indirectly regulates the transcription
of sidA through repression of sreA; this feature is lost in a
AsreA mutant.

The discrepancy between gene expression of mirB
in the experiment and activity of MirB in the model
is unexpected since MirB is known to be regulated
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transcriptionally by both HapX and SreA [13,29]. This
may suggest that MirB is in fact not regulated transcrip-
tionally by HapX. Or alternatively, since MirB is known
to transport other siderophores it may have additional
regulators [54].

Regulation of HapX and SreA by iron

The post-translational regulation of S. pombe orthologs of
HapX and SreA by iron has been investigated [58-60]. A.
fumigatus HapX and SreA are postulated to sense intra-
cellular iron levels through a similar post-translational
mechanism, but the corresponding mechanism has not
yet been identified [27]. We included in the model both
the known transcriptional regulation of hapX and sreA,
by SreA and HapX respectively, and the proposed but
not yet verified post-translational regulation of HapX and
SreA by intracellular iron. Additionally, we analyzed a
modified model whereby hapX and sreA were regulated
transcriptionally by iron, and all other interactions are
the same. Both versions of the model were consistent
with gene expression data for the wild type. However,
the model with HapX and SreA regulated by iron at
the post-transtlational level, but not the modified model,
agreed with the Schrettl et al. sapX gene expression data
for the AsreA mutant strain (see Figure 4H). This pro-
vides support for the hypothesis that, as in S. pombe,
a post-translational regulation of the iron regulatory
proteins HapX and SreA by iron is in fact employed by
A. fumigatus.

Model knockout simulations recapitulate experimental
gene deletion results.

Next, we systematically analyzed the effect of all single and
double knockouts on model predicted phenotypes under
each of the four external conditions. Key observations
from wild type and knockout simulations are summarized
in Table 3.

Iron regulation knockouts
For the low iron conditions, the SidA = 0 knockout led
to minimal or no growth (SDM of ICP = 0). However, no
growth defects were observed when RIA =0 under the
same conditions. In high iron conditions, the SidA =0
knockout did not deviate from the wild type high growth
phenotype. However, in high iron conditions, a double
RIA = SidA =0 knockout led to minimal or no growth.
These results are consistent with experimental results
showing: (1) a AsidA but not AftrA mutant is avirulent in
a mouse model of aspergillosis [5,8], and (2) that RIA can
compensate for a lack of siderophores in high iron but not
low iron conditions [33].

Also in agreement with experiments, under low iron
conditions the TAFC =0 knockout led to more severe
growth defects than the FC~¢ = 0 knockout [33]. Knocking
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Table 3 Summary of observations from model wild type and knockout simulations

Condition Strain Long term model behavior Cell Cell Support  Conflicts
ICP  ROS Other interesting behavior Growth Death
0y =0 wt 029 044 eTAFC=FC—'¢ = 052; high siderophore production — — [58]
e Cat1/2=0.29;,SOD2/3 =ThP =044 prediction
o FCFe/FCtfe =17 [14]
Fe3t =0 hapX =0 0 0 eSidA=0 - - [29]
SidA=0orTAFC=0 0 0 - — [5,8,33,52]
FCF =0 011 043 - - [14,33]
EstB=0orMirB=0 0 0 o TAFC =FC~¢ = 1; accumulation of siderophores - — [55]
Yap1=00rSOD2/3=0 029 1 - + [10,20]
0y =0 wt 048 062 oTAFC=FC=0.18;low siderophore production + - (58]
e Cat1/2=0.54,50D2/3=ThP =061 [13]
o FCFe/FCtre =1 [14]
Fe3t = sreA=0 1 1 e Derepression of hapX, RIA, CccA, & Cat1/2 + + [13,52]
o LIP=VAC = 1;iron overload (13]
SidA=0 042 061 + - [5,8,33]
RIA=0 029 045 eSidA=0.52;increased siderophore production — — [8,33]
SidA=RIA=0 0 0 - - [8,33]
Yap1=00rSOD2/3=0 049 1 o Decreased resistance to Fe3t + + [10,20]
0y =1 wt 028 0.78 S0D2/3=ThP=0.76;Cat1/2=0.40 - + [20,33,61]
hapX =0 0 058 eDerepressed Cat1/2 and increased resistance to O5 - - prediction
Fedt = SidA =0, TAFC=0, 0 1 o Decreased resistance to O5 - + prediction
MirB=0orEstB=0
Yap1=0,50D2/3=0, 029 1 e Decreased resistance to oy — + [9,10,20,61]
Cat1/2=0o0rThP=0
0; =1 wt 049 073 eFCe/FCHe =1 + +  [142033]
e SOD2/3=ThP=0.73; Cat1/2=0.63 prediction
Fe3t =1 sreA=0 1 1 e Decreased resistance to Fe** + + [13]
Yap1=0,50D2/3=0, 047 1 e Decreased resistance to Fe** and O; + + [9.2061]

Cat1/2=00rThP=0

Numerical values in the ‘Long Term Model Behavior’ column represent SDMs. A — denotes low cell growth or low cell death, while a + denotes high cell growth or

high cell death. Citations for supporting and conflicting literature are provided.

out any part of the siderophore iron uptake system under
low iron conditions (TAFC = 0, MirB= 0, or EstB= 0)
resulted in a minimal growth phenotype. Interestingly,
we observed an accumulation of siderophores for either
MirB =0 or EstB = 0 under low iron conditions, a behav-
ior which has been observed experimentally in an AestB
mutant [55].

The hapX =0 knockout displayed a minimal growth
phenotype under low iron conditions, but had no defects
under high iron conditions. Conversely, the sreA=0
knockout led to iron overload (SDM of LIP =1) and cell
death by overwhelming ROS (SDM of ROS=1) under
high iron conditions, but had no defects under low iron
conditions. This recapitulates experimental results show-
ing that growth defects of a AhapX mutant are confined

to low iron conditions while growth defects of a AsreA
mutant are confined to high iron conditions [13,29].

Oxidative stress response knockouts

As expected, wild type ROS-detoxifying enzyme activity
was lowest under the low iron, low superoxide condition.
The SDM of Catl/2 was less than that of SOD2/3 and
the thioredoxin pathway (abbreviated to ThP in Table 3)
whenever iron was low. Under low superoxide conditions
the model predicted a Yapl =0 or SOD2/3 =0 knockout,
but not a Catl/2=0 or Thp =0 knockout, to be fatal.
This observation demonstrates that the model accounts
for the redundancy that both catalases and peroxiredoxins
reduce HpO,. Under high superoxide conditions, model
knockouts of any of the four oxidative stress-related
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species had a high cell death phenotype due to over-
whelming ROS.

The observation that Yapl or SOD2/3 deletion is
more severe than deletion of Catl/2 or blocking of the
thioredoxin pathway is consistent with experimental
results from Leal et al. which show that Ayapl and
Asodl/2/3 mutant strains are sensitive to neutrophil-
mediated oxidative stress, whereas a Acatl/2 strain is
not [10]. Yet the observation is inconsistent with a result
from the same study which showed that blocking the
thioredoxin pathway results in a reduction of in vivo
hyphal growth similar to deletion of either yap1 or sod2/3
[10]. An earlier study, which demonstrated that a Acat1/2
mutant showed increased sensitivity to HyOy in vitro
and delayed growth during infection in a rat model of
aspergillosis, further conflicts with the Leal et al. study
and provides support for the model predicted phenotype
of a Catl/2=0 knockout [9]. Overall, the severity of
experimental knockout results seem to be exaggerated
by some model predictions. In particular, deletion of
either yapl or sod2/3 should not result in high cell
death in the absence of oxidative stress, yet under low
superoxide conditions the model predicted knockouts a
high cell death phenotype for Yapl =0 and SOD2/3=0
knockouts.

Discrepancies between experimental results and model
predictions indicate that important species or interactions
may be missing from the model. This may reflect that our
understanding of A. fumigatus oxidative stress response
is still not complete. For instance, there may be uniden-
tified redundancy, some of which could be attributed
to LaeA-controlled secondary metabolites which inhibit
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neutrophil production of NOX [73]. Yet knockout exper-
iments of several of these metabolites as well as laeA
suggest they may play no role in protecting A. fumiga-
tus from neutrophil-mediated oxidative stress [10]. Since
model-predicted phenotypes of Yapl and Yapl-regulated
species knockouts are most overstated in low superox-
ide conditions, it is possible that the model lacks some
constitutively active or baseline antioxidants which may
be useful for neutralizing ROS produced during normal
cellular activities but may not necessarily be helpful in
combating oxidative stress. As more research is done to
characterize new players in the A. fumigatus oxidative
stress response network, the oxidative stress response
module of this model can be improved and new insights
may be gained.

Model suggests combined blocking of iron uptake and
oxidative stress response
Of the four conditions in Table 3, the low iron and high
superoxide condition most resembles the environment
that A. fumigatus cells experience inside a mammalian
host. Under this condition, model knockouts which
impaire siderophore-mediated iron uptake increased A.
fumigatus sensitivity to oxidative stress. A similar rela-
tionship between high-affinity iron uptake and sensitivity
to oxidative stress has been observed in yeast [15]. This
observation led us to wonder what the model would pre-
dict for ROS levels if combined blocking of siderophore-
mediated iron uptake and oxidative stress response were
simulated under less rigid external conditions.

Several experimental studies have investigated target-
ing either siderophore-mediated iron uptake or oxidative
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stress response, but none have investigated any potential
therapeutic gain by combined targeting. TAFC and MirB
are promising drug targets since they are easily acces-
sible and unique to fungi [30]. Leal et al. demonstrate
proof of concept that using lipocalin-1 to sequester TAFC
improves the treatment of topical A. fumigatus infection
[12]. An anti-cancer drug, PX-12, which is known to block
the thioredoxin pathway also shows promise as an anti-A.
fumigatus drug [10].

To investigate the effects of simultaneously inhibiting
siderophore-mediated iron uptake and oxidative stress
response, we simulated treatment with two hypothetical
drugs loosely based on lipocalin-1 and PX-12. Hypotheti-
cal drug 1 binds and inactivates TAFC from 50% of fungal
cells. Hypothetical drug 2 blocks the thioredoxin pathway
in 50% of fungal cells. For these simulations, we held
iron fixed at 0 but allowed superoxide to randomly toggle
between 0 and 1. This setup recapitulates host defense
mechanisms of sustained iron witholding and intermittent
respiratory bursts. Figure 5(A) shows two representative
superoxide trajectories when random toggling is allowed.
Figure 5(B) shows ROS stable distributions from the aver-
age of 100 stochastic simulations for treatment with Drug
1, Drug 2, both drugs or neither drug. To simulate the drug
treatments with 50% efficacy, we fixed either TAFC, ThP,
or both at 0 for 50 of the 100 simulations. Drug 1 alone
has no effect, Drug 2 alone increases the ROS SDM from
0.64 to 0.74, and the combination of Drug 1 and Drug 2
further increases the ROS SDM to 0.83. This result sug-
gests that combined targeting of siderophore-mediated
iron uptake and the oxidative stress response network may
act synergistically to increase fungal cell killing.

Conclusions

In this study we introduce a stochastic Boolean model
of the iron regulatory and oxidative stress response net-
works in A. fumigatus. Model simulations of a population
of A. fumigatus cells reproduces gene expression patterns
in experimental time course data when A. fumigatus is
switched from a low iron to a high iron environment. In
addition, the model is able to accurately represent the phe-
notypes of many knockout strains under varying iron and
superoxide conditions.

We drew three main observations from model analysis.
First, the model provides support for the hypothesis that
A. fumigatus iron regulatory proteins, HapX and SreA, are
regulated by iron at the post-translational level. Second,
based on discrepancies between model knockout sim-
ulations and experimental observations of A. fumigatus
oxidative stress response related mutants, it is likely that
important enzymes or pathways involved in A. fumigatus
ROS-detoxification remain uncharacterized. And third,
impairment of siderophore-mediated iron uptake mecha-
nisms reduces A. fumigatus resistance to oxidative stress.
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This fact could be exploited when designing a treatment
strategy.

Deterministic simulation (as well as individual stochas-
tic simulations, data not shown) of the model predicts
sustained oscillations under each of the four external con-
ditions (Figure 2). On the other hand when a population
of cells is modeled by averaging many stochastic simula-
tions, the model converges to a steady state distribution
(Figure 3). Without single cell data, it is unclear how to
interpret discrepancies between an individual (determin-
istic or stochastic) simulation and the average of many
stochastic simulations. It is conceivable that, in agree-
ment with individual model simulations, expression of
iron homeostasis and oxidative stress response genes in a
single A. fumgatus cell may continually oscillate, perhaps
always overshooting and undershooting ideal intracellu-
lar iron levels. A recent study in E coli reported damped
oscillations in the expression of genes involved in iron
homeostasis in a single E. coli cell undergoing a switch
from high iron to low iron conditions [21]. Future single
cell experiments of A. fumigatus could shed light on how
stochasticity arises in fungal iron regulatory and oxidative
stress response networks.

The intended future application of this model is to
incorporate it into a multi-scale systems biology model of
invasive aspergillosis in the lung. The ultimate goal of the
proposed multi-scale model is to capture the effect of the
initial inoculum on disease outcome and to allow for the
investigation of a variety of therapeutic interventions.

Methods

Computational methods

Discrete modeling framework

In order to translate the network interactions depicted in
the diagram of Figure 1 into a dynamic discrete model,
namely a time- and state-discrete dynamical system, the
state transitions for each species must be specified by
assigning an update rule that describes how the species’s
state will be updated at the next time step based upon the
states of its inputs at the current time step. Since this is a
Boolean model, each species can take on only two states
and update rules are Boolean functions. It is convenient
to encode update rules in an object called a transition
table. As an example, consider the iron-sensing transcrip-
tion factor SreA. From the literature we know that when
intracellular iron levels are low, SreA is kept in an inac-
tive state [59,60]. Based on this we decide the update of
SreA should depend on two inputs, its gene sreA and the
labile iron pool LIP. These interactions are represented in
Figure 1 as the two edges incident on SreA. Based on the
state descriptions assigned to SreA, sreA, and LIP listed in
Table 1, we obtain the following table which determines
which state SreA will transition to at time step ¢ + 1 based
on the states of sreA and LIP at the current time step, ¢.
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Using Table 1 to translate the state descriptions into 0’s
and 1’s, we obtain the following transition table.

This table encodes the AND function. Both sreA AND
LIP must be in state 1 at the time ¢ for SreA to be in state
1 at time ¢+ 1. Any Boolean function can be written using
only AND, OR, and NOT gates (see Table 2).

For ease of computation, we prefer to work with a math-
ematical object rather than transition tables or Boolean
functions. Any discrete dynamical system can be rep-
resented as a system of polynomial equations over a
finite field. A model in this form is called a polynomial
dynamical system (PDS) and can be analyzed using theory
and tools from computational algebra [74,75]. Since each
species in a Boolean network model can take on only two
states, the finite field for our model is Fy = Z/27Z, i.e., the
set of integers {0, 1} where addition and multiplication is
modulo 2.

The polynomial dynamical system for our model (cor-
responding to the update rules listed in Table 2) is: F =
(f1r--fo2) ¢ F%Z — ]F%2 where the variables x;, i =
1,...,22 are the species and the f;, i = 1,...,22 are
the update functions written as the following polynomials
over .

x1 = hapX Xy = sreA x3 = HapX
x4 = SreA x5 = RIA x¢ = EstB
x7 = MirB xg = SidA x9 = TAFC
x10 = ICP x11 = LIP x12 = CccA
x13=FCF  x, =FC™* x5 =VAC
x16 = ROS x17 = Yapl x18 = SOD2/3
x19 = Catl/2  x90 = ThP x91 = Fe?t
x22 = Oy
fi=xa+1
fo=x3+1
f3=x11-%1 +x1
Ja=x11-%2
fo=x1+1
fo=x1+1
Sfr =3 x4+ x3
Sfo =3 - x4 + x3
Jo =g
JSio = %3 - x14 - %15 + X3 - ¥14 + X3 - X15 + X14 * K15
+ X14 + X15
fi1 = %21 - X5 - X9 - X7 - X6 + X9 - X7 - X6 + X21 - X5
fa=x3+1
Jfi3 =xg

fia = x11 - %13
Sfis = x11 - %12

Sfie = %16 - %11 - %22 - X138 - X19 - X20
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+ %16 - ¥11 - %22 - X18 - X19 + X16 - ¥11 - X¥22 - ¥18 - X20
+ X16 - %11 - X18 - ¥19 * ¥20 + X16 - X22 * ¥18 - X19 - ¥20
+ X11 - %22 - X18 - X19 - X20 + ¥16 - ¥11 - X18 - X19
+ X16 - %22 - X18 - ¥19 + %16 - 11 - X138 - %20
+ %16 - %22 - X18 - X20 + X16 - ¥18 - X¥19 - X20
+ %22 - X18 - %19 - X20 + ¥16 - ¥11 - ¥22 + X16 - X18 * X19
+ %16 - ¥18 - %20 + X16 - ¥11 + X16 - ¥22 + X11 - X22
+ x16 + x11 + x22

Jfi7 =16

fis =x17

Sro = x3 - %17 + %17

S0 =x17

1 =%

So2 =x2

Incorporating stochasticity

In this study, we use a random update schedule to simulate
dynamic behavior. The basic idea behind this approach is
to change the deterministic update of each species into
a probability of being updated. The stochastic discrete
dynamical systems (SDDS) framework was used to gen-
erate stochastic simulations [76]. An SDDS is a time- and
state-discrete dynamical system which models stochas-
ticity at the functional level by introducing two update
probabilities that, together with the update function, spec-
ify a probability of transition of a given species at each
time step. Let p;n' be the probability that species x; will
be updated given that the corresponding update func-
tion f; specifies an increase in state at the next time step.
Let pii be the probability x; will be updated given that f;
specifies a decrease in state at the next time step. Then
a stochastic discrete dynamical system in # variables is a

collection of triplets {ﬁ, piT, p} }n . where we may repre-
sent the update functions f; as polynomials over a finite
field. Thus a SDDS can be represented as a PDS along with
propensity parameters.
The probabilities pj,pii €[0,1] foralli € {1,...,n} are
called the activation propensity and degradation propen-
sity, respectively, of the i-th species. If piT = pf = 1forall
i = 1,...,n then all species are updated simultaneously
at every time step, and the simulation is deterministic. To
implement a random update schedule, we let pLT = pi¢ =
0.5 for all i = 1, .., n, meaning that at each time step each
species has an equal probability of either being updated
or remaining in its current state. Hence at each time
step, some species are randomly selected to be updated
whereas others are not. Updating of selected species is
done simultaneously at each time step. A “time step” in
this model refers to a single round of updates in which the
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state of any given species can be updated only once. The
unit of time step is arbitrary, yet based on comparisons
with experimental time course data (Figure 4), we deter-
mined each time step of our model corresponds to about
6 minutes of real time.

Analysis of Dynamic Algebraic Models (ADAM), a free
web-based software tool which analyzes the dynamics of
discrete models using Grobner bases calculations, was
used to generate the above PDS from transition tables and
to simulate dynamic behavior using the SDDS framework
[77]. ADAM is available at http://adam.plantsimlab.org/.

Experimental methods

A. fumigatus strain and growth conditions

The A. fumigatus strain used was wild-type AF293. A.
fumigatus was cultured on glucose minimal media plus
agar plates at 37°C for 7 to 10 days until fully conidiated.
Spores were harvested by flooding the culture plates with
endotoxin-free phosphate-buffered saline solution con-
taining 0.05% Tween-20 and swabbing with a sterile inoc-
ulation loop to obtain spore suspension. The spores were
vortexed and concentrations of spores were determined
by counting with a hemacytometer.

Incubation and harvesting

A. fumigatus was grown in a liquid shaker under iron
depleted conditions. 25 x 10° A. fumigatus condia were
added to standard glucose minimal media plus 0.05%
Tween-20 but without iron in the trace elements to a final
volume of a 25 mL for a final concentration of 1 million
spores per mL. Flasks were incubated at 37°C and 200
rpm for 72 hours. Glass flasks were rinsed prior to inoc-
ulation with a 0.1 M HCL solution followed by a rinse
with double distilled water to remove residual traces of
iron. After 72 hours, A. fumigatus was shifted from iron
depleted to iron replete conditions by adding FeSO4 to
a final concentration of 10uM FeSOa. A. fumigatus was
then incubated for another 9 hours.

Mycelia were harvested from triplicate samples at 0
(control), 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330,
and 360 minutes after the addition of iron. Mycelia were
filtered through gauze and immediately flash frozen in
liquid nitrogen and stored at -80°C. Frozen mycelia were
subsequently ground to a fine powder using a mortar and
pestle in the presence of liquid nitrogen.

RNA extraction and cDNA synthesis

Total RNA was isolated using a Qiagen RNeasy plant
mini-kit. “Protocol: Purification of Total RNA from Plant
Cells and Tissues and Filamentous Fungi” was used along
with optional on-column DNase digestion step. Extracted
RNA was stored at -80°C. RNA integrity was assessed
by gel electrophoresis. Concentrations of RNA in each
sample were determined by spectrophotometry on a
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Table 4 Primers used for real-time qRT-PCR

Gene Primer sequence (5'-3') melting  Product
Tm (°C)  size(bp)
B-tubuliln - FP CTGCTCTGCCATTTTCCGTG 56.8 119
RP CGGTCTGGATGTTGTTGGGA 573
sidA FP TGACGACTCGCCTTTTGTGAA 57.0 474
RP TTGCTCGGGTCCATCTCAAC 573
sreA FP CTCAGTACGATCGCTTCCCC 573 297
RP GTCCCACAATTACTGCACGA 55.2
ftrA FP GGCATGATCGGAGCGTTCTA 57.1 411
RP GGCTTGGTTTCCTCCTCGAT 57.2
cccA FP GAGCCAAGAGTGAGGCAGAA 57.0 448

RP TGCACACCACCCTTGATACC 574

NANODROP 1000 Spectrophotometer. Next, cDNA was
synthesized following manufacturer’s instructions (Tetro
c¢DNA Synthesis Kit, Bioline). All incubations were car-
ried out in a thermacycler. Following synthesis, cDNA was
stored at -20°C.

qRT-PCR

Real time reverse transcription polymerase chain reaction
(qRT-PCR) was performed using the cDNA as a template.
The constitutively expressed gene B-tubulin of A. fumi-
gatus was used as the house-keeping gene. See Table 4
for a list of primers for target genes. Real time qRT-PCR
was carried out in 20 uL reaction volumes on a BIO-
RAD iQ™5 Multicolor Real-Time PCR Detection System
machine. The real time qRT-PCR consisted of the follow-
ing a 3-step protocol: (95°C denaturation for 10 s, 55°C
annealing period for 30 s, 72°C extension for 45 s) x 40
cycles. Cycling involved an initial denaturing/polymerase
activation step (95°C for 3 min) and a final melting curve
analysis (+0.5°C ramping x 81 cycles; 30 second incu-
bation between each cycle). SYBR Green (Bioline) was
used as the fluorescent reporter molecule in all reactions.
Real time qRT-PCR mixes consisted of 1 uL template
c¢DNA to 19 L master mix. Relative gene expression (fold
change from the addition of iron) was quantified using the
Pfaffl method and normalized to S-tubulin [78]. Results
were collected from biological triplicates, and qRT-PCR
for each biological replicate was carried out in techni-
cal duplicates. Standard errors were calculated to ensure
statistical accuracy.

Additional file

Additional file 1: Brandon2015_Aspergillus_iron_superoxide. The
Boolean network model of Aspergillus fumigatus iron acquisition and
oxidative stress response is provided in SBML qual format.
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